CN107312278B - 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法 - Google Patents

一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法 Download PDF

Info

Publication number
CN107312278B
CN107312278B CN201710543274.9A CN201710543274A CN107312278B CN 107312278 B CN107312278 B CN 107312278B CN 201710543274 A CN201710543274 A CN 201710543274A CN 107312278 B CN107312278 B CN 107312278B
Authority
CN
China
Prior art keywords
powder
silicon carbide
polyphenylene sulfide
nanometer silicon
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710543274.9A
Other languages
English (en)
Other versions
CN107312278A (zh
Inventor
杨超
戴亚春
骆志高
崔沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU VEIK TECHNOLOGY CO., LTD.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710543274.9A priority Critical patent/CN107312278B/zh
Publication of CN107312278A publication Critical patent/CN107312278A/zh
Application granted granted Critical
Publication of CN107312278B publication Critical patent/CN107312278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明属于材料领域,公开了一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法。它是由聚四氟乙烯粉末、纳米碳化硅以及聚苯硫醚粉末进行溶剂分散、超声振动、压制成型、高温烧结并冷却后而成,其中,进行超声振动时的频率为50KHZ,聚四氟乙烯粉末的粒度为50um‑200um,密度为2.2g/cm3,纳米碳化硅粉末的粒度为15nm‑32nm,密度为3.2g/cm3,聚苯硫醚粉末的粒度为10um‑50um,密度为1.36g/cm3。所述材料在超声振动中,提高了结晶度,细化了晶粒,从而大大提高了材料的耐磨性和高温力学性能,因此它能在比原聚四氟乙烯更高温的情况下使用。可作为防腐材料、密封材料和耐磨材料,适合要求耐磨性好、摩擦系数小、耐高温、耐化学药品的密封圈、轴承衬套、阀门、管道、泵等。

Description

一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制 备方法
技术领域
本发明属于材料领域,尤其涉及到一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法。
背景技术
聚四氟乙烯(PTFE)作为一种耐高温聚合物,性能优良,具有良好的自润滑性能,有“塑料王”的美誉,是目前应用于动密封的关键材料,但其在使用过程中,易冷流,抗蠕变,耐磨性较差和回弹性能差,导致聚四氟乙烯密封材料的密封可靠性和寿命难以满足实际应用的需求,其耐磨性差以及成本高制约了其使用范围。
发明内容
本发明专利的目的在于,针对现有的不足,提供一种在常温常态下对聚四氟乙烯材料进行超声振动、压制成型、高温烧结并冷却,从而得到高耐磨性的聚四氟乙烯改性材料,使它能在比原聚四氟乙烯更高温的情况下使用。
一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,包括如下步骤:
(1)按比例将聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合,然后将混合物放入高速搅拌器里面搅拌10-20min使其均匀,再放入盛有无水乙醇的烧杯中,进行超声振动分散50-60min,待复合粉末与无水乙醇完全溶解后,倒出部分清液后于烘箱中过夜烘干,得到混合的粉末;
(2)将步骤(1)所得的混合的粉末在50MPa-60MPa压强下、室温下压制成型,并在50MPa-60MPa压强下保持5-10分钟,压制成型;
(3)将步骤(2)的压制成型件放入无氧高温烧结炉中,以400-500℃/小时的升温速率加热至385℃-395℃,保温2-4小时;自然冷却到室温,得成品。
步骤(1)中,所述聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合物的总质量与无水乙醇的体积比为10g:250mL。
步骤(1)中,所述聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合物中,各组分质量百分含量为聚四氟乙烯粉末90%-98%、纳米碳化硅粉末1%-5%、聚苯硫醚粉末1%-5%。
所述的聚四氟乙烯粒度为50um-200um,密度为2.2g/cm3;聚苯硫醚粒度为10um-50um,密度为1.36g/cm3;纳米碳化硅粒度为15nm-32nm,密度为3.2g/cm3
步骤(1)中,所述超声振动的频率为50KHZ。
步骤(1)中,所述烘箱中烘干温度为70-100℃。
本发明制备的一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料,平均磨损量为2.68~7.73mm3,单位磨损率为0.78~3.54×105mm3/N·M,弹性模量为370.35~412.45MPa。本发明的有益效果为:
(1)本发明专利添加的纳米碳化硅粉末引起了晶粒细化机制以及大量纳米碳化硅粉末位错形成了强化机制,提高了材料的力学性能、机械性能、屈服强度、拉伸性能。
(2)本发明专利添加的聚苯硫醚(PPS)粉末,具有耐腐蚀、耐疲劳、耐磨损及硬度高等优良特性,且与聚四氟乙烯(PTFE)有良好的相容性,弥补了纯聚四氟乙烯耐磨性差的特性,提高了材料的机械性能和摩擦学性能。
(3)本发明专利的纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料,为实现纳米粒子在材料中的均匀分布,通过借助高能超声波的瞬时空化和声波作用来进行分散纳米陶瓷增强体,实测表明,本发明专利的改性材料相比未超声波改性的,其耐磨性提高超过100倍,而且还提高了耐磨性和高温力学性能,因此采用本发明专利的改性材料制成的产品可以在比原聚四氟乙烯更高的温度下使用。本发明材料可作为防腐材料、密封材料和耐磨材料,适合要求耐磨性好、摩擦系数小、耐高温、耐化学药品的密封圈、轴承衬套、阀门、管道、泵等。
具体实施方式
实施例1
(1)将3%纳米碳化硅粉末(粒度为25nm)、3%聚苯硫醚粉末(粒度为30um)与94%聚四氟乙烯粉末(粒度为150um)放入高速搅拌器里面搅拌15min使其混合均匀,并放入盛有250ml无水乙醇的烧杯中,进行超声分散55min,其中超声振动的频率为50KHZ,待复合粉末与无水乙醇完全溶解后,倒出部分清液后于80℃烘箱中过夜得到混合的粉末;(2)将所得混合物在55MPa压强、室温下压制成型,并在55MPa压强下保持7min;(3)将该压制成型件放入烧结炉中,在隔氧环境下以450℃/小时的升温速率加热至390℃,保温3h;(4)自然冷却到室温,得成品。
实施例2
(1)将5%纳米碳化硅粉末(粒度为32nm)、5%聚苯硫醚粉末(粒度为50um)与90%聚四氟乙烯粉末(粒度为50um)放入高速搅拌器里面搅拌20min使其混合均匀,并放入盛有250ml无水乙醇的烧杯中,进行超声分散60min,其中超声振动的频率为50KHZ,待复合粉末与无水乙醇完全溶解后,倒出部分清液后于100℃烘箱中过夜得到混合的粉末;(2)将所得混合物在60MPa压强、室温下压制成型,并在60MPa压强下保持10min;(3)将该压制成型件放入烧结炉中,在隔氧环境下以500℃/小时的升温速率加热至395℃,保温4h;(4)自然冷却到室温,得成品。
实施例3
(1)将1%纳米碳化硅粉末(粒度为15nm)、1%聚苯硫醚粉末(粒度为10um)与98%聚四氟乙烯粉末(粒度为200um)放入高速搅拌器里面搅拌10min使其混合均匀,并放入盛有250ml无水乙醇的烧杯中,进行超声分散50min,其中超声振动的频率为50KHZ,待复合粉末与无水乙醇完全溶解后,倒出部分清液后于70℃烘箱中过夜得到混合的粉末;(2)将所得混合物在50MPa压强、室温下压制成型,并在50MPa压强下保持5min;(3)将该压制成型件放入烧结炉中,在隔氧环境下以400℃/小时的升温速率加热至385℃,保温2h;(4)自然冷却到室温,得成品。
实施例4
(1)将纯聚四氟乙烯粉末(粒度为200um)放入高速搅拌器里面搅拌10分钟使其混合均匀,并放入盛有250ml无水乙醇的烧杯中,进行超声分散50min,其中超声振动的频率为50KHZ,带溶液澄清后,倒出部分清液于70℃烘箱中过夜得到混合的粉末;(2)将所得混合物在50MPa压强、室温下压制成型,并在50MPa压强下保持5min;(3)将该压制成型件放入烧结炉中,在隔氧环境下以400℃/小时的升温速率加热至385℃,保温2h;(4)自然冷却到室温,得成品。
经检测,通过以上4例实例所得材料,得出了未添加纳米碳化硅粉末和聚苯硫醚粉末的聚四氟乙烯与添加了纳米碳化硅粉末和聚苯硫醚粉末的聚四氟乙烯相比,其耐磨性能均提高超过100倍,耐温可高达300℃以上。
下表给出了4个实施的材料使用不同重量百分含量纳米碳化硅粉末和聚苯硫醚粉末的后的性能变化情况。从表中可看出,随着纳米碳化硅粉末和聚苯硫醚粉末重量百分含量的加大,其耐磨性能也随之提高。

Claims (6)

1.一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,其特征在于,包括如下步骤:
(1)按比例将聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合,然后将混合物放入高速搅拌器里面搅拌10-20min使其均匀,再放入盛有无水乙醇的烧杯中,进行超声振动分散50-60min,待复合粉末与无水乙醇完全溶解后,倒出部分清液后于烘箱中过夜烘干,得到混合的粉末;所述聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合物中,各组分质量百分含量为聚四氟乙烯粉末90%-98%、纳米碳化硅粉末1%-5%、聚苯硫醚粉末1%-5%;
(2)将步骤(1)所得的混合的粉末在50MPa-60MPa压强下、室温下压制成型,并在50MPa-60MPa压强下保持5-10分钟,压制成型;
(3)将步骤(2)的压制成型件放入无氧高温烧结炉中,以400-500℃/小时的升温速率加热至385℃-395℃,保温2-4小时;自然冷却到室温,得成品。
2.根据权利要求1所述的一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,其特征在于,步骤(1)中,所述聚四氟乙烯粉末、纳米碳化硅粉末、聚苯硫醚粉末混合物的总质量与无水乙醇的体积比为10g:250mL。
3.根据权利要求1所述的一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,其特征在于,所述的聚四氟乙烯粒度为50um-200um,密度为2.2g/cm3;聚苯硫醚粒度为10um-50um,密度为1.36g/cm3;纳米碳化硅粒度为15nm-32nm,密度为3.2g/cm3
4.根据权利要求1所述的一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,其特征在于,步骤(1)中,所述超声振动的频率为50KHZ。
5.根据权利要求1所述的一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料的制备方法,其特征在于,步骤(1)中,所述烘箱中烘干温度为70-100℃。
6.一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料,其特征在于,是通过权利要求1~5任一项所述制备方法制得的,所述复合材料的平均磨损量为2.68~7.73mm3,单位磨损率为0.78~3.54×105mm3/N·M,弹性模量为370.35~412.45MPa。
CN201710543274.9A 2017-07-05 2017-07-05 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法 Active CN107312278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710543274.9A CN107312278B (zh) 2017-07-05 2017-07-05 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710543274.9A CN107312278B (zh) 2017-07-05 2017-07-05 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107312278A CN107312278A (zh) 2017-11-03
CN107312278B true CN107312278B (zh) 2019-10-01

Family

ID=60181404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710543274.9A Active CN107312278B (zh) 2017-07-05 2017-07-05 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107312278B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892510A (zh) * 2018-08-10 2018-11-27 张家港市山牧新材料技术开发有限公司 一种聚苯硫醚-碳化硅复合材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829977A (zh) * 2015-04-07 2015-08-12 安徽博昌电子科技股份有限公司 一种led光源用聚四氟乙烯基掺杂聚苯硫醚散热材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829977A (zh) * 2015-04-07 2015-08-12 安徽博昌电子科技股份有限公司 一种led光源用聚四氟乙烯基掺杂聚苯硫醚散热材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Al2O3/PTFE/PPS复合材料滑动摩擦磨损的研究";路新春等;《摩擦学学报》;19930430;全文 *
"PPS/PTFE/WO3复合材料的摩擦磨损性能";余来贵等;《中国矿业大学学报》;19991031;第70页实验部分及表1 *
"The friction and wear characteristics of nanometer SiC and polytetrafluoroethylene filled polyetheretherketone";Qi-Hua Wang et al.;《Wear》;20000831;第140-146页 *
"Wettability, soil adhesion, abrasion and friction wear of PTFE(+PPS)+A1203 composites";Xin-Chun Lu et al.;《wear》;19960430;第48-55页 *

Also Published As

Publication number Publication date
CN107312278A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN101735554B (zh) 聚醚醚酮复合材料及其制备方法和应用
CN109851989A (zh) 一种聚醚醚酮复合材料及其制备方法和应用
Zhang et al. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite
CN102010556A (zh) 一种用于阀门密封的复合材料及其制备方法
CN101054310B (zh) 碳纤维增强多孔型常压烧结碳化硅及其制备方法
CN100582158C (zh) 高耐磨性聚四氟乙烯复合材料及其制备方法
CN102719042A (zh) 一种改性ptfe自润滑耐磨密封材料
CN111303520B (zh) 一种桥梁支座用高分子滑移材料及其制备方法
CN107312278B (zh) 一种纳米碳化硅和聚苯硫醚改性聚四氟乙烯复合材料及其制备方法
WO2012034262A1 (zh) 一种改性聚四氟乙烯树脂的耐磨材料
JP2022140773A (ja) ポリテトラフルオロエチレン組成物
CN104194232A (zh) 一种填充改性聚四氟乙烯材料及其制备方法
CN106086556A (zh) 一种低噪音耐磨含油轴承
Ning et al. Study on mechanical and tribological properties of ternary fluororubber filled with four needles of zinc oxide
CN102002201B (zh) 一种提高聚四氟乙烯树脂乳液临界开裂膜厚的方法及改性聚四氟乙烯树脂乳液在不粘涂层上的应用
CN107177145B (zh) 填充改性聚四氟乙烯材料及其应用和制备方法
CN106867395B (zh) 含poss聚酰亚胺树脂耐油磨耐高温固体润滑涂层材料及方法
CN109593307A (zh) Ptfe复合活塞环及其制备方法
RU2689456C2 (ru) Коррозионно-стойкий цементированный карбид для работы с текучими средами
CN107337884A (zh) 一种纳米氧化铝和聚醚砜改性聚四氟乙烯复合材料及其制备方法
CN103788618B (zh) 聚芳醚酮复合材料、其制备方法以及应用该材料的密封圈
Lal et al. Tribo-investigation on PTFE lubricated PEEK in harsh operating conditions
CN110965345A (zh) 一种聚四氟乙烯滤料的制备方法
Chen et al. Tribological behavior of short‐fiber‐reinforced polyimide composites under dry‐sliding and water‐lubricated conditions
CN106380663A (zh) 一种高温耐磨uhmwpe/pi复合材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191231

Address after: No.9, Longhe Road, industrial park, Taixing City, Taizhou City, Jiangsu Province

Patentee after: JIANGSU VEIK TECHNOLOGY CO., LTD.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: jiangsu university

TR01 Transfer of patent right