CN107305182B - 一种橡塑材料摩擦系数的测试方法 - Google Patents

一种橡塑材料摩擦系数的测试方法 Download PDF

Info

Publication number
CN107305182B
CN107305182B CN201610262440.3A CN201610262440A CN107305182B CN 107305182 B CN107305182 B CN 107305182B CN 201610262440 A CN201610262440 A CN 201610262440A CN 107305182 B CN107305182 B CN 107305182B
Authority
CN
China
Prior art keywords
rubber
plastic material
concentration
material sample
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610262440.3A
Other languages
English (en)
Other versions
CN107305182A (zh
Inventor
吴刚
游靖
谢唯一
冮明超
刘龙
罗洪林
胡松青
刘晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201610262440.3A priority Critical patent/CN107305182B/zh
Publication of CN107305182A publication Critical patent/CN107305182A/zh
Application granted granted Critical
Publication of CN107305182B publication Critical patent/CN107305182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Abstract

本发明公开了一种橡塑材料摩擦系数的测试方法,属于橡塑材料性能评价技术领域。包括:步骤a,将经过预处理的橡塑材料试样浸泡在浸渍溶液中,在预设温度下老化预设时间;浸渍溶液为含有Cl、HCO3 、SO4 2‑、Na+、Ca2+的水溶液,其中,Cl的浓度为12000mg/L~18000mg/L,HCO3 的浓度为1000mg/L~1400mg/L,SO4 2‑的浓度为150mg/L~250mg/L,Na+的浓度为8000mg/L~12000mg/L,Ca2+的浓度为250mg/L~350mg/L;步骤b,将老化后的橡塑材料试样固定在滑块的下表面上,将滑块和老化后的橡塑材料试样置于浸渍溶液中,拉动滑块使老化后的橡塑材料和滑块一起运动,记录作用在滑块上的拉力值和老化后的橡塑材料受到的正压力值,拉力值和正压力值的比值即为橡塑材料的摩擦系数。该测试方法能够准确得出橡塑材料在强腐蚀环境中的摩擦系数。

Description

一种橡塑材料摩擦系数的测试方法
技术领域
本发明涉及橡塑材料性能评价技术领域,特别涉及一种橡塑材料在强腐蚀环境中的摩擦系数的测试方法。
背景技术
橡塑材料是橡胶材料和塑料材料的统称,在石油钻井、化工以及航空航天等领域有广泛的应用。某些橡塑材料的使用环境为强腐蚀环境。例如氢化丁腈橡胶(HNBR)用于油井井筒密封时,由于油井的注入水和采出水中腐蚀性离子的含量较高,因此氢化丁腈橡胶处于强腐蚀环境中。为了保证橡塑材料的正常使用,需要对橡塑材料在强腐蚀环境中的力学性能进行研究,以掌握橡塑材料在强腐蚀环境中的力学性能变化规律。橡塑材料在强腐蚀环境中的摩擦系数是力学性能研究中比较的重要参数。
目前,在对橡塑材料在强腐蚀环境中的力学性能进行研究时,通常以橡塑材料在普通环境中的摩擦系数代替其在强腐蚀环境中的摩擦系数。
在实现本发明的过程中,本发明人发现现有技术中至少存在以下问题:以普通环境中的摩擦系数代替强腐蚀环境中的摩擦系数不能准确地对橡塑材料在强腐蚀环境中的力学性能进行研究。
发明内容
为了解决上述的技术问题,本发明实施例提供一种橡塑材料在强腐蚀环境中的摩擦系数的测试方法。
具体而言,包括以下的技术方案:
一方面,本发明实施例提供一种橡塑材料摩擦系数的测试方法,所述测试方法包括:
步骤a,将经过预处理的橡塑材料试样浸泡在浸渍溶液中,在预设温度下老化预设时间;所述浸渍溶液为含有Cl-、HCO3-、SO4 2-、Na+、Ca2+的水溶液,其中,Cl-的浓度为12000mg/L~18000mg/L,HCO3-的浓度为1000mg/L~1400mg/L,SO4 2-的浓度为150mg/L~250mg/L,Na+的浓度为8000mg/L~12000mg/L,Ca2+的浓度为250mg/L~350mg/L;
步骤b,将老化后的橡塑材料试样固定在滑块的下表面上,将所述滑块和所述老化后的橡塑材料试样置于所述浸渍溶液中,拉动所述滑块使所述老化后的橡塑材料试样和所述滑块一起运动,记录作用在所述滑块上的拉力值和所述老化后的橡塑材料试样受到的正压力值,所述拉力值和所述正压力值的比值即为所述橡塑材料的摩擦系数。
进一步地,作为优选,所述浸渍溶液中,Cl-的浓度为15000mg/L,HCO3-的浓度为12mg/L,SO4 2-的浓度为200mg/L,Na+的浓度为10000mg/L,Ca2+的浓度为300mg/L。
进一步地,步骤a中,所述预设时间为6~10天。
进一步地,步骤a中,所述预设温度为20℃~80℃。
进一步地,步骤a中,所述橡塑材料试样为长方体,所述橡塑材料试样的长为115mm~120mm、宽为85mm~95mm、厚为1mm~3mm。
进一步地,步骤b之后包括:对经历了摩擦系数测试的橡塑材料试样的表面进行清洁处理,然后对所述经历了摩擦系数测试的橡塑材料试样的表面形貌进行观察。
进一步地,所述清洁处理具体包括:对所述老化后的橡塑材料试样进行超声清洗,所述超声清洗的时间为0.5~1小时,然后依次用丙酮、乙醇进行清洗。
进一步地,所述橡塑材料包括:氢化丁腈橡胶、丁腈橡胶、乙丙橡胶、氯丁橡胶、聚乙烯、聚丙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚四氟乙烯。
另一方面,本发明实施例提供一种利用上述的测试方法得到的摩擦系数在油井井筒力学分析中的应用。
本发明实施例提供的技术方案的有益效果是:
