CN107336233A - 基于惯性动捕的人‑机器人虚实交互控制系统 - Google Patents
基于惯性动捕的人‑机器人虚实交互控制系统 Download PDFInfo
- Publication number
- CN107336233A CN107336233A CN201710412172.3A CN201710412172A CN107336233A CN 107336233 A CN107336233 A CN 107336233A CN 201710412172 A CN201710412172 A CN 201710412172A CN 107336233 A CN107336233 A CN 107336233A
- Authority
- CN
- China
- Prior art keywords
- action
- data message
- robot
- inertia
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/161—Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于惯性动捕的人‑机器人虚实交互控制系统,包括基于MSP430和九轴传感器的运动测量方法和虚拟现实技术机器人交互界面模块。基于MSP430和九轴传感器的运动测量方法主要是设计可穿戴式惯性动作捕捉节点用以采集人体的实时姿态,运用卡尔曼滤波器解算姿态信息,再经过无线收发器将姿态以数据包的形式返回给主机系统,主机将数据进行分析处理,并产生指令控制已建立的三维人体模型作出响应,同时产生指令控制类人实体机器人运动,机器人将自身的响应情况反馈给主机;虚拟现实技术机器人交互界面模块,主要是通过SolidWorks设计一套虚拟人零件,再次,利用Labview构建虚拟环境进行动作还原,实现交互。
Description
技术领域
本发明涉及一种虚实交互控制系统领域,尤其是一种基于惯性动捕的人-机器人虚实交互控制系统,基于MPU9250惯性动作捕捉传感器来实现人机交互中动作的捕捉和再现,适合在各种环境中采集动作以控制机器人运动。
背景技术
从上个世纪末开始,国外就开展了人体动作捕捉技术的研究,其中声学、光学、机械、电磁和微机电等原理的动作捕捉技术逐渐兴起,随着微机电技术的进步,在欧美市场上逐渐出现惯性式的人体动作捕获装备。和一些发达国家相比,我国动作捕捉系统研究还有一定的差距,但己引起科学家们的高度重视,某些研究团队已经开始着手研究动作捕捉技术,如中科院吴健康教授及其团队正在研究MMocap动作捕捉系统。
但从国内外的研究现状和发展趋势来看,基于惯性传感器的动作捕捉系统对于人体生物力学基础研究平台的建设和应用主要有以下缺点:
1、设备成本高
国外的基于惯性传感器的商业动作捕捉系统,其具有安装简单、操作容易、方便佩戴和具有极强灵活性的特点,因而广受业界青睐,但是其也有不足的地方,价格昂贵,一套设备在50万左右,大大提高了数字人体跟踪研究平台的构建成本。
2、开发接口难以控制
由于国外的商业动作捕捉系统只有开放接口平台,购买之后却得不到关键源码,增加了与原有数字人体跟踪研究平台融合的难度,开发接口不易控制。
3、精确度差
国内对于惯性式动作捕捉系统的研究尚处于在探索阶段,达到应用级别的惯性动作捕捉系统屈指可数,并且在应用精度方面还有待提高。
4、性价比很低
相对于国外的动作捕捉系统,MMocap系统虽然已经推出市场,但是其捕捉精度相对于国外商业动作捕捉系统还是有差距的,其在整个性价比上来说是不划算的。
综合以上发现,国内的惯性动作捕捉系统还存在很多问题,在性价比上和精确度上是不如国外商业动作捕捉系统,但是国外动作捕捉系统又比较昂贵,开放接口不容易控制,无疑提高了人体生物力学基础研究平台的成本,成本低、简单易用、快速标定、姿态精确的动作捕捉系统将是我们惯性动作捕捉的探索方向。
发明内容
本发明目的是设计一套动作采集系统,且基于MPU9250惯性动作捕捉传感器来实现人机交互中动作的捕捉和再现,为了解决上述技术问题,本发明通过以下的技术方案来实现:支持系统的硬件主要包括两部分:一是本发明采用的MPU9250惯性动作捕捉传感器、组合型的测量仪器、分析仪器、MSP430主控微处理器、微型计算机等工具类硬件,动作采集模块使用MPU9250通过IIC总线检测,各个模块分别通过导线连接至MSP430主控微处理器,人机交互模块和动作合成模块分别通过RS232无线串口连接至上位机;二是为设计和实现诊断的设备、工具的使用者。支持系统的软件主要包括数据处理和分析软件,即嵌入动作采集模块和动作合成模块内部的算法代码,以及存在于大脑内的专项知识,研究经验,决策能力等。
本发明公开了一种基于惯性动捕的人-机器人虚实交互控制系统,包括了动作采集模块,动作合成模块,人机交互模块。动作采集模块使用MPU9250惯性动作捕捉传感器来采集人体姿态的原始数据,实现对人体动作的实时采集;动作合成模块利用卡尔曼滤波算法对人体进行姿态解算,解耦得出最终动作反馈;人机交互模块通过Labview将虚拟环境和现实环境链接构成交互,其具体的步骤如下:
步骤1:设计一套虚拟动作场景,要求实现操作者各肢的水平、垂直、旋转的综合姿态动作;
步骤2:假设在操作者的各个重要关节安装传感器节点,分别进行标记;
步骤3:利用九轴传感器获取人体关节点的三维空间位置,得到动作角度数据信息,利用卡尔曼滤波算法进行姿态解算和滤波,计算出各个关节的相对参考节点的角度信息,建立实际运动数据信息;
步骤4:将得到的实际运动数据信息传送到Labview中,在虚拟端操纵虚拟机器人进行动作还原;
步骤5:由步骤3重新计算生成实际运动数据信息,在类人机器人端行动作还原;
步骤6:对比动作角度数据信息和实际运动数据信息,继承动作角度数据信息中的有效的信息,通过卡尔曼滤波算法滤除无效的动作信息,对动作反馈的过程进行评估,给操作者提供相应的反馈。
有益效果
本发明与现有技术相比具有如下优点:
本发明采用人机交互技术和虚拟现实技术,交互方式友好,通过类人机器人的反馈使得交互更加直观可靠;
本发明通过九轴传感器捕获追踪操作者动作角度信息,实时效果好,准确性高;
本发明优于传统的光学动捕技术的方面在于设备成本小,不受遮挡或光干扰的影响,易携带。
附图说明
图1为本发明的具体工作流程图。
图2为本发明中人体关节点。
图3为本发明总体电路框图。
图4为本发明核心节点MPU9250外围电路图。
图5为本发明中虚实交互控制系统界面图。
图6为本发明在静止时的卡尔曼滤波曲线。
图7为本发明在运动时的卡尔曼滤波曲线。
具体实施方式
为了加深对本发明的理解,下面以图2的节点场景示意图为例,并且结合图1、图3、图4、图5图6和图7说明本发明的具体实施步骤:
本发明公开了一种基于惯性动捕的人-机器人虚实交互控制系统,包括了动作采集模块如图,动作合成模块,人机交互模块如。按图4来设计动作采集模块,使用MPU9250惯性动作捕捉传感器来采集人体姿态的原始数据,实现对人体动作的实时采集;动作合成模块利用卡尔曼滤波算法对人体进行姿态解算,解耦得出最终动作反馈数据如图6;人机交互模块通过Labview将虚拟环境和现实环境链接构成交互如图5;最后控制如图7的实体类人机器人做出相应动作。
其具体的步骤如下:
步骤1:设计一套虚拟动作场景,要求实现操作者各肢的水平、垂直、旋转的综合姿态动作;
步骤2:假设在操作者的各个重要关节安装传感器节点,分别进行标记;
步骤3:利用九轴传感器获取人体关节点的三维空间位置,得到动作角度数据信息,利用卡尔曼滤波算法进行姿态解算和滤波,计算出各个关节的相对参考节点的角度信息,建立实际运动数据信息;
步骤4:将得到的实际运动数据信息传送到Labview中,在虚拟端操纵虚拟机器人进行动作还原;
步骤5:由步骤3重新计算生成实际运动数据信息,在类人机器人端行动作还原;
步骤6:对比动作角度数据信息和实际运动数据信息,继承动作角度数据信息中的有效的信息,通过卡尔曼滤波算法滤除无效的动作信息,对动作反馈的过程进行评估,给操作者提供相应的反馈。
本发明采用人机交互技术和虚拟现实技术,交互方式友好,通过类人机器人的反馈使得交互更加直观可靠;本发明通过九轴传感器捕获追踪操作者动作角度信息,对比动作角度数据信息和实际运动数据信息,继承动作角度数据信息中的有效的信息,通过卡尔曼滤波算法滤除无效的动作信息,对动作反馈的过程进行评估,实时效果好,准确性高;本发明优于传统的光学动捕技术的方面在于设备成本小,不受遮挡或光干扰的影响,易携带。
Claims (2)
1.一种基于惯性动捕的人-机器人虚实交互控制系统,其特征在于,包括基于MSP430即主控微处理器和九轴传感器的运动测量方法和虚拟现实技术机器人交互界面模块,所述虚拟现实技术机器人交互界面模块包括动作采集模块,动作合成模块,人机交互模块;动作采集模块使用MPU9250通过IIC总线检测,各个模块分别通过导线连接至MSP430主控微处理器,人机交互模块和动作合成模块分别通过RS232无线串口连接至上位机。
2.如权利要求1所述的系统,其特征在于,所述基于MSP430和九轴传感器的运动测量方法为人机交互模块通过Labview将虚拟环境和现实环境链接构成交互,其具体的步骤如下:
步骤1:设计一套虚拟动作场景,要求实现操作者各肢的水平、垂直、旋转的综合姿态动作;
步骤2:假设在操作者的各个重要关节安装传感器节点,分别进行标记;
步骤3:利用九轴传感器获取人体关节点的三维空间位置,得到动作角度数据信息,利用卡尔曼滤波算法进行姿态解算和滤波,计算出各个关节的相对参考节点的角度信息,建立实际运动数据信息;
步骤4:将得到的实际运动数据信息传送到Labview中,在虚拟端操纵虚拟机器人进行动作还原;
步骤5:由步骤3重新计算生成实际运动数据信息,在类人机器人端行动作还原;
步骤6:对比动作角度数据信息和实际运动数据信息,继承动作角度数据信息中的有效的信息,通过卡尔曼滤波算法滤除无效的动作信息,对动作反馈的过程进行评估,给操作者提供相应的反馈。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710412172.3A CN107336233B (zh) | 2017-06-02 | 2017-06-02 | 基于惯性动捕的人-机器人虚实交互控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710412172.3A CN107336233B (zh) | 2017-06-02 | 2017-06-02 | 基于惯性动捕的人-机器人虚实交互控制系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107336233A true CN107336233A (zh) | 2017-11-10 |
CN107336233B CN107336233B (zh) | 2020-10-09 |
Family
ID=60220255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710412172.3A Active CN107336233B (zh) | 2017-06-02 | 2017-06-02 | 基于惯性动捕的人-机器人虚实交互控制系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107336233B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112224303A (zh) * | 2020-10-23 | 2021-01-15 | 之江实验室 | 一种基于惯性测量单元组的双足运动数据采集系统 |
CN112775931A (zh) * | 2019-11-05 | 2021-05-11 | 深圳市优必选科技股份有限公司 | 机械臂控制方法、装置、计算机可读存储介质及机器人 |
US11422625B2 (en) | 2019-12-31 | 2022-08-23 | Human Mode, L.L.C. | Proxy controller suit with optional dual range kinematics |
CN118474618A (zh) * | 2024-07-11 | 2024-08-09 | 深圳市迈斯高科技有限公司 | 基于陀螺仪的蓝牙耳机控制系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104379A (en) * | 1996-12-11 | 2000-08-15 | Virtual Technologies, Inc. | Forearm-supported exoskeleton hand-tracking device |
CN203039726U (zh) * | 2012-12-12 | 2013-07-03 | 西安理工大学 | 人体三维空间姿态识别系统 |
CN104856684A (zh) * | 2015-04-10 | 2015-08-26 | 深圳市虚拟现实科技有限公司 | 运动目标采集方法和系统 |
CN205581785U (zh) * | 2016-04-15 | 2016-09-14 | 向京晶 | 一种多人室内虚拟现实互动系统 |
CN105975091A (zh) * | 2016-07-05 | 2016-09-28 | 南京理工大学 | 一种基于惯性传感器的虚拟键盘人机交互技术 |
CN106445176A (zh) * | 2016-12-06 | 2017-02-22 | 腾讯科技(深圳)有限公司 | 基于虚拟现实技术的人机交互系统及交互方法 |
CN106648116A (zh) * | 2017-01-22 | 2017-05-10 | 隋文涛 | 一种基于动作捕捉的虚拟现实综合系统 |
-
2017
- 2017-06-02 CN CN201710412172.3A patent/CN107336233B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104379A (en) * | 1996-12-11 | 2000-08-15 | Virtual Technologies, Inc. | Forearm-supported exoskeleton hand-tracking device |
CN203039726U (zh) * | 2012-12-12 | 2013-07-03 | 西安理工大学 | 人体三维空间姿态识别系统 |
CN104856684A (zh) * | 2015-04-10 | 2015-08-26 | 深圳市虚拟现实科技有限公司 | 运动目标采集方法和系统 |
CN205581785U (zh) * | 2016-04-15 | 2016-09-14 | 向京晶 | 一种多人室内虚拟现实互动系统 |
CN105975091A (zh) * | 2016-07-05 | 2016-09-28 | 南京理工大学 | 一种基于惯性传感器的虚拟键盘人机交互技术 |
CN106445176A (zh) * | 2016-12-06 | 2017-02-22 | 腾讯科技(深圳)有限公司 | 基于虚拟现实技术的人机交互系统及交互方法 |
CN106648116A (zh) * | 2017-01-22 | 2017-05-10 | 隋文涛 | 一种基于动作捕捉的虚拟现实综合系统 |
Non-Patent Citations (1)
Title |
---|
胡仁杰等: "《全国大学生电子设计竞赛优秀作品设计报告选编(2015年江苏赛区)》", 30 April 2016, 东南大学出版社 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112775931A (zh) * | 2019-11-05 | 2021-05-11 | 深圳市优必选科技股份有限公司 | 机械臂控制方法、装置、计算机可读存储介质及机器人 |
US11422625B2 (en) | 2019-12-31 | 2022-08-23 | Human Mode, L.L.C. | Proxy controller suit with optional dual range kinematics |
CN112224303A (zh) * | 2020-10-23 | 2021-01-15 | 之江实验室 | 一种基于惯性测量单元组的双足运动数据采集系统 |
CN112224303B (zh) * | 2020-10-23 | 2021-12-21 | 之江实验室 | 一种基于惯性测量单元组的双足运动数据采集系统 |
CN118474618A (zh) * | 2024-07-11 | 2024-08-09 | 深圳市迈斯高科技有限公司 | 基于陀螺仪的蓝牙耳机控制系统及方法 |
CN118474618B (zh) * | 2024-07-11 | 2024-10-08 | 深圳市迈斯高科技有限公司 | 基于陀螺仪的蓝牙耳机控制系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107336233B (zh) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107336233A (zh) | 基于惯性动捕的人‑机器人虚实交互控制系统 | |
JP6301159B2 (ja) | 三次元指先トラッキング | |
CN103455657B (zh) | 一种基于Kinect的现场作业仿真方法及其系统 | |
CN104423569A (zh) | 指向位置侦测装置、方法及计算机可读取纪录媒体 | |
JP6386768B2 (ja) | 人間工学的な人体模型の姿勢を作成し、かつナチュラルユーザインターフェースを用いてコンピュータ支援設計環境を制御すること | |
CN102722254B (zh) | 一种定位交互方法及系统 | |
CN109840508A (zh) | 一个基于深度网络架构自动搜索的机器人视觉控制方法,设备及存储介质 | |
CN103455136A (zh) | 一种基于手势控制的输入方法、装置及系统 | |
CN113221726A (zh) | 一种基于视觉与惯性信息融合的手部姿态估计方法及系统 | |
WO2022103441A1 (en) | Vision-based rehabilitation training system based on 3d human pose estimation using multi-view images | |
CN106293099A (zh) | 手势识别方法及系统 | |
CA3161710A1 (en) | Proxy controller suit with optional dual range kinematics | |
Xu et al. | 3D joints estimation of the human body in single-frame point cloud | |
Agostinelli et al. | Preliminary validation of a low-cost motion analysis system based on RGB cameras to support the evaluation of postural risk assessment | |
Shi et al. | Human motion capture system and its sensor analysis | |
CN106022466A (zh) | 个性化机器人及其实现机器人个性化的方法 | |
Chen et al. | Motion recognition method for construction workers using selective depth inspection and optimal inertial measurement unit sensors | |
CN203070205U (zh) | 一种基于手势识别的输入设备 | |
CN202749066U (zh) | 一种非接触式物展交互系统 | |
Ghodichor et al. | Virtual mouse using hand gesture and color detection | |
CN115120250A (zh) | 基于脑电信号和slam控制的智能脑控轮椅系统 | |
CN107301415A (zh) | 手势采集系统 | |
CN207704451U (zh) | 手势采集系统 | |
CN104915011A (zh) | 开放式环境手势互动游戏系统 | |
TWI554910B (zh) | Medical image imaging interactive control method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |