CN107337278A - 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统 - Google Patents

生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统 Download PDF

Info

Publication number
CN107337278A
CN107337278A CN201710770997.2A CN201710770997A CN107337278A CN 107337278 A CN107337278 A CN 107337278A CN 201710770997 A CN201710770997 A CN 201710770997A CN 107337278 A CN107337278 A CN 107337278A
Authority
CN
China
Prior art keywords
sbbr
sensor
sanitary sewage
sewage
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710770997.2A
Other languages
English (en)
Other versions
CN107337278B (zh
Inventor
彭永臻
张建华
孙雅雯
王淑莹
陈建飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710770997.2A priority Critical patent/CN107337278B/zh
Publication of CN107337278A publication Critical patent/CN107337278A/zh
Application granted granted Critical
Publication of CN107337278B publication Critical patent/CN107337278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统属于污水生物处理领域。该系统包括水箱,SBBR反应器。生活污水进入SBBR反应器后,反硝化菌利用污水中的有机物进行反硝化作用,并将多余的有机物储存至体内合成内碳源,反应结束后开始微曝气,在生物膜上进行一体化厌氧氨氧化反应,DO、NH4 +、NO2 和NO3 传感器在线采集信号,通过计算机输出控制DO浓度并调整反应时间,曝气完成后进行缺氧内源反硝化作用,降低出水硝态氮浓度,反应完成后静沉排水。本发明发挥SBBR系统和一体化厌氧氨氧化技术优势,并利用污水中的有机物,节能降耗、耐冲击负荷,同时通过在线实时控制,优化系统运行,自动化程度高,可控性好,可实现深度脱氮。

Description

生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统
技术领域
本发明涉及生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统,属于污水生物处理技术领域。
背景技术
近年来,由于水体“富营养化”问题愈发突出,污水排放标准日益严格,污水脱氮问题成为了水污染控制中的热点
厌氧氨氧化技术,是指在厌氧条件下,以氨氮为电子供体、亚硝态氮为电子受体,将氨氮与亚硝态氮同时转化为氮气的过程,期间不消耗有机碳源,克服了传统脱氮工艺碳源不足的缺点,而且可以节省曝气所需要的能源,剩余污泥量也大大降低。
一体化厌氧氨氧化(即同步短程硝化厌氧氨氧化)是近年来发现的一种新的脱氮工艺,和常规的生物脱氮工艺相比,该工艺能节省100%的碳源,同时具有曝气量低、污泥生成量少等一系列优点,此外,短程硝化反应和厌氧氨氧化反应在相同的条件和系统中进行,简化了操作的难度。因而近年来成为国内外的研究热点。
SBBR反应器是在SBR(序批式活性污泥反应器)中引入生物膜而开发出来的一种新型复合式生物膜反应器,除保留了SBR基建费用少,操作简单、灵活,能有效脱氮除磷等优点之外,还具有诸如生物相更多、更复杂、易于生长世代时间长的微生物;污泥产量少,生物量多,处理能力强等特点。
生物膜技术因所占空间小及固液分离良好而在废水处理中的应用不断增加。与活性污泥相比,生物膜具有更高的微生物活性、微生物相多样化、耐冲击负荷能力强等特点,而且随着生物膜厚度的增加其传质阻力相应增加,沿传质方向逐渐形成外层为好氧层、内层为缺/厌氧层的微环境。好氧层主要进行硝化反应,缺氧层主要进行厌氧氨氧化与反硝化作用,缺氧层的形成有利于加强生物厌氧氨氧化能力,可在好氧反应器内同时进行短程硝化和厌氧氨氧化作用,强化系统整体的脱氮能力。
本发明通过生物填料挂膜,形成对短程硝化菌、反硝化菌及厌氧氨氧化各自有利的微环境,增强菌群间的协作,并通过控制系统实时控制变量,优化运行方案,从而实现氮的高效去除。
发明内容
针对当前生活污水碳氮比(C/N)低,传统脱氮工艺脱氮效果不好,能耗大等问题,本发明提供的是一种以一体化厌氧氨氧化强化内源反硝化的SBBR控制系统处理低碳生活污水的方法,在解决传统脱氮工艺碳源不足问题的同时,可以节省曝气所需要的能源,同时采用实时控制,提高装置的可控性和灵活性,实现氮的深度去除。
生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统,其特征在于:包括生活污水水箱(1)、SBBR反应器(2)、PLC控制箱(15)、计算机(16);其中所述生活污水水箱(1)通过进水泵(3)与SBBR反应器(2)相连接;所述SBBR反应器(2)设有填料支架(4)、生物填料(5)、气泵(6)、气体流量计(7)、曝气盘(8)、排水阀(9)、排泥阀(10)、DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)、搅拌器(17);所述生物填料(5)呈立方体状,材质为聚氨酯,孔隙率大于90%,比表面积20~23m2/g,填充率20%~25%,用尼龙绳将其穿挂在填料支架(4)上,均匀分布于SBBR反应器(2)中,微生物附着生长在填料上形成生物膜;所述PLC控制箱(15)连接DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)和计算机(16);所述计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮和硝态氮浓度。
利用一体化厌氧氨氧化强化内源反硝化SBBR控制系统处理低碳生活污水的方法,主要包括以下步骤:
1)城市生活污水由生活污水水箱(1)经进水泵(3)进入SBBR反应器(2),进水结束后,搅拌器(17)开启,使生活污水与生物填料(5)上附着生长的微生物充分接触,反硝化菌利用污水中的有机物将上一反应周期残余的少量亚硝态氮与硝态氮去除,同时将剩余的有机物储存至细菌体内合成内碳源,NO2 -传感器(13)和NO3 -传感器(14)分别在线采集反应器中的亚硝态氮与硝态氮浓度,当二者浓度均小于0.5mg/L时认为反硝化作用完成;控制搅拌器转速为60-80r/min,避免转速过快将空气带入水中,破坏缺/厌氧环境,DO<0.2mg/L,以保证良好的缺氧反硝化与厌氧内碳源储存条件,反应时间90~120min;
2)上述反应结束后,气泵(6)开启,通过气体流量计(7)控制DO为0.5~2mg/L,由于填料上形成的生物膜,其表面到内部存在DO浓度梯度,可形成好氧—缺氧区域微环境,此时,主要在生物膜外表面(好氧层)生长的短程硝化菌进行短程硝化反应,将污水中的氨氮氧化为亚硝态氮;与此同时,主要生长在生物膜内部(缺氧层)的厌氧氨氧化菌利用短程硝化菌提供的亚硝态氮与污水中剩余的氨氮进行厌氧氨氧化作用,并生成少量的硝态氮;
3)DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)和NO3 -传感器(14)分别在线采集反应器中的DO、氨氮、亚硝态氮与硝态氮浓度,并将采集到的信号传输至PLC控制箱(15)和计算机(16);
4)计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮浓度和硝态氮浓度,当硝态氮浓度大于5mg/L时,减小曝气量,控制DO为0.5~1mg/L,以保证良好的短程硝化与厌氧氨氧化反应,反之,维持现状即可;当氨氮浓度小于1mg/L时停止曝气,好氧反应结束;
5)气泵(6)关闭,搅拌器(17)开启,此时反硝化菌利用体内储存的内碳源进行内源反硝化作用,进一步降低反应器中硝态氮浓度,控制搅拌器转速为60-80r/min,DO<0.2mg/L,反应时间90~120min,反应结束后,静置沉淀5min进行泥水分离,上清液通过排水阀(9)排出,排放的水量等于系统最初的进水量;脱落的生物膜经排泥阀(10)排出。
以一体化厌氧氨氧化强化内源反硝化SBBR控制系统处理低碳生活污水的方法,具有下列优点:
1)将生物膜法与同步短程硝化厌氧氨氧化脱氮技术相结合,同时充分利用污水中的有机物强化内源反硝化,在单一系统中实现了低碳氮比生活污水的深度脱氮。
2)微生物附着生长在生物填料上,可维持较长的生物固体停留时间,为世代时间长、增殖速度慢的厌氧氨氧化菌的生存提供了良好的生存环境。
3)与活性污泥相比,生物膜更耐冲击负荷、微生物活性高、微生物相多样化,通过菌群间的协作可实现氮的高效去除。
4)短程硝化与厌氧氨氧化相结合,可显著的节省碳源和曝气量,同时通过在线实时控制,优化系统运行,自动化程度高,可控性好。
5)生物膜具有较强的吸附与拦截污染物的能力,系统出水清澈。
附图说明
图1为生活污水一体化厌氧氨氧化强化内源反硝化SBBR控制系统的结构示意图。
图1中:1-生活污水水箱;2-SBBR反应器;3-进水泵;4-填料支架;5-生物填料;6-气泵;7-气体流量计;8-曝气盘;9-排水阀;10-排泥阀;11-DO传感器;12-NH4 +传感器;13-NO2 -传感器;14-NO3 -传感器;15-PLC控制箱;16-计算机;17-搅拌器。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方案。
如图1所示,生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统,主要包括生活污水水箱(1)、SBBR反应器(2)、PLC控制箱(15)、计算机(16)。反应器主体由有机玻璃制成,有效容积10L。所述生活污水水箱(1)通过进水泵(3)与SBBR反应器(2)相连接;所述SBBR反应器(2)设有填料支架(4)、生物填料(5)、气泵(6)、气体流量计(7)、曝气盘(8)、排水阀(9)、排泥阀(10)、DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)、搅拌器(17);所述生物填料(5)呈立方体状,材质为聚氨酯,孔隙率大于90%,比表面积20~23m2/g,填充率20%~25%,用尼龙绳将其穿挂在填料支架(4)上,均匀分布于SBBR反应器(2)中,供微生物附着生长形成生物膜;所述PLC控制箱(15)连接DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)和计算机(16);所述计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮和硝态氮浓度。
利用一体化厌氧氨氧化强化内源反硝化SBBR控制系统处理低碳生活污水的方法,主要包括以下步骤:
1)城市生活污水由生活污水水箱(1)经进水泵(3)进入SBBR反应器(2),进水结束后,搅拌器(17)开启,使生活污水与生物填料(5)上附着生长的微生物充分接触,反硝化菌利用污水中的有机物将上一反应周期残余的少量亚硝态氮与硝态氮去除,同时将剩余的有机物储存至细菌体内合成内碳源,NO2-传感器(13)和NO3-传感器(14)分别在线采集反应器中的亚硝态氮与硝态氮浓度,当二者浓度均小于0.5mg/L时认为反硝化作用完成;控制搅拌器转速为60-80r/min,避免转速过快将空气带入水中,破坏缺/厌氧环境,DO<0.2mg/L,以保证良好的缺氧反硝化与厌氧内碳源储存条件,反应时间90~120min;
2)上述缺/厌氧反应结束后,搅拌器(17)关闭,气泵(6)开启,通过气体流量计(7)控制DO为0.5~2mg/L,由于生物膜的表面到内部存在DO浓度梯度,可形成好氧—缺氧区域微环境,此时,主要在生物膜外部(好氧层)生长的短程硝化菌将污水中的氨氮氧化为亚硝态氮;与此同时,主要生长在生物膜内部(缺氧层)的厌氧氨氧化菌以短程硝化菌产生的亚硝态氮为电子受体,以污水中剩余的氨氮为电子供体,进行厌氧氨氧化作用,将氨氮与亚硝态氮转化为氮气去除,并生成少量的硝态氮;
3)DO传感器(11)、NH4+传感器(12)、NO2-传感器(13)和NO3-传感器(14)分别在线采集反应器中的DO、氨氮、亚硝态氮与硝态氮浓度,并将采集到的信号传输至PLC控制箱(15)和计算机(16);
4)计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮浓度和硝态氮浓度,当硝态氮浓度大于5mg/L时,减小气体流量计(7)的流量,控制DO为0.5~1mg/L,以保证良好的短程硝化与厌氧氨氧化反应,反之,维持现状即可;当氨氮浓度小于1mg/L时气泵(6)关闭,好氧反应结束;
5)搅拌器(17)开启,进行缺氧搅拌,此时反硝化菌利用体内储存的内碳源进行内源反硝化作用,进一步去除反应器中由于一体化厌氧氨氧化反应产生的硝态氮,控制搅拌器转速为60-80r/min,DO<0.2mg/L,反应时间90~120min;反应结束后,静置沉淀5min进行泥水分离,上清液通过排水阀(9)排出,排放的水量等于系统最初的进水量;脱落的生物膜经排泥阀(10)排出。
以实验室周边某住宅小区生活污水为处理对象,考察该系统的脱氮性能。
实验期间进水水质如下:
实验期间运行参数:
SBBR反应器(有效容积10L)
缺/厌氧阶段:进生活污水5L,控制搅拌器转速为60-80r/min,DO<0.2mg/L,反应时间90~120min;
好氧阶段:自动调整DO浓度与曝气时间,一般曝气时间为240~300min,DO为0.5~2mg/L;
后置缺氧阶段:控制搅拌器转速为60-80r/min,DO<0.2mg/L,反应时间120min;
静沉阶段:静置沉淀5min,排水5L。
在该运行条件下,出水平均COD、NH4 +-N、NO2 --N、NO3 --N、TN分别为33.59、0.82、0.26、3.34、4.92mg/L,达到了深度脱氮的效果。
以上是本发明的具体实施例,便于该技术领域的技术人员能更好的理解和应用本发明,本发明的实施不限于此,因此该技术领域的技术人员对本发明所做的简单改进都在本发明保护范围之内。
该系统充分发挥SBBR系统、一体化厌氧氨氧化技术的优势,并充分利用污水中的有机物,在节能降耗的同时,采用实时控制,根据实时监测数据,合理调整运行参数,可实现低C/N生活污水氮的深度去除,应用前景十分广阔。

Claims (2)

1.生活污水一体化厌氧氨氧化强化内源反硝化的SBBR控制系统,其特征在于:
包括生活污水水箱(1)、SBBR反应器(2)、PLC控制箱(15)、计算机(16);其中所述生活污水水箱(1)通过进水泵(3)与SBBR反应器(2)相连接;所述SBBR反应器(2)设有填料支架(4)、生物填料(5)、气泵(6)、气体流量计(7)、曝气盘(8)、排水阀(9)、排泥阀(10)、DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)和搅拌器(17);所述生物填料(5)呈立方体状,材质为聚氨酯,孔隙率大于90%,比表面积20~23m2/g,填充率20%~25%;所述PLC控制箱(15)连接DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)、NO3 -传感器(14)和计算机(16);所述计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮和硝态氮浓度。
2.应用权利要求1所述的利用一体化厌氧氨氧化强化内源反硝化SBBR控制系统处理生活污水的方法,其特征在于:
1)城市生活污水由生活污水水箱(1)经进水泵(3)进入SBBR反应器(2),控制DO<0.2mg/L,反应时间90~120min;
2)上述反应结束后,气泵(6)开启,通过气体流量计(7)控制DO为0.5~2mg/L,DO传感器(11)、NH4 +传感器(12)、NO2 -传感器(13)和NO3 -传感器(14)将采集到的信号传输至PLC控制箱(15)和计算机(16);计算机(16)实时接收并转化、输出各传感器采集到的信号,在线监测SBBR反应器(2)内的DO浓度、氨氮浓度、亚硝态氮浓度和硝态氮浓度,当氨氮浓度小于1mg/L时停止曝气;
3)曝气结束后,气泵(6)关闭,搅拌器(17)开启90~120min;反应结束静置沉淀5min后泥水分离,上清液通过排水阀(9)排出;脱落的生物膜经排泥阀(10)排出。
CN201710770997.2A 2017-08-31 2017-08-31 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统 Active CN107337278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710770997.2A CN107337278B (zh) 2017-08-31 2017-08-31 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710770997.2A CN107337278B (zh) 2017-08-31 2017-08-31 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统

Publications (2)

Publication Number Publication Date
CN107337278A true CN107337278A (zh) 2017-11-10
CN107337278B CN107337278B (zh) 2020-09-25

Family

ID=60214739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710770997.2A Active CN107337278B (zh) 2017-08-31 2017-08-31 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统

Country Status (1)

Country Link
CN (1) CN107337278B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109542150A (zh) * 2018-12-03 2019-03-29 浙江清华长三角研究院 一种农村生活污水处理设施进水负荷的调节方法
CN109574216A (zh) * 2018-12-22 2019-04-05 北京工业大学 分段进水耦合一体化厌氧氨氧化sbbr深度脱氮的控制系统
CN109574217A (zh) * 2018-12-22 2019-04-05 北京工业大学 一种分段进水耦合一体化厌氧氨氧化高效脱氮的方法
CN109809562A (zh) * 2019-03-18 2019-05-28 北京工业大学 一种生活污水分段进水短程硝化厌氧氨氧化-短程反硝化厌氧氨氧化一体化的装置与方法
CN115490331A (zh) * 2022-10-24 2022-12-20 中国电建集团华东勘测设计研究院有限公司 引入生活污水的城镇污染雨水sbbr处理装置及其处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133997A2 (en) * 2013-02-26 2014-09-04 Veolia Water Solutions & Technologies Support Process for treating municiple wastewater employing two sequencing biofilm batch reactors
CN104817177A (zh) * 2015-05-17 2015-08-05 北京工业大学 一体化厌氧氨氧化反硝化除磷并联短程硝化处理低碳城市污水的装置和方法
CN106348439A (zh) * 2016-09-10 2017-01-25 北京工业大学 单级sbbr短程硝化厌氧氨氧化耦合内源反硝化污水深度脱氮的装置与方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133997A2 (en) * 2013-02-26 2014-09-04 Veolia Water Solutions & Technologies Support Process for treating municiple wastewater employing two sequencing biofilm batch reactors
CN104817177A (zh) * 2015-05-17 2015-08-05 北京工业大学 一体化厌氧氨氧化反硝化除磷并联短程硝化处理低碳城市污水的装置和方法
CN106348439A (zh) * 2016-09-10 2017-01-25 北京工业大学 单级sbbr短程硝化厌氧氨氧化耦合内源反硝化污水深度脱氮的装置与方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109542150A (zh) * 2018-12-03 2019-03-29 浙江清华长三角研究院 一种农村生活污水处理设施进水负荷的调节方法
CN109574216A (zh) * 2018-12-22 2019-04-05 北京工业大学 分段进水耦合一体化厌氧氨氧化sbbr深度脱氮的控制系统
CN109574217A (zh) * 2018-12-22 2019-04-05 北京工业大学 一种分段进水耦合一体化厌氧氨氧化高效脱氮的方法
CN109574216B (zh) * 2018-12-22 2021-10-22 北京工业大学 分段进水耦合一体化厌氧氨氧化sbbr深度脱氮的控制系统
CN109574217B (zh) * 2018-12-22 2021-10-26 北京工业大学 一种分段进水耦合一体化厌氧氨氧化高效脱氮的方法
CN109809562A (zh) * 2019-03-18 2019-05-28 北京工业大学 一种生活污水分段进水短程硝化厌氧氨氧化-短程反硝化厌氧氨氧化一体化的装置与方法
CN109809562B (zh) * 2019-03-18 2021-07-23 北京工业大学 一种生活污水分段进水短程硝化厌氧氨氧化-短程反硝化厌氧氨氧化一体化的装置与方法
CN115490331A (zh) * 2022-10-24 2022-12-20 中国电建集团华东勘测设计研究院有限公司 引入生活污水的城镇污染雨水sbbr处理装置及其处理方法

Also Published As

Publication number Publication date
CN107337278B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN110054294B (zh) 一体化同步短程硝化厌氧氨氧化耦合短程反硝化处理低碳氮比城市生活污水的装置和方法
US6758972B2 (en) Method and system for sustainable treatment of municipal and industrial waste water
CN107337278A (zh) 生活污水一体化厌氧氨氧化强化内源反硝化的sbbr控制系统
CN107487847A (zh) 一种一体化厌氧氨氧化强化内源反硝化sbbr深度脱氮的方法
CN106115915B (zh) 低c/n比城市生活污水短程反硝化/短程硝化厌氧氨氧化生物膜工艺的装置与方法
CN101759290B (zh) 连续流工艺中快速实现并稳定维持短程硝化的方法
CN110002697B (zh) 垃圾渗滤液uasb产甲烷与分段进水ifas a/o spnapd脱氮装置与方法
CN108640278B (zh) 低c/n比城市生活污水内源反硝化除磷/短程硝化部分厌氧氨氧化生物膜工艺与装置
CN107162193A (zh) 低氧硝化耦合短程反硝化厌氧氨氧化处理生活污水的装置及方法
CN105217882B (zh) 好氧吸磷与半短程硝化耦合厌氧氨氧化双颗粒污泥系统深度脱氮除磷的方法
CN109721156A (zh) 间歇曝气一体化/短程反硝化-厌氧氨氧化处理晚期垃圾渗滤液的装置与方法
CN106966557A (zh) 强化硝化‑deamox生物膜工艺处理城市生活污水的装置和方法
CN113233592B (zh) 一种实现晚期垃圾渗滤液与生活污水同步深度脱氮除碳的处理装置与方法
CN109574218A (zh) 短程硝化-发酵/反硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法
CN112811719B (zh) 城市污水自养脱氮处理系统及其处理方法
CN212450841U (zh) 一种处理低c/n城市污水连续流的强化脱氮系统
CN109437396A (zh) 一种农村分散点源生活污水的处理方法
CN214880538U (zh) 一种快速培养好氧颗粒污泥及处理低碳比城市污水的装置
CN109721161A (zh) 一种用于垃圾渗滤液处理的生物处理装置及方法
CN107473382A (zh) 通过控制溶解氧实现污水碳氮同时去除的生物处理方法
CN107902765A (zh) 一种多级部分亚硝化启动与控制方法
CN109574216B (zh) 分段进水耦合一体化厌氧氨氧化sbbr深度脱氮的控制系统
CN105984991B (zh) 一种污水深度处理工艺
Xie et al. An iron-carbon-activated carbon and zeolite composite filter, anaerobic-aerobic integrated denitrification device for nitrogen removal in low C/N ratio sewage
CN106145337B (zh) 一种改良deamox连续流工艺处理高浓度no3--n废水和城市污水的装置与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171110

Assignee: JIANGSU TIANYU ENVIRONMENTAL PROTECTION GROUP Co.,Ltd.

Assignor: Beijing University of Technology

Contract record no.: X2022990000985

Denomination of invention: SBBR Control System for Integrated Anaerobic Ammonia Oxidation of Domestic Sewage to Enhance Endogenous Denitrification

Granted publication date: 20200925

License type: Exclusive License

Record date: 20221226

EE01 Entry into force of recordation of patent licensing contract