本发明实施例提供的橡塑材料摩擦系数的测试方法中,将橡塑材料置于强腐蚀性的浸渍溶液中进行老化,并在强腐蚀性的浸渍溶液中测试作用在老化后的橡塑材料上的拉力值和橡塑材料受到的正压力值,通过计算拉力值和正压力值的比值来得到橡塑材料在强腐蚀环境中的摩擦系数。采用该方法可以对各种橡胶材料以及塑料材料在强腐蚀环境下的摩擦系数进行测试,并对其老化后的摩擦性能进行快速评价,通过本发明实施例的测试方法得到的摩擦系数与橡塑材料在实际强腐蚀环境中的摩擦系数相吻合,所得结果能够用于橡塑材料在强腐蚀环境中的力学性能分析,有利于提高橡塑材料在强腐蚀环境中的力学性能分析的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1、2、3以及4中测试得到的氢化丁腈橡胶试样的摩擦系数;
图2为实施例1中氢化丁腈橡胶试样在20℃下在浸渍溶液中老化后的形貌图,其中图2a为光学显微镜观察结果,图2b为扫描电子显微镜观察结果。
图3为实施例2中氢化丁腈橡胶试样在40℃下在浸渍溶液中老化后的形貌图,其中图3a为光学显微镜观察结果,图3b为扫描电子显微镜观察结果。
图4为实施例3中氢化丁腈橡胶试样在60℃下在浸渍溶液中老化后的形貌图,其中图4a为光学显微镜观察结果,图4b为扫描电子显微镜观察结果。
图5为实施例4中氢化丁腈橡胶试样在80℃下在浸渍溶液中老化后的形貌图,其中图5a为光学显微镜观察结果,图5b为扫描电子显微镜观察结果。
图6为光学显微镜观察得到的氢化丁腈橡胶在实际强腐蚀环境中的形貌图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。除非另有定义,本发明实施例所用的所有技术术语均具有与本领域技术人员通常理解的相同的含义。
本发明实施例提供一种橡塑材料在强腐蚀环境中的摩擦系数的测试方法,该测试方法包括:
步骤a,将经过预处理的橡塑材料试样浸泡在浸渍溶液中,在预设温度下老化预设时间;所述浸渍溶液为含有Cl-、HCO3-、SO4 2-、Na+、Ca2+的水溶液,其中,Cl-的浓度为12000mg/L~18000mg/L,HCO3-的浓度为1000mg/L~1400mg/L,SO4 2-的浓度为150mg/L~250mg/L,Na+的浓度为8000mg/L~12000mg/L,Ca2+的浓度为250mg/L~350mg/L;
步骤b,将老化后的橡塑材料试样固定在滑块的下表面上,将所述滑块和所述老化后的橡塑材料试样置于所述浸渍溶液中,拉动所述滑块使所述老化后的橡塑材料试样和所述滑块一起运动,记录作用在所述滑块上的拉力值和所述老化后的橡塑材料试样受到的正压力值,所述拉力值和所述正压力值的比值即为所述橡塑材料的摩擦系数。
本发明实施例提供的橡塑材料摩擦系数的测试方法中,将橡塑材料置于强腐蚀性的浸渍溶液中进行老化,并在强腐蚀性的浸渍溶液中测试作用在老化后的橡塑材料上的拉力值和橡塑材料受到的正压力值,通过计算拉力值和正压力值的比值来得到橡塑材料在强腐蚀环境中的摩擦系数。通过本发明实施例的测试方法得到的摩擦系数与橡塑材料在实际强腐蚀环境中的摩擦系数相吻合,所得结果能够用于橡塑材料在强腐蚀环境中的力学性能分析,有利于提高橡塑材料在强腐蚀环境中的力学性能分析的准确性。同时本发明实施例提供的测试方法操作简单、容易实现、重复性以及再现性良好。
进一步地,在上述的测试方法中,Cl-、HCO3-、SO4 2-、Na+以及Ca2+的浓度可以在限定的范围内任意取值,例如Cl-的浓度可以为13000mg/L、14000mg/L、15000mg/L、16000mg/L、17000mg/L等;HCO3-的浓度可以为1100mg/L、1200mg/L、1300mg/L等;SO4 2-的浓度可以为160mg/L、180mg/L、200mg/L、220mg/L、240mg/L等、Na+的浓度可以为9000mg/L、10000mg/L、12000mg/L等;Ca2+的浓度可以为260mg/L、280mg/L、300mg/L、320mg/L、340mg/L等。其中,本发明实施例中,浸渍溶液的组成优选:Cl-的浓度为15000mg/L,HCO3-的浓度为12mg/L,SO4 2-的浓度为200mg/L,Na+的浓度为10000mg/L,Ca2+的浓度为300mg/L。采用该组成的浸渍溶液能够使最终得到的摩擦系数更符合实际情况。可以利用NaHCO3、CaCl2、NaCl以及Na2SO4来配制上述强腐蚀性的浸渍溶液。
进一步地,在上述的测试方法中,步骤a中,在浸渍溶液中老化的预设时间为6~10天,例如可以为7天、8天、9天等,优选8天。
进一步地,在上述的测试方法中,步骤a中,在浸渍溶液中老化的预设温度为20℃~80℃,例如可以为30℃、40℃、50℃、60℃、70℃等
进一步地,在上述的测试方法中,步骤a中,橡塑材料试样的形状优选为长方体,其中,长方体的长可以为115mm~120mm,例如116mm、117mm、118mm、119mm等;长方体的宽可以为85mm~95mm,例如86mm、88mm、90mm、92mm、94mm等;长方体的厚可以为1mm~3mm,例如1.5mm、2mm、2.5mm等。其中,本发明实施例中,橡塑材料试样的尺寸优选为长117mm、宽90mm、厚2mm。
进一步地,本发明实施例的测试方法中,步骤b之后还包括:对经历了摩擦系数测试的橡塑材料试样的表面进行清洁处理,然后对上述经历了摩擦系数测试的橡塑材料试样的表面形貌进行观察。其中,清洁处理具体包括:对老化后的橡塑材料试样进行超声清洗,超声清洗的时间为0.5~1小时,然后依次用丙酮、乙醇进行清洗。本领域技术人员可以理解的是,可以通过光学显微镜和扫描电子显微镜(SEM)对橡塑材料试样的表面形貌进行观察。通过对橡塑材料试样的表面形貌进行观察,来对橡塑材料的摩擦性能作更深入的研究。
进一步地,本领域技术人员可以理解的是,本发明实施例的测试方法中所用仪器应至少包括:浸没在本发明实施例提供的浸渍溶液中的实验台;用于牵引滑块的牵引部件;用于检测拉力值和正压力值的力传感器;用于检测橡塑材料试样和滑块在实验台上滑动速度的速度传感器,当速度传感器检测到的滑块和橡塑材料试样的滑动速度在一定范围内保持稳定时力传感器检测到的拉力值和正压力值即为计算摩擦系数所需的拉力值和正压力值。所用的仪器还可以包括控制单元,力传感器可以与控制单元电连接,控制单元对力传感器检测到的拉力值和正压力值进行分析计算从而得出橡塑材料在强腐蚀环境中的摩擦系数。
本发明实施例提供的测试方法适用于对各种橡胶材料以及塑料材料在强腐蚀环境中的摩擦系数进行测试,并对其老化后的摩擦性能进行快速评价。举例来说,橡胶材料包括但不限于氢化丁腈橡胶、丁腈橡胶、乙丙橡胶以及氯丁橡胶等;塑料材料包括但不限于聚乙烯、聚丙烯、丙烯腈-丁二烯-苯乙烯共聚物以及聚四氟乙烯等。
下面以氢化丁腈橡胶为例,对本发明实施例提供的测试方法作进一步地详细描述。
氢化丁腈橡胶(HNBR)是由丁腈橡胶通过对丁二烯链段中双键进行选择加氢后所得到的一种新型特种橡胶。由于其丁二烯链段中双键被氢化后达到饱和状态,因此氢化丁腈橡胶不仅具有良好的耐油性能、物理机械性能和加工使用性能,同时还具有较高的耐热、耐高压、耐氧化性能以及耐酸性汽油环境的能力,在化工、石油钻井、航天航空等诸多领域广泛应用。氢化丁腈橡胶在石油钻井行业主要用于制成胶筒进行井筒密封,在油田开发生产过程中,胶筒会和油井套管发生摩擦,因此,在对井筒进行力学分析时,氢化丁腈橡胶的摩擦系数是较为重要的参数。而由于油井的注入水和采出水中腐蚀性离子的含量较高,氢化丁腈橡胶处于强腐蚀的环境中,因此为了保证井筒力学分析的准确性,需要对氢化丁腈橡胶在强腐蚀环境中的摩擦系数进行测试。
实施例1
本实施例提供一种氢化丁腈橡胶在强腐蚀环境中的摩擦系数的测试方法,所用强腐蚀性的浸渍溶液的化学组成如表1所示。
表1强腐蚀性浸渍溶液的化学组成
离子种类 Cl<sub>-</sub> HCO<sub>3-</sub> SO<sub>4</sub><sup>2</sup><sub>-</sub> Na<sup>+</sup> Ca<sup>2+</sup>
含量(mg/L) 15000 1200 200 10000 300
本实施例的测试方法的步骤如下:
步骤1,将氢化丁腈橡胶切割加工为117mm×90mm×2mm的长方体试样,并对氢化丁腈橡胶试样进行预处理,清除其表面的杂质和油污。
步骤2,向1L水中加入1650mg的NaHCO3、830mg的CaCl2、23850mg的NaCl以及300mg的Na2SO4配制上述强腐蚀性浸渍溶液。
步骤3,将步骤1所得预处理后的氢化丁腈橡胶试样浸泡于步骤2所得强腐蚀性浸渍溶液进行老化,浸泡温度为20℃,浸泡时间为8天。
步骤4,将老化后的氢化丁腈橡胶试样固定在滑块的下表面上,将滑块和老化后的氢化丁腈橡胶试样置于上述强腐蚀性浸渍溶液中,拉动滑块使老化后的氢化丁腈橡胶试样和滑块一起运动,记录作用在滑块上的拉力值和老化后的橡塑材料受到的正压力值,按照以下公式计算氢化丁腈橡胶在强腐蚀性环境中的摩擦系数:
μ=F/FN,其中,μ代表氢化丁腈橡胶在强腐蚀环境中的摩擦系数;F代表拉力值,单位为N;FN代表正压力值,单位为N。
摩擦系数如图1所示。
步骤5,对经历了步骤4中摩擦系数测试的氢化丁腈橡胶试样进行超声清洗,超声清洗的时间为1小时,超声清洗后再依次用丙酮、乙醇进行清洗。利用光学显微镜和扫描电镜对上述清洗后的氢化丁腈橡胶试样的表面形貌进行观察,结果分别如图2a和图2b所示。从图2a可以看出,在20℃下老化后的氢化丁腈橡胶表面摩擦痕迹较轻,有小部分橡胶开始剥落,有坑洞开始产生。从图2b可以看出,此时橡胶内部的填料颗粒和橡胶基体没有明显的变化,填料颗粒可以和橡胶基体稳定熔融结合。
实施例2
本实施例提供一种氢化丁腈橡胶在强腐蚀环境中的摩擦系数的测试方法,本实施例与实施例1的不同之处在于,步骤3中浸泡温度为40℃。
本实施例中所得摩擦系数如图1所示。
经历了步骤4中摩擦系数测试的氢化丁腈橡胶试样的表面形貌如图3所示。
从图3a可以看出,在40℃下老化后的氢化丁腈橡胶在经历摩擦之后,表面有橡胶脱落,且存在坑洞,并且坑洞的深度和数量均大于图2a中所示的坑洞的深度和数量。这是因为随着温度的升高,氢化丁腈橡胶分子链活性更大,发生老化现象更加严重,在摩擦过程中更容易脱落下来。从图3b可以看出,此时橡胶内部少量的填料颗粒和橡胶基体开始出现解离,填料颗粒与橡胶基体的结合能力降低。
实施例3
本实施例提供一种氢化丁腈橡胶在强腐蚀环境中的摩擦系数的测试方法,本实施例与实施例1的不同之处在于,步骤3中浸泡温度为60℃。
本实施例中所得摩擦系数如图1所示。
经历了步骤4中摩擦系数测试的氢化丁腈橡胶试样的表面形貌如图4所示。
从图4a可以看出,在60℃下老化后的氢化丁腈橡胶在经历摩擦之后,表面有大面积的橡胶脱落,橡胶表面变得粗糙不平。这是因为随着温度的进一步提高,橡胶的老化加重,橡胶中的分子链发生变化而且生成了更容易脱落的老化产物被磨掉,从而使得橡胶表面形貌更加不平。图4b显示此时橡胶内部大量的填料颗粒和出现在橡胶基体表面,填料颗粒与橡胶基体的结合能力降低,基体表面已出现少量孔洞。
实施例4
本实施例提供一种氢化丁腈橡胶在强腐蚀环境中的摩擦系数的测试方法,本实施例与实施例1的不同之处在于,步骤3中浸泡温度为80℃。
本实施例中所得摩擦系数如图1所示。
经历了步骤4中摩擦系数测试的氢化丁腈橡胶试样的表面形貌如图5所示。
从图4a可以看出,在80℃下老化后的氢化丁腈橡胶在经历摩擦之后,表面形貌更加不平,表面一层橡胶基本全部脱落,并且在新的下层橡胶中产生了新的坑洞,老化程度比图3a、图4a所示更加严重。这是因为在高温下橡胶的老化更加严重从而橡胶的耐磨性能降低。图5b显示橡胶内部的填料颗粒与橡胶基体完全失去结合力,填料颗粒因为摩擦而脱落,致使基体表面留下大量的孔洞。
根据图1所示,采用本发明实施例的测试方法得到的氢化丁腈橡胶在强腐蚀环境中的摩擦系数随温度变化的曲线与实际生产中的规律相一致。将图2a、3a、4a以及5a与图6对比可以看出,按照本发明实施例提供的测试方法进行摩擦系数测试后的氢化丁腈橡胶的表面形貌与实际油田生产开发过程中氢化丁腈橡胶摩擦后的表面形貌基本相同,在表面都有大面积的、较深的点蚀坑形成。由此可见,采用本发明实施例的测试方法得到的氢化丁腈橡胶在强腐蚀环境中的摩擦系数与氢化丁腈橡胶在实际强腐蚀环境中的摩擦系数相吻合。同时,本发明实施例提供的测试方法还具有良好的重复性和再现性。
以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种橡塑材料摩擦系数的测试方法,其特征在于,所述测试方法包括:
步骤a,将经过预处理的橡塑材料试样浸泡在浸渍溶液中,在预设温度下老化预设时间;所述预处理包括清除所述橡塑材料试样表面的杂质和油污,所述浸渍溶液为含有Cl-、HCO3 -、SO4 2-、Na+、Ca2+的水溶液,其中,所述橡塑材料包括:氢化丁腈橡胶、丁腈橡胶、乙丙橡胶、氯丁橡胶、聚乙烯、聚丙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚四氟乙烯,所述橡塑材料试样为长方体,所述橡塑材料试样的长为117mm、宽为90mm、厚为2mm,Cl-的浓度为15000mg/L,HCO3 -的浓度为1200mg/L,SO4 2-的浓度为200mg/L,Na+的浓度为10000mg/L,Ca2+的浓度为300mg/L,所述预设温度为20℃~80℃,所述预设时间为8天;
步骤b,将老化后的橡塑材料试样固定在滑块的下表面上,将所述滑块和所述老化后的橡塑材料试样置于所述浸渍溶液中,拉动所述滑块使所述老化后的橡塑材料试样和所述滑块一起运动,记录作用在所述滑块上的拉力值和所述老化后的橡塑材料试样受到的正压力值,所述拉力值和所述正压力值的比值即为所述橡塑材料的摩擦系数;
对经历了摩擦系数测试的橡塑材料试样的表面进行超声清洗,所述超声清洗的时间为0.5~1小时,然后依次用丙酮、乙醇进行清洗,然后对所述经历了摩擦系数测试的橡塑材料试样的表面形貌进行观察。
2.利用权利要求1所述的测试方法得到的摩擦系数在油井井筒力学分析中的应用。
CN201610262440.3A 2016-04-25 2016-04-25 一种橡塑材料摩擦系数的测试方法 Active CN107305182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610262440.3A CN107305182B (zh) 2016-04-25 2016-04-25 一种橡塑材料摩擦系数的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610262440.3A CN107305182B (zh) 2016-04-25 2016-04-25 一种橡塑材料摩擦系数的测试方法

Publications (2)

Publication Number Publication Date
CN107305182A CN107305182A (zh) 2017-10-31
CN107305182B true CN107305182B (zh) 2020-10-09

Family

ID=60150362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610262440.3A Active CN107305182B (zh) 2016-04-25 2016-04-25 一种橡塑材料摩擦系数的测试方法

Country Status (1)

Country Link
CN (1) CN107305182B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044813B (zh) * 2019-04-11 2020-08-11 东南大学 一种冰冻地区沥青路面宽温度域摩擦系数的检测方法
CN111044446B (zh) * 2019-12-23 2022-05-31 北京工业大学 一种简化多离子因素影响的钛合金表面改性摩擦实验设计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109691B (zh) * 2007-07-30 2011-04-27 山东省交通厅公路局 金属杆体材料应力腐蚀试验装置及其试验方法
CN201378141Y (zh) * 2009-03-31 2010-01-06 陶骏昌 多功能橡胶老化试验装置
CN101699268B (zh) * 2009-11-04 2012-01-11 中国石油天然气股份有限公司 碳酸氢钠水型油井腐蚀的快速判断及一种缓蚀剂
CN102321463A (zh) * 2011-06-14 2012-01-18 北京科技大学 一种含硫双咪唑啉类二氧化碳缓蚀剂及其制备方法
CN104559983B (zh) * 2013-10-29 2018-06-19 中国石油化工股份有限公司 缓蚀剂组合物和缓蚀剂及其应用和金属构件防腐蚀方法
CN104777094B (zh) * 2015-04-10 2018-04-20 清华大学 橡胶摩擦性能测试实验装置
CN104929584B (zh) * 2015-06-23 2017-11-10 重庆科技学院 井筒内壁防腐蚀方法

Also Published As

Publication number Publication date
CN107305182A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
CN107305182B (zh) 一种橡塑材料摩擦系数的测试方法
Ikechukwu et al. Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4 and NaCl solutions of different concentrations
Farfan-Cabrera et al. Compatibility study of common sealing elastomers with a biolubricant (Jatropha oil)
Tan et al. Frictional behaviors of rough soft contact on wet and dry pipeline surfaces: with application to deepwater pipelaying
Esfahani et al. Development of a novel in-situ technique for hydrogen uptake evaluation from a lubricated tribocontact
Feng et al. One‐step immersion method for fabricating superhydrophobic aluminum alloy with excellent corrosion resistance
Yan et al. Investigation of the threshold level of H2S for pitting of mild steel in CO2 aqueous solutions
CN102766271B (zh) 一种利用氧化溶液对丁腈橡胶表面化学改性的方法
Rojas et al. Turgor pressure effects on textural behavior of honeydew melon
Arachchige Aging and long-term performance of elastomers for utilization in harsh environments
CN112362623A (zh) 一种识别激光辐射后单层TMDs中物理和化学吸附方法
Ding et al. Wettability alteration of solid surface to enhance the bitumen liberation and the water‐based processability of weathered oil sands
Hamouda et al. Experimental investigation of temperature on interfacial tension and its relation to alterations of hydrocarbon properties in a carbonated water/hydrocarbon system
Krawczyk-kŁys et al. Plasma surface modification of commercial SBS rubbers for enhanced adhesive bonding
Jin et al. Corrosion inhibition of a hygroscopic inorganic dust-depressor
Ivanov et al. Plasma-Aided Surface Finishing for Flame Retardation of Wood Through the Use of Surfactants
Charfi et al. Teaching about tribological behavior of iron-based shape memory alloys
Mounir et al. Application of cosmetic argan oil as green corrosion inhibitor for copper in phosphoric acid medium
Ziomek-Moroz et al. Effect of Sour Environment pH on Crack Morphology in Ultra-High Strength Drilling Steel Under Cyclic Stress
CN112126104A (zh) 一种利用强酸盐氧化溶液对丁腈橡胶表面化学改性的方法
Lin et al. Experimental investigation on damping characteristic of metal rubber material at simulated marine environment
Elemuo et al. Effect of microbial lipase enzymes on wettability, interfacial tension and adhesion of crude oil/brine/solid interactions
Wu et al. The failure reason of epoxy-phenolic coating on the internal surface of BG90S steel tubing under sour gas environment
Wulterkens et al. Corrosion Protection in Oil System With Water Ingress by Use of Volatile Corrosion Inhibitors (VCI)
Manuwa Effect of moisture content on rubber, steel and tetrafluoroethylene materials sliding on textured soils

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant