CN107301292A - A kind of design method of the submissive diameter changing mechanism of diameter-variable wheel - Google Patents

A kind of design method of the submissive diameter changing mechanism of diameter-variable wheel Download PDF

Info

Publication number
CN107301292A
CN107301292A CN201710480670.1A CN201710480670A CN107301292A CN 107301292 A CN107301292 A CN 107301292A CN 201710480670 A CN201710480670 A CN 201710480670A CN 107301292 A CN107301292 A CN 107301292A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
diameter
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710480670.1A
Other languages
Chinese (zh)
Other versions
CN107301292B (en
Inventor
高峰
曾文
姜惠
刘本勇
张彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710480670.1A priority Critical patent/CN107301292B/en
Publication of CN107301292A publication Critical patent/CN107301292A/en
Application granted granted Critical
Publication of CN107301292B publication Critical patent/CN107301292B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Prostheses (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

The invention discloses a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel, belong to mechanism design field.It is characterized in that mainly using following steps:(1) diameter changing mechanism design variable and the kinematic geometry relation between them are determined;(2) constraints of diameter changing mechanism design variable is determined;(3) determine diameter changing mechanism design object and set up its optimized mathematical model;(4) nonlinear constrained programming is solved using interior point method, obtains mechanism dimensions.Beneficial effects of the present invention:Design can be optimized to submissive diameter changing mechanism dimensional parameters, according to diameter-variable wheel to opening and closing up the requirement of extreme position to realize the wheel diameter variation of diameter-variable wheel;Theoretical foundation can be provided using the kinematic geometry relation equation of this method for the control of diameter-variable wheel wheel diameter variation;This method shortens the R&D cycle of the mechanism, reduces design and manufacture cost, with higher practical value.

Description

A kind of design method of the submissive diameter changing mechanism of diameter-variable wheel
Technical field
The present invention relates to a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel, belong to mechanism design field.
Background technology
The submissive diameter changing mechanism is primarily to realize the diameter change of diameter-variable wheel, and current this mechanism is applied to one Plant new type lunar rover diameter-variable wheel and new mobile platform diameter-variable wheels of dwelling more.Due to submissive diameter changing mechanism rely primarily on it is soft Deformation along hinge produces the problems such as motion, Wear, lubrication, sealing, makes portable construction compact.Such as Publication No. CN 101503044 application for a patent for invention discloses a kind of machine liquid linkage reducing wheel carrier suitable for diameter-variable wheel, but this Diameter changing mechanism does not have a system, the design method of science, is mostly rule of thumb to be designed with experiment, hinders this kind The further application and popularization of mechanism and diameter-variable wheel.
The content of the invention
For above-mentioned problem, the present invention proposes a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel, Be it is a kind of it is convenient it is reliable can according to different wheel diameter variations require determine mechanism dimensions submissive diameter changing mechanism optimization design Method.
The technical solution adopted by the present invention is to carry out according to the following steps successively:
Step 1: determining diameter changing mechanism design variable and the kinematic geometry relation between them;
Sub-step 1:Being capable of holding structure stability (spoke bar keeps isosceles-trapezium-shaped), root assuming that taking turns leg during reducing The geometrical relationship of two extreme positions is opened and closed up according to diameter-variable wheel, and the projection by horizontal direction is equal to be obtained:
Sub-step 2:Formula (1) is subtracted each other with formula (2) and obtained:
It can must then connect wheel hub and the spoke pole length of caster is:
Sub-step 3:Formula (4) is substituted into formula (1), can obtain clipping room of the spoke bar on caster away from for:
Sub-step 4:To sum up sub-step 1 is to step 3, it may be determined that design variable is:
X=[x1, x2, x3, x4, x5]=[θ1, β1, β2, Dcq, θ2] (6)
Wherein β2Angle during wheel footpath maximum for same wheel leg between the spoke bar of both sides, the angle in minimum wheel diameter is β1; θ2Central angle folded by mount point and core wheel of the both sides spoke bar in gear ring during wheel footpath maximum for same wheel leg, in minimum wheel diameter Central angle be θ1, DcqFor hub diameter.
Step 2: determining the constraints of diameter changing mechanism design variable;
Edge-restraint condition:
90 ° of < θ1180 ° of < (7)
0 ° of < β190 ° of < (8)
0 ° of < β290 ° of < (9)
0 < l (10)
0 < Dcq (11)
Installation interval constraint of the spoke bar on caster:
60 < sl< Dminsin30° (12)
Step 3: determining diameter changing mechanism design object and setting up its optimized mathematical model;
Sub-step 1:Arc caster outer rim midpoint to installed in caster spoke bar midpoint between radial distance:
Sub-step 2:When closing up extreme position, the actual radial displacement of caster outer rim central point:
Sub-step 3:When opening extreme position, the actual radial displacement of caster outer rim central point:
Sub-step 4:Object function f (θ1, β1, β2, Dcq, θ2) according to make the actual radial displacement of caster outer rim central point with Given radial displacement is set up opening and closing up the error mean square root minimum of two extreme positions, and its expression formula is:
Step 4: given initial value, solves the nonlinear constrained programming as optimized algorithm using interior point method, obtains machine Structure dimensional parameters.
Advantage of the present invention than prior art:
Currently for the design method of the submissive diameter changing mechanism of diameter-variable wheel, mainly rule of thumb, or repetition test is right After verify, then modify, finally determine the design parameter of the mechanism.Therefore, when the wheel diameter variation demand of diameter-variable wheel changes , it is necessary to change original mechanism parameter repeatedly during change, whole design process takes time and effort.Set using diameter changing mechanism proposed by the present invention Its structural parameters not only can be carried out rational optimization design by meter method according to diameter-variable wheel wheel diameter variation demand;Also may be used Theoretical direction is provided using the control of kinematic geometry relation equation as wheel diameter variation using this method;This method being capable of rapid and convenient Ground obtains optimal mechanism design parameter, with higher practical value.
Brief description of the drawings
Fig. 1 is a kind of design method operational flowchart of the submissive diameter changing mechanism of diameter-variable wheel of the present invention.
The kinematic geometry graph of a relation of Fig. 2 a, b for submissive diameter changing mechanism of the invention when opening (Fig. 2 a) and closing up (Fig. 2 b).
The geometry of Fig. 3 a, b for the single wheel leg of submissive diameter changing mechanism of the invention when opening (Fig. 3 a) and closing up (Fig. 3 b) Graph of a relation.
Embodiment
For a better understanding of the present invention, it is further detailed with reference to example:
The present invention a kind of submissive diameter changing mechanism of diameter-variable wheel design method, its operating process as shown in figure 1, including Following steps:
Step 1: determining diameter changing mechanism design variable and the kinematic geometry relation between them;
Sub-step 1:Assuming that taken turns during reducing leg can holding structure stability (spoke bar keep isosceles-trapezium-shaped), such as Fig. 2 a, b, shown in Fig. 3 a, b, open and close up the geometrical relationship of two extreme positions, by horizontal direction according to diameter-variable wheel Projection is equal to be obtained:
Sub-step 2:Formula (1) is subtracted each other with formula (2) and obtained:
It can must then connect wheel hub and the spoke pole length of caster is:
Sub-step 3:Formula (4) is substituted into formula (1), can obtain clipping room of the spoke bar on caster away from for:
Sub-step 4:To sum up sub-step 1 is to step 3, it may be determined that design variable is:
X=[x1, x2, x3, x4, x5]=[θ1, β1, β2, Dcq, θ2] (6)
Such as Fig. 2 a, b, shown in Fig. 3 a, b, wherein β2Angle during wheel footpath maximum for same wheel leg between the spoke bar of both sides, in minimum Angle during wheel diameter is β1;θ2Circle folded by mount point and core wheel of the both sides spoke bar in gear ring during wheel footpath maximum for same wheel leg Heart angle, the central angle in minimum wheel diameter is θ1, DcqFor hub diameter.
Step 2: determining the constraints of diameter changing mechanism design variable;
Edge-restraint condition:
90 ° of < θ1180 ° of < (7)
0 ° of < β190 ° of < (8)
0 ° of < β290 ° of < (9)
0 < l (10)
0 < Dcq (11)
Installation interval constraint of the spoke bar on caster:
60 < sl< Dmin sin 30° (12)
Step 3: determining diameter changing mechanism design object and setting up its optimized mathematical model;
Such as Fig. 2 a, b, shown in Fig. 3 a, b, the diameter-variable wheel with six wheel legs is given, it is desirable to minimum diameter when closing up DminFor 240mm, maximum dimension D when openingmaxFor 400mm.
Sub-step 1:Arc caster outer rim midpoint to installed in caster spoke bar midpoint between radial distance:
Sub-step 2:When closing up extreme position, the actual radial displacement of caster outer rim central point:
Sub-step 3:When opening extreme position, the actual radial displacement of caster outer rim central point:
Sub-step 4:Object function f (θ1, β1, β2, Dcq, θ2) according to make the actual radial displacement of caster outer rim central point with Given radial displacement is set up opening and closing up the error mean square root minimum of two extreme positions, and its expression formula is:
Step 4: given initial value X=[θ1, β1, β2, Dcq, θ2120 ° of]=[, 60 ° 40 °, 150,90 °], made using interior point method The nonlinear constrained programming is solved for optimized algorithm, mechanism dimensions are obtained;Such as table 1 below:
Table 1.

Claims (4)

1. a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel, it is characterised in that:This method comprises the following steps:
Step 1: determining diameter changing mechanism design variable and the kinematic geometry relation between