CN1073040C - 带格栅式控制面的火箭 - Google Patents

带格栅式控制面的火箭 Download PDF

Info

Publication number
CN1073040C
CN1073040C CN96194706A CN96194706A CN1073040C CN 1073040 C CN1073040 C CN 1073040C CN 96194706 A CN96194706 A CN 96194706A CN 96194706 A CN96194706 A CN 96194706A CN 1073040 C CN1073040 C CN 1073040C
Authority
CN
China
Prior art keywords
control surface
rocket
grid type
wing
type control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96194706A
Other languages
English (en)
Other versions
CN1187794A (zh
Inventor
根纳季·亚历山德罗维奇·索科洛夫斯基
弗拉基米尔·尼古拉耶维奇·别利亚耶夫
弗拉基米尔·格里戈里耶维奇·博加茨基
叶夫根尼·亚历山德罗维奇·贝奇科夫
瓦连京·瓦尔迪米罗夫维奇·瓦托林
阿历克谢·维克多罗维奇·格拉乔夫
丹尼尔·利昂尼多维奇·德雷尔
弗拉基米尔·彼得罗维奇·叶梅利亚诺夫
阿列克谢·米哈伊罗维奇·伊雷因
弗拉基米尔·弗拉基米洛维奇·伊先科
米哈伊尔·阿纳托利耶维奇·克里亚奇科夫
奥列格·尼古拉耶维奇·列维切夫
拉扎尔·约瑟夫维奇·莱纳
尼古拉·阿法纳西耶夫维奇·马洛利特列夫
弗拉基米尔·伊凡诺维奇·巴帕夫洛夫
维克托·费奥多罗维奇·皮里亚泽夫
瓦列姆·安德里阿洛维奇·普斯托沃伊托夫
阿纳托利·利沃维奇·赖德尔
瓦季姆·康斯坦丁诺维奇·费季索夫
谢尔盖·利沃维奇·什穆格利亚科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vympel State Machine Building Design Bureau
Original Assignee
Vympel State Machine Building Design Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU95107195/11A external-priority patent/RU2085440C1/ru
Priority claimed from RU95107199/11A external-priority patent/RU2085826C1/ru
Priority claimed from RU95107196/11A external-priority patent/RU2085825C1/ru
Application filed by Vympel State Machine Building Design Bureau filed Critical Vympel State Machine Building Design Bureau
Publication of CN1187794A publication Critical patent/CN1187794A/zh
Application granted granted Critical
Publication of CN1073040C publication Critical patent/CN1073040C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
    • F42B10/143Lattice or grid fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Photovoltaic Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明涉及火箭技术,尤其涉及引导火箭技术,本发明可用于带有格栅式控制面的各种类型和类别的火箭以及用于火箭控制面。火箭根据标准的空气动力学设计,包括带有动力装置的箭体(1)、引导和控制系统装置、控制系统的格栅式控制面(3)和固定箭翼(2),控制面沿箭体纵向轴线方向均匀分布在箭体外部。在强化构架中,侧板(18,19)被设计成在向着控制面端部方向上变窄;根翼(22)比端翼(23)宽,格栅翼的厚度在朝向瑞部的方向上均匀地或是分级地减少。

Description

带格栅式控制面的火箭
技术领域
本发明涉及火箭技术领域,尤其涉及引导火箭技术,本发明可用于带有格栅式控制面的各种类型和类别的火箭。本发明还涉及一种格栅控制面,可用于控制驱动装置。
已有技术
根据一般空气动力学设计制造的带有位于箭体中的推进系统、控制和引导装置、固定箭翼和环绕中心线按一定间隔设在箭体上并且有由翼形成的升力面的控制系统的格栅控制面的火箭是人们所熟知的。
这种火箭在下列刊物中做不同程度的介绍:“FLIGHT INTERNATIONAL”1992年3月4-10日,N4308,24-25页,“FLIGHT INTERNATIONAL”1992年3月11-17日,N4309,15页,最完整的是在“KRYL YA RODYNY”(俄文)N8-93(彩图及26页)。
装有格栅式控制面的火箭可在控制系统中使用尺寸较小几乎不消耗能量的驱动装置,因而可降低火箭的整体质量和尺寸。
目前各种形状、不同设计的格栅式控制面已用于不同种类不同目的火箭的执行机构中。格栅式控制面与单翼的一个基本区别如下所述。在单翼设计中承载构件位于罩子底下不参与气动力的产生。在格栅式控制面设计中承载构件处于气流中因此成为控制面的升力面,即格栅式控制面的零件起到双重作用--既是承载结构又是气动力面。其结果是在体积相同时格栅式控制面的升力比单翼控制面的升力要大几倍。
同单翼控制面的体积相比,减少格栅式控制面体积的可能性实质上导致了降低由迎面气流产生的阻力,因为格栅式控制面实际相当于一个薄壁桁架,除其他特点外,它比单翼设计在刚性参量和载荷参量方面更优越。
格栅翼面与箭体成45°角布置的带格栅式控制面的火箭是人们熟悉的(即所谓网格式设计)(见莫斯科,Reschetchatye Kryl'ya,B.M.BelotserKovsky,L.A.Odnovol等人著“Mashinostroeniye”1985(俄文)300页,图12.2,B)。
公知的格栅式控制面带有矩形的承载构架,它包括侧板、根翼、顶翼、控制面与控制驱动轴的连接装置,以及一组位于构架内具有不同厚度形成蜂窝状格栅的翼。翼具有不同厚度是在控制面的限制范围内增强某些翼所致。将翼连接成格栅是用常规技术利用凹槽及随后的钎焊来实现的。翼的毛坯是前后边缘都修尖的楔形(见上文216-223页)。
上面所述的控制面的优越性是由同常规单翼控制面相比格栅式控制面所具有的总体的优越性所决定的。同时,在已知的格栅式控制面的设计中还有一些缺点,包括:
·在格栅板(它是由承载构架和格栅本身组成)的设计中,对于给定的控制面在沿控制面翼展方向加强翼板会导致阻力相应增大。
·在控制面格栅上,前部修尖的翼的许多点处有未钎焊的沟槽部分。在某些飞行模式时这会造成在未钎焊区域产生“激波”,激波会增大控制面的阻力,降低总升力并造成翼局部过热,即令翼的强度降低,结果会影响火箭飞行参量。
·控制面与火箭连接装置的位置在承载构架的转角处,当格栅式控制面以可控方式使用时这就会使驱动输出部件的总体尺寸增大凸伸进气流中,即增大其阻力并削弱这一部位的箭体,减少了将输出连接包容进箭体的可能性。
·必须在薄的格栅翼毛坯上加工沟槽导致了控制面加工技术复杂化:一系列工序都是必须的,迭放毛坯,在模具中铣或冲槽,去除槽中和锐边处的毛刺;钎焊时将翼定位,等等。
·将沿控制面翼展方向加强翼的方法引入格栅的设计导致必须在格栅翼毛坯上加工出不同宽度的槽及在翼的不同位置加工槽,这显著地使翼的加工工艺过程复杂化并增加制造成本。
上述对不利因素的分析说明它们从根本上削弱了已知格栅式控制面的使用特性和结构特性以及其产品的可加工性,并在一定程度上限制了其应用的可能性。
本发明概述
本发明的目的是改进带有格栅式控制面的火箭及格栅式控制面。本发明的一个任务是开发从各个角度达到高度可操纵性的火箭,它具有很高的空气动力性能而不降低其机动性。火箭的结构特性及其格栅式控制面不应明显降低法向力系数和增大阻力系数。在火箭和格栅式控制面的开发中必须设计出具有下述综合特性的结构:降低阻力,更好的加工性(与已有设计相比),提高载荷性能,改善火箭的几何特性、动力性能及动力学性能等。本发明的任务还有通过设计出具有良好战术飞行性能的特殊装置实现格栅式控制面的展开和在发射火箭时其在展开位置的固定,并且在火箭运输和贮存时使总体尺寸为最小。除控制面可收拢--展开外,应用本发明还可增加控制面在收拢和展开位置固定的可靠性。
上述目的可由这样的火箭来实现,它具有常规的空气动力学设计,包括了箭体中的推进系统,控制和引导系统装置,以及相对中心线按一定间隔分开在箭体上的控制系统的固定翼和可动的格栅式控制面,它还有由翼面形成的升力面,而且格栅式控制面和箭体的制造按照下列的尺寸比例关系:Sw=2Sw/SM=3~1l;     Sp=2Sp/SM=1.5~3; Hp/Lp=0.3~0.55; t p ‾ = t / b = 0. 6 ~ 1 ;                                   n=Hp/t+1=3~5;Sp=NLpb;         λw=L2/2Sw=0.2~0.5;λk=Lk/Deq=16~20; D eq = 4 S M / π 式中Sw--箭翼面积;
Figure C9619470600083
--箭翼的比面积;
Figure C9619470600084
--格栅式控制面的比面积;
SM--火箭中间截面积;
Hp--格栅式控制面的高度;
Sp--格栅式控制面的升力面面积:
Lp--格栅式控制面的翼展:
λw--箭翼伸长;
L--箭翼翼展;
λk--火箭箭体伸长;
Lk--火箭长度;
t--格栅式控制面翼面节距;
Deq--面积等于火箭中间截面积的圆的直径;
b--格栅式控制面的翼面宽度:
--格栅式控制面的翼面比节距;
n--格栅式控制面的翼数量。
火箭带有将控制面展开及将其固定在展开和收拢位置的装置,以及为控制面展开装置所设的烟火式蓄压嚣,而且格栅式控制面装设了带槽的销轴以在收拢位置上固定控制面。在箭体上加工有与控制面销轴相配的孔,在控制面的根部加工有装配孔。每个控制面展开装置包括位于箭体中的气缸,活塞下方与烟火式蓄压器相连接的腔体,在控制面处于展开状态时受弹簧力作用固定在其行程一端的话塞,以及固定在控制面驱动装置轴端前部、两端装在控制面根部相对应的装配孔中的杆。每个将控制面固定在展开位置的装置包括位于控制面驱动装置轴端后部、用弹簧加载可与控制面根部相应的装配孔相配合的杆。每个将控制面固定在收拢位置的装置包括位于展开装置主体内的夹持剪,当控制面处于收拢位置时它可与销轴相配合,当控制面处于展开位置时它可与气缸活塞杆相配合。杆的长度可保证在控制面处于展开位置时杆可堵塞箭体上的开孔。
这样的火箭具有上述装置的功能同时在控制面展开和收拢状态时具有防尘防水的功能。为优化展开装置的力与行程以及消除作用在驱动轴端刚性固定结构上的扭矩,每个控制面的销轴都装在格栅式控制面重心区域内翼的交叉处。
在收拢状态时为避免损坏箭体涂层和格栅式控制面的翼,它们的每一根销轴的长度都应保证使箭体与相应的控制面之间有一间隙。由于每个气缸的活塞杆都有槽,可在控制面处于展开位置时由夹持剪将其固定,因而为箭体提供了防尘防水保护措施。
因此火箭的格栅式控制面设有矩形的承载构架,它包括侧板、根翼、顶翼、控制面与驱动轴的连接装置以及一组在构架内形成蜂窝状格栅的不同厚度的翼。为了解决具有较少阻力、较高可加工性、良好载荷特性的格栅式控制面的结构设计问题,本发明提出了一些互相关连的设计方案。
构架的侧板厚度为均匀变薄的,根翼和顶翼具有不同的厚度,厚度沿控制面翼展方向由根部到顶部逐渐减薄,格栅的翼的厚度均匀或不连续地变薄,厚度在沿控制面的翼展方向上在翼板长度范围内由根部到顶部减薄。
考虑到在飞行中控制面顶部构件的负荷要比根部构件小,在这些设计方案中将其设计成变窄的形状以减少控制面的整体阻力。同时上述结构零件的重量和控制面的重量也可减轻,这样就提高了结构的载荷特性,降低了控制面相对于其纵向轴线和横向轴线的转动惯量,结果是提高了驱动装置和火箭整体的动态参数。
格栅的翼是这样制成的,将一些厚度不同的W型板一行一行地连接到一起,板的厚度在控制面翼展向其顶部方向上均匀地或不连续地减小,板的两端与构架侧板内表面相接,通过每一列W型板原端点的直线与构架根翼平行。利用这样的结构可以解决由控制面根部到顶部使翼的厚度减薄成形的设计技术问题。装在根翼上的W型板的壁由装在其上的下一行W板续接上,依此类推,下一行板的壁厚均匀地或不连续地减小。这样在翼由根部到顶部长度方向上厚度均匀或不连续减小的复杂的格栅翼就制成了。由于沿翼的翼展朝顶部方向上控制面厚度的减小,降低了控制面的阻力。
这里提出的格栅式控制面在W型板彼此接触的接合端点处有基面。利用预先加工出来的基面通过点焊或电容贮能焊将一行一行的板做初步工艺焊接形成工艺“网格块”使W型板一行接一行组装在一起。这样可将W型板的壁与上一行板的壁调整为一致的斜面,将各个翼的构件可能的偏差降低到最小程度,因此减小控制面的阻力。
在本发明的格栅式控制面中,W型板之间以及与构架之间用焊接或钎焊形成一体化结构。继续用方便的W型板之间的连接方法,可将工艺“网格块”与根翼和顶翼连接。这时可对“网格块”进行机械加工提高与构架侧板配合尺寸精度。然后用焊接(比如用激光焊)或钎焊的方法可将控制面的承载零件做一体化连接成为均匀的承载单元。上述承载单元包括承载支架。这种控制面装置的加工工艺安排可使对某些指标参数有影响的技术缺陷减小到最低限度,这些指标参数诸如由于控制面零件几何尺寸与计算值的偏差造成的格栅式控制面阻力加大,控制面零件钎焊连接中钎焊不够充分而导致的栅板结构刚性降低,这些现象可能发生在大家熟悉的控制面“槽配槽”连接的翼的钎焊中。在本发明的控制面中,格栅的翼、构架和侧板的形状都是前后缘修尖的楔形。
由理论可知,格栅式控制面的阻力包括摩擦阻力和产生激波的阻力,产生激波的阻力的值与处于气流中的零件结构形状成正比。因而修尖的零件结构可减小产生激波的阻力。其作用原理如下所述。
在本发明的控制面中,格栅翼边缘的修尖是对称的。如上所述带有对称修尖的零件结构修尖可减少零件的产生激波阻力。在这里零件为翼。但修尖翼的优越性还不仅限于如上所述。互相间隔为计算距离(格栅节距“t”)的相邻的翼通过来自相邻翼前缘衰减于其后缘的激波互相影响。这种影响越强,翼的冲角α就越大。对于对称外形的翼来说,互相同的影响是由翼的厚度及前后缘修尖的楔形角2θ决定的。从上面的叙述可得出这样的结论,为减少与装置状态相关的控制面翼阻力,必须使翼的修尖为双侧对称。在通过先加工出基面再预弯成W型板而制做的控制面格栅结构中,与人们熟悉的“槽配槽”的钎焊翼连接不同,可以用切削加工的方法“修整”下一行翼板的接触面,在这些部位形成翼的对称修尖,从而减小在“网格块”壁交叉点处出现的激波的强度。
在本发明的控制面中,控制面与控制驱动轴的连接装置位于构架根翼中部,该装置是由承载支架将构架侧板弯折部分与构架根翼相连接构成。将控制面与控制驱动轴连接装置设在构架侧板弯折部分之间根翼的中部可以减小在紧固连接处控制面的总体尺寸,因而将控制面的控制驱动轴连接装置“埋入”火箭箭体,大大减小控制面根部的阻力。在连接装置区域的构架侧板弯折段使结构的刚性更好,减小了受载后的变形,这对于控制驱动装置的运转是很重要的。在这里将承载支架同构架侧板和控制面根翼结合成为一体,增大了输出驱动装置的刚性,最终增大了火箭的动态性能。在本发明的控制面中,承载支架由型和角钢型两部分组成,型的支板与构架侧板的弯折段相连接形成配接口,角钢型部分的顶点与构架的根翼相连接。在配接口上加工有供控制面与控制驱动轴连接用的通孔。除了起到构架的刚性承载结合件(侧板和根翼)的作用之外,承载支架还起到由较薄弱的控制面承载构件向较强的带有与控制驱动轴相连接的开孔的配接口过渡的作用。支架由两个零件组成,具有刚性的空间形状,它可预先加工制做,以提高组装过程的工艺性。
利用相应于本发明的火箭,可以在白天和夜间在普通和困难的气象条件下在敌方运动干扰和灵活对抗的情况下摧毁来自任意方向(全向的)的包括高机动性的歼击机和强击机的空中目标。这种火箭还可用于攻击诸如巡航导弹,空-空导弹等一类的特殊目标。
具有本发明尺寸比例特征的火箭可放置在空间尺寸有严格限制的载运飞机上,同时所需的控制驱动铰矩可以减少几倍(大约7倍)。这样就可以设计功率更小的驱动装置,在保证格栅式控制面的优越性前提下使重量更小。根据在风洞中对不几何形状火箭的大量研究的结果找出了参数的最佳范围,这些参数范围也为飞行试验结果所证实。具有规定几何尺寸比例的火箭在其所有应用领域显示出卓越的空气动力性能。最大冲角αmax≈40-45°,由于引入的对硬件的限制,在弹道的被动和主动段最大允许侧向g载荷约等于50单位。
超出了规定的尺寸比例限度,由于阻力系数Cx的显著增大和法向力系数Cy的显著减小,火箭的机动性会大大下降。
尺寸比例在规定限度内的火箭在冲角αmax≈40-45°、马赫值M≈06-5.0范围内具有高度的机动性。对附图的简要说明
本发明的实质性内容均通过附图来说明,附图包括:
图1为火箭的总图;
图2为格栅式控制面;
图3为在控制面处于收拢状态时的展开装置;
图4为在控制面处于展开状态时的展开装置;
图5为格栅翼厚度变薄的格栅式控制面的基本结构;
图6为图5中格栅式控制面零件的E部视图;
图7为图5中格栅式控制面零件的J部视图;
图8为图5中格栅式控制面零件的H部视图;
图9为图5中格栅式控制面零件的K部视图;
图10为图5中A-A剖面图;
图11为图5中C-C剖面图;
图12为图5中B-B剖面图;
图13为图5中G-G剖面图;
图14为格栅翼厚度不连续减薄的格栅式控制面的基本结构;
图15为图5中格栅式控制面D方向的侧视图;
图16为带有展开的控制面的火箭的总图;
图17为图16中A-A剖面图;
图18为图16中B-B剖面图;
图19为法向力系数与箭翼的比面积之间的关系曲线;
图20为法向力系数与M系数之间的关系曲线;
图21为法向力(Cymax)与格栅式控制面比面积之间的关系曲线;
图22为独立的格栅式控制面阻力系数(Cxo)与格栅式控制面的高度翼展比的关系曲线。
实施本发明的多种形式
根据标准的空气动力学设计的火箭(图1)包括箭体1、位于箭体中的推进系统、引导和控制系统装置(图中未示出)、控制系统的四个格栅式控制面3和四个固定箭翼2,控制面围绕箭体中心线以均匀间隔分布在箭体上并处于收拢状态。
火箭设有控制面展开装置以及控制面在展开状态和收拢状态时的固定装置。每个格栅式控制面3通过固定在控制面驱动轴(图中未示)端部5的前段的杆4(图2)同驱动装置相连接。杆4的两端装在控制面3根部的装配孔中。杆4是控制面3展开时的旋转轴。
控制面在展开状态时的固定装置包括位于控制面驱动轴端部5的后段受弹簧压力作用的杆6。杆6的两端做成斜面,以便在转到“展开”位置终端时可使杆6穿进控制面3根部对应的装配孔中。格栅式控制面3带有在格栅式控制面重心处翼(9)的交叉点上的销轴8(见图2,3,4),用来将控制面3固定在收拢状态并将其转向展开位置。
每个将控制面固定在收拢状态的固定装置为夹持剪式,它包括两个固定在轴12上受弹簧10压力作用的夹紧杆11。夹持剪固定在箭体上可确保在收拢位置卡住并固定控制面3的销轴8。
带有阶梯凸轮14的轴13装在夹紧杆11之间。轴13的头部带槽以便施用工具,其位置从箭体外部可触及到(图3,4)。轴13的头部位于格栅式控制面3的翼9之间,用工具很容易触到。
每个控制面展开装置包括位于箭体上的气缸15和销轴8(图3,4)。气缸15活塞下部的腔体与烟火式蓄压器(图中未示)相连接。弹簧16在控制面展开时将气缸15的活塞固定在终点位置。气缸15的活塞杆17在展开控制面3时起到将销轴8推出的作用。烟火式蓄压器可以是由某种已知方法控制的爆炸装置。
气缸活塞杆17的长度能够在销轴8脱离配装孔后将这些孔封堵住。销轴8和杆17上的槽可保证利用夹持剪能实现可靠的固定。销轴8的长度应能在箭体1和格栅式控制面3的翼面之间留有必要的间隙γ(图3)以避免对它们造成损伤。火箭格栅式控制面3在自主飞行任务开始时的自动模式下展开,在定期技术保养中也要展开。火箭发射时格栅式控制面3处于收拢状态。这种类型火箭的推进系统、引导和控制系统以常规方式运行。烟火式蓄压器根据火箭控制系统的信号启动后,格栅式控制面展开。
在进入气缸15腔体内超压气体或空气的作用下,活塞杆17克服夹持剪的作用力将控制面3的销轴8推出。在气缸中,弹簧16和夹持剪11将气缸15的活塞杆17固定在端部位置,在这个位置上当销轴8从孔中脱出后杆17将孔封堵住形成必要的防尘防水结构。
展开控制面时,格栅式控制面3绕杆4形成的轴转动,直到在弹簧7压力作用下的杆6两端不再处于控制面3根部的配装孔中,这样可保证控制面在展开状态的固定。
人工展开格栅式控制面时,必须用工具转动轴13的头部直到夹紧杆11被阶梯14张开。这样气缸15的活塞杆17受弹簧16的作用给销轴一个初始作用力来转动格栅式控制面3。随后的转动要人工完成直至按上述的方式使格栅式控制面固定在展开状态。
将格栅式控制面3转到收拢状态,必须克服弹簧7的阻力将杆6推进夹持器的孔中,然后转动控制面3使销轴8对准箭体1上对应的孔,再用力克服弹簧16的阻力压在气缸活塞杆17上,将其推到箭体表面以下。夹持剪的夹紧杆这时会张开,释放活塞杆17,卡住销轴8的槽并将其固定。火箭在运输、贮存和被载机携带飞行时,格栅式控制面即保持在这一位置。
格栅式控制面在功能上相当于由大量小尺寸弦翼的有限翼展的翼面组成的实际是一个薄壁桁架的运载系统,具有轻巧、刚性的结构。
结构的基础是由钢板制成的根部为图中所示的弯折部分20和21的两个对称(镜像对称)的侧板19(见图5),和同样是由钢板制成的根翼22和顶翼23组成的承载构架,它们连接在一起成为一体化构件。侧板、根翼和顶翼的边缘都是修尖的(见图10,13),横向零件的厚度在向控制面的端部方向上减小。
一组对角形状为方形的薄壁预制W型板位于构架中,这些板一行装在另一行之上。这组板中的第一行装在根翼22上,最后一行与顶翼23相接并形成一体化的连接。W型板与侧板18和19相接,并与之形成一体化连接。W型板在彼此间相接触处设有基面,通过基面互相连接成为一体零件。将这种W型板装在根翼上,以这样的方式紧密排列,使通过每一行W型板原端点的直线平行于构架根翼。由于W型板的板坯会形成一个90°的顶点,两块板,例如24和25(见图5),就组成一个节距为“t”的方形蜂窝单元。在给出的例子中板的厚度以某一差值均匀减小由δ1到δ1+1(对于板24和25)直至最后一行。根翼22和顶翼23具有固定的厚度δ1和δ2。W型板的毛坯是尖角为2θ的对称楔形(见图11)。
图14所示为翼的厚度具有两种不同数值δ3到δ4的另一方案。根翼和顶翼的厚度与图5中所示相同为δ1和δ2。控制面的承载链在根部以预先由型和角型部分接合为一体的、事先对连接面加工的并与侧板18和19的弯曲部分相连接的承载支架26为结束(见图5)。
如同前面叙述的,为工艺上方便,可利用一体化连接方法,例如静电焊接或点焊,将由一些W型板、根翼22和顶翼23组成的格栅式控制面的网格单元在与侧板18和19接触的连接面(见图5)、W型板在基面区的连接面(修尖的边缘)预先组装起来并与装在侧板18和19上的承载支架26组装起来,再用一体化连接方法如焊接或钎焊在连接区域作最终组装(见图6,7,8,9)。在配接口加工出通孔φd,φD及用于控制面与控制驱动轴连接的尺寸“E”。同时还要对组装成的标准设计结构做修整,去除侧板和翼面棱边上的毛刺。
必须注意到,为了减少结构的阻力(改变在较高飞行速度范围内的激波),侧板18和19的前端修尖的边缘是带斜度27的(见图15),同时还可保护格栅翼的前部修尖部分不受损伤。为同一目的,侧板18和19的后缘与格栅翼的后部修尖部分留有一段距离“K”(见图15)。格栅翼的宽度为“b”(见图15)。
本发明的火箭格栅式控制面按下述方式工作。在出现与翼表面呈α冲角的作用在格栅式控制面的连续空气流时,由方格式的翼形成的格栅式控制面的升力面会在翼面上产生升力。在格栅式控制面上产生的通过控制面承载结构的控制驱动轴连接装置(图13中带开孔的配接口)传递的升力会形成一个作用在驱动装置上的铰矩Mh。
格栅式控制面的翼形可通过适当选择节距“t”(对于控制面)、厚度δ1、前后缘的修尖角度2θ来确定其形状,并可在冲角值高达40-50°时获得平稳的绕流,这样可大大提高火箭的动态性能。
在做超音速飞行时,格栅的翼彼此间距离可以更近在通过激波时不会有彼此间的互相影响,在小的体积情况下获得大的格栅空气动力面总面积,也就是改善了火箭的机动性。例如在M=4时,在同样体积下格栅面的升力要超过对应的单翼的升力大约3倍,在一定条件下这就使格栅式控制面同常规单翼控制面相比具有一些优越性。
如前所述,由于格栅式控制面相当于薄壁桁架(即轻巧而固牢的结构),翼和构架零件的厚度比值在某些情况下为1∶20,这使材料效用比(M,O,R,)达到高水平,该数值在0.5至0.9的界限范围内。该系数可用下式计算:
M,O,R=G/N
式中G--产品的质量,
    N--材料消耗定额。
但是必须注意到,在飞行中作用在置于气流中的结构上的阻力能显著降低格栅式控制面装置的作用效果。
因此在本发明的格栅式控制面的设计中使用几乎所有已知的减小阻力的方法。
·侧板的轮廓确定(在翼展方向厚度减小)和前后缘的修尖;
·根翼、顶翼和格栅翼的轮廓确定(厚度和修尖角度的的选定);
·创设了利用预先弯制的W型板的基面组装格栅式控制面“网格块”的技术;
·通过将控制面连接装置彼此设置得更加靠近及使用可减少飞行中变形可能性的专门支架,使格栅式控制面的根部刚性更强;
·控制面与控制驱动轴连接装置的结构形式可使格栅式控制面根部隐入火箭箭体中。
上面列出完善火箭格栅式控制面的措施可使格栅式控制面的绕流更平稳(无分离),即降低空气动力阻力,这样就能同火箭一道以更灵活的方式解决火箭和控制驱动中必须解决的问题,比如火箭的几何特性、动力学性能、推力和驱动执行元件的惯性矩等。
用在火箭空气动力控制系统中的格栅式控制面的形状对这样一些要素有直接影响,如在“初始”状态下沿箭体收拢的可能性、在飞行中仅在恒定的气动力作用下展开的可能性和减少铰传动矩的可能性,等等。
如同“格栅式控制面--控制驱动--火箭”的综合结构试验研究所证实,本发明实际上可在各种火箭应用中,包括高达40-50°的冲角,解决上述的综合问题。
本发明的火箭(见图16)包括带有前部卵形整流罩29的箭体1。引导和控制系统装置位于箭体内部,推进系统(图中未示)也位于箭体内。
火箭是按照标准空气动力理论设计的,根据这一理论,四个箭翼2位于箭体1的中间部分,四个格栅式控制面位于尾段。箭翼2和控制面3绕箭体中心线按一定距离间隔分布在箭体1上。在控制面3的根部有配装口30,利用配装口将控制面与控制驱动轴连接。
为改善火箭的空气动力特性,箭体1、箭翼2和控制面3的尺寸比例按下面选择。Sw=2Sw/SM=3~11;     Sp=2Sp/SM=1.5~3;Hp/Lp=0.3~0.55;tp=t/b=0.6~1;          n=Hp/t+1=3~5;Sp=NLPb;              λw=L2/2Sw=0.2~0.5;λk=Lk/Deq=16~20; D eq = 4 S M / π 式中Sw--箭翼面积;
Figure C9619470600192
--箭翼的比面积;
Figure C9619470600193
--格栅式控制面的比面积:
SM--火箭中间截面积;
Hp--格栅式控制面的高度;
Sp--格栅式控制面的升力面面积;
Lp--格栅式控制面的翼展;
λw--箭翼伸长:
L--箭翼翼展;
λk--火箭箭体伸长;
Lk--火箭长度;
t--格栅式控制面翼面节距:
Deq--面积等于火箭中间截面积的圆的直径:
b--格栅式控制面的翼面宽度:
Figure C9619470600194
--格栅式控制面的翼面比节距;
n--格栅式控制面的翼数量。
一种可选择的火箭设计是派生型的,这种设计的火箭的下列参数均在上面所规定的比例范围中。
S W ‾ = 5.1 S P ‾ = 2.2 ;Hp/Lp=0.45; t p ‾ = 0.9 ;n=4;λw=0.305;λk=18
这些参效比例提出了火箭可能的最佳设计方案之一,它可使阻力和法向力系数保持在一定限度内,并且机动性良好。
箭翼长度较短因而总的横向尺寸也较小的火箭可用于大冲角的飞行。从空气动力学观点来看,这种形状结构具有下述明显特点:
--具有交叉连接:
--在控制面上具有大的局部冲角。
在一定限度范围内选择格栅式控制面、箭翼和箭体尺寸比例可以减小或消除一些技术难题(或这些难题的一部分)。
以大冲角(α≈40°)飞行可在各种火箭结构中确保侧向g-载荷在很高的程度。
我们知道,侧向g-载荷的值正比于火箭的法向力数值,可由下式确定:
Y=CyqS
式中:Cy--火箭法向力系数;
       q--速度头,[kg/m2];
      S--特征尺寸,[m2]
火箭飞行射程的数值与火箭阻力成反比,可由下式计算:
  Y=CxqS
式中:Cx-火箭阻力系数。
图19-22为Cx,Cy与本发明的火箭和格栅式控制面参数间的相关关系。具有本发明的尺寸比例的火箭以最小的阻力系数提供了最高的机动性能。
所提出的参数(阴影部分)是根据不同几何尺寸火箭在风洞中进行的系统研究的结果确定的,并经飞行试验结果所证实。
超出了本发明的参数界限,由于法向力系数显著减小和阻力系数增大,火箭的机动性会大大下降。
因此具有本发明尺寸比例的火箭在其所有应用范围内,在冲角αmax=40.45°最大许可g-载荷达到nymax≈50时,均具有很高的空气动力性能。
图19-22中的图形曲线证实了根据标准空气动力学设计的箭翼,控制面和箭体在一个尺寸比例范围内所达到的高度机动性能。

Claims (13)

1.一种带有格栅式控制面的火箭,包括位于箭体(1)内的推进系统、控制和引导系统装置、控制系统的格栅式控制面(3)和固定箭翼(2),格栅式控制面(3)围绕箭体(1)中心线以一定距离间隔装在箭体上并有由翼面(9)形成的升力面,其特征在于,引导系统的格栅式控制面(3)和箭翼(2)及箭体(1)的制造是按下列尺寸比例:Sw=2Sw/SM=3~11;     Sp=2Sp/SM=1.5~3;  Hp/Lp=0.3~0.55; t p ‾ = t / b = 0.6 ~ 1 ;                         n=Hp/t+1=3~5;Sp=NLpb;              λw=L2/2Sw=0.2~0.5;λk=Lk/Deq=1620; D eq = 4 S M / π 式中Sw--箭翼面积;--箭翼的比面积;
Figure C9619470600024
 --格栅式控制面的比面积;SM--火箭中间截面积;Hp--格栅式控制面的高度;Sp--格栅式控制面的升力面面积;Lp--格栅式控制面的翼展;λw--箭翼伸长;L--箭翼的翼展;λk--火箭箭体伸长;Lk--火箭长度;t--格栅式控制面翼面节距;Deq--面积等于火箭中间截面积的圆的直径;    b--格栅式控制面的翼面宽度;
Figure C9619470600031
--格栅式控制面的翼面比节距:n--格栅式控制面的翼数量。
2.根据权利要求1所述的带格栅式控制面的火箭,其特征在于,火箭带有控制面展开装置、在展开状态和收拢状态下的控制面固定装置及与控制面展开装置配用的烟火式蓄压器,格栅式控制面(3)设有带槽销轴(8)可将控制面(3)固定在收拢状态,在火箭箭体(1)上加工出与控制面销轴(8)相配的孔,在控制面(3)的根部加工出装配孔,每个控制面展开装置包括位于箭体(1)内的气缸(15)、活塞下方与烟火式蓄压器相连的腔体、控制面(3)展开时由弹簧(16)的压力固定在行程端部位置上的活塞以及固定在控制面驱动轴端(5)前部且两端装在控制面(3)根部对应装配孔中的杆(4),每个在展开状态下固定控制面的装置结构为装设在控制表面驱动轴端(5)后部受弹簧(7)压力作用的杆(6),它可与控制面(3)根部的对应装配孔配合,每个在收拢状态下固定控制面的装置结构为装在箭体(1)上的轴(12)上、受弹簧(10)压力作用的夹持剪(11),在控制面(3)处于收拢状态时它可与控制面(3)的销轴(8)配合,在控制面(3)处于展开状态时它可与气缸(15)的活塞杆(17)配合,在控制面(3)处于展开状态时杆(17)的长度应能封堵住箭体(1)的开孔。
3.根据权利要求2所述的火箭,其特征在于,每个控制面(3)的销轴(8)装在对应的格栅式控制面(3)的重心部位的交叉翼(9)处。
4.根据权利要求3所述的火箭,其特征在于,每个控制面(3)的销轴(8)的长度可使火箭箭体(1)和对应的格栅式控制面(3)之间形成间隙。
5.根据权利要求2所述的火箭,其特征在于,每个气缸(15)的活塞杆(17)带有槽,以便在格栅式控制面(3)处于展开状态时利用夹持剪(11)将其固定。
6.根据权利要求1所述的火箭,其特征在于,火箭的格栅式控制面包括带有侧板(18,19)、根翼(22)、顶翼(23)及格栅式控制面(3)与驱动轴连接装置的矩形承载构架和一组不同厚度、位于构架中形成蜂窝状格栅的翼(24,25),构架侧板(18,19)的厚度是均匀变小的,其根翼(22)和顶翼(23)具有不同厚度,沿控制面翼展方向从根部到顶部变小,格栅的翼(24,25)的厚度在沿控制面翼展方向上从根部到顶部均匀地或不连续地减薄。
7.根据权利要求6所述的火箭,其特征在于,格栅的翼的结构形式为,将预先弯制的若干行厚度各不相同的W型板连接在一起,板的厚度在沿控制面的翼展向其顶部方向上均匀地或不连续地减薄,板的两端与构架侧板(18,19)的内表面相接,通过每行W型板原始顶点的直线与构架根翼(22)平行。
8.根据权利要求7所述的火箭,其特征在于,在W型板彼此连接区域的W型板相配合的顶点处有基面。
9.根据权利要求7或8所述的火箭,其特征在于,W型板是用焊接或钎焊的方法彼此连接在一起并连接至构架而形成一体化的结构。
10.根据权利要求6或7所述的火箭,其特征在于,格栅的翼(24,25)和构架侧板(18,19)的形式为前后缘修尖的楔形。
11.根据权利要求10所述的火箭,其特征在于,格栅的翼(24,25)的缘修尖是对称的。
12.根据权利要求6所述的火箭,其特征在于,控制面与驱动轴的连接装置位于构架根翼(22)的中部,是由构架侧板(18,19)的弯折部分(20,21)形成,并通过承载支架(26)彼此连接并同根翼(22)连接。
13.根据权利要求12所述的火箭,其特征在于,承载支架(26)是由形部分和角钢形部分连接而成,形部分的支板与构架侧板(18,19)的弯折部分(20,21)相连接形成配接口,角钢型部分的顶点与构架的根翼连接,并设有用于控制面(3)与控制驱动轴连接的通孔。
CN96194706A 1995-05-11 1996-04-29 带格栅式控制面的火箭 Expired - Fee Related CN1073040C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
RU95107199 1995-05-11
RU95107195 1995-05-11
RU95107195/11A RU2085440C1 (ru) 1995-05-11 1995-05-11 Решетчатая аэродинамическая поверхность
RU95107199/11A RU2085826C1 (ru) 1995-05-11 1995-05-11 Ракета
RU95107196 1995-05-11
RU95107196/11A RU2085825C1 (ru) 1995-05-11 1995-05-11 Ракета с нормальной аэродинамической схемой

Publications (2)

Publication Number Publication Date
CN1187794A CN1187794A (zh) 1998-07-15
CN1073040C true CN1073040C (zh) 2001-10-17

Family

ID=27354155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96194706A Expired - Fee Related CN1073040C (zh) 1995-05-11 1996-04-29 带格栅式控制面的火箭

Country Status (5)

Country Link
US (1) US6073879A (zh)
EP (1) EP0829424B1 (zh)
CN (1) CN1073040C (zh)
DE (1) DE69627322T2 (zh)
WO (1) WO1996035613A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564220B2 (en) 2000-09-21 2009-07-21 O2Micro International Ltd. Method and electronic circuit for efficient battery wake up charging
ATE519672T1 (de) 2004-06-01 2011-08-15 Deutsch Zentr Luft & Raumfahrt Trag- oder leitelement
US7429017B2 (en) * 2005-07-21 2008-09-30 Raytheon Company Ejectable aerodynamic stability and control
US7854410B2 (en) * 2006-05-15 2010-12-21 Kazak Composites, Incorporated Powered unmanned aerial vehicle
US7800032B1 (en) * 2006-11-30 2010-09-21 Raytheon Company Detachable aerodynamic missile stabilizing system
US8438977B2 (en) * 2008-12-25 2013-05-14 Lockheed Martin Corporation Projectile having deployable fin
CN106800085B (zh) * 2009-09-09 2020-08-18 威罗门飞行公司 升降副翼控制系统
CN105730678B (zh) * 2016-02-18 2018-01-30 江西洪都航空工业集团有限责任公司 一种可折叠式格栅舵面
CN108216574A (zh) * 2017-12-21 2018-06-29 北京有色金属研究总院 一种梯度结构栅格翼
CN108163134B (zh) * 2017-12-29 2020-07-24 南京理工大学 用于超空泡水下航行体的自动触发式格栅尾翼结构
CN109454352B (zh) * 2018-11-30 2021-03-02 上海航天精密机械研究所 弧面格栅结构及其制备方法
CN110260726B (zh) * 2019-05-28 2021-09-03 上海宇航系统工程研究所 一种栅格舵装置
CN110979741B (zh) * 2019-11-25 2021-02-09 北京宇航系统工程研究所 一种基于落区控制的锯齿台阶型变剖面栅格舵结构
CN110906807B (zh) * 2019-12-13 2021-11-16 北京中科宇航探索技术有限公司 一种火箭用嵌入式气动控制舵面
CN111516909B (zh) * 2020-04-30 2022-02-25 北京星际荣耀空间科技股份有限公司 一种火箭姿态控制系统
CN111731467A (zh) * 2020-06-30 2020-10-02 北京星际荣耀空间科技有限公司 一种栅格舵和飞行器
CN113247238B (zh) * 2021-06-24 2022-04-26 湖北三江航天红阳机电有限公司 一种格栅翼及飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846165A (en) * 1956-06-25 1958-08-05 John A Axelson Aircraft control system
US3064930A (en) * 1959-09-08 1962-11-20 Nord Aviation Roll control surfaces
FR2019833A1 (zh) * 1968-10-03 1970-07-10 Messerschmitt Boelkow Blohm
FR2109502A1 (zh) * 1970-10-28 1972-05-26 Europ Propulsion
FR2468503A1 (fr) * 1979-11-06 1981-05-08 Messerschmitt Boelkow Blohm Aile pour avions a grande vitesse concue de facon a diminuer la resistance induite

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047259A (en) * 1959-11-25 1962-07-31 George J Tatnall Speed brake retarding mechanism for an air-dropped store
FR2221707B1 (zh) * 1973-03-14 1976-04-30 France Etat
US4560121A (en) * 1983-05-17 1985-12-24 The Garrett Corporation Stabilization of automotive vehicle
IL72000A (en) * 1984-06-04 1989-09-10 Israel State Projectile stabilization system
DE3441534A1 (de) * 1984-11-14 1986-05-15 Diehl GmbH & Co, 8500 Nürnberg Lageranordnung fuer das ruderblatt eines flugkoerpers
US4884766A (en) * 1988-05-25 1989-12-05 The United States Of America As Represented By The Secretary Of The Air Force Automatic fin deployment mechanism
US5048773A (en) * 1990-06-08 1991-09-17 The United States Of America As Represented By The Secretary Of The Army Curved grid fin
DE4020897C2 (de) * 1990-06-30 1993-11-11 Diehl Gmbh & Co Einrichtung zum Entriegeln und Ausschwenken der Ruderblätter eines Projektiles
US5192037A (en) * 1991-08-23 1993-03-09 Mcdonnell Douglas Corporation Double-pivoting deployment system for aerosurfaces
IL107844A (en) * 1993-12-02 1996-06-18 Ministry Of Defence Armaments Flying object control system
US5549065A (en) * 1995-03-27 1996-08-27 The United States Of America As Represented By The Secretary Of The Navy Water vehicle and a directional control device therefor
US5551364A (en) * 1995-03-27 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Underwater vehicle and combination directional control and cable interconnect device
US5642867A (en) * 1995-06-06 1997-07-01 Hughes Missile Systems Company Aerodynamic lifting and control surface and control system using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846165A (en) * 1956-06-25 1958-08-05 John A Axelson Aircraft control system
US3064930A (en) * 1959-09-08 1962-11-20 Nord Aviation Roll control surfaces
FR2019833A1 (zh) * 1968-10-03 1970-07-10 Messerschmitt Boelkow Blohm
FR2109502A1 (zh) * 1970-10-28 1972-05-26 Europ Propulsion
FR2468503A1 (fr) * 1979-11-06 1981-05-08 Messerschmitt Boelkow Blohm Aile pour avions a grande vitesse concue de facon a diminuer la resistance induite

Also Published As

Publication number Publication date
CN1187794A (zh) 1998-07-15
EP0829424A1 (en) 1998-03-18
EP0829424B1 (en) 2003-04-09
DE69627322D1 (de) 2003-05-15
EP0829424A4 (en) 1999-05-19
WO1996035613A1 (fr) 1996-11-14
US6073879A (en) 2000-06-13
DE69627322T2 (de) 2004-02-12

Similar Documents

Publication Publication Date Title
CN1073040C (zh) 带格栅式控制面的火箭
CN102458988B (zh) 具有λ盒状机翼结构的飞行器
US6935242B2 (en) Methods and apparatus for increasing aerodynamic performance of projectiles
WO2014044564A1 (de) Antriebssystem für flugzeuge, insbesondere leichtflugzeug
US20100025543A1 (en) Methods and apparatus for transforming unmanned aerial vehicle
WO2010099228A1 (en) Bidirectional control surfaces for use with high speed vehicles, and associated systems and methods
EP0920948A3 (en) Friction welding of aluminium alloy hollow members
JP6732471B2 (ja) 翼及びローターブレード構造体で使用するための熱可塑性トラス構造体、並びにその製造方法
US20070215751A1 (en) Asymmetrical VTOL UAV
CN1429165A (zh) 液氢同温层飞机
US10766626B2 (en) Single-piece extended laminar flow inlet lipskin
US11020815B2 (en) Single-piece extended laminar flow inlet lipskin
CN103569356B (zh) 翼形尾梁
JP3740103B2 (ja) ピーン成形方法及びピーン成形装置
US20090224102A1 (en) Aircraft Wing and Fuselage Structure
US20210147071A1 (en) Wing tips and wing tip construction and design methods
EP3406750A1 (en) Single-piece extended laminar flow inlet lipskin
US7150232B1 (en) Methods and apparatus for increasing aerodynamic performance of projectiles
JP2024023879A (ja) 飛行体
EP0202324A1 (en) Graduated aircraft design and construction method
CA2430107C (en) Spanwise tailoring of divergent trailing edge wings
CN102333695A (zh) 模型旋翼飞机的旋翼叶片以及制造旋翼叶片的方法
CA2431383C (en) Spanwise tailoring of a trailing edge wedge to a wing
USH159H (en) Shaped trajectory cruise missile launch mode
CN1720167A (zh) 开缝的飞行器机翼

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20011017

Termination date: 20150429

EXPY Termination of patent right or utility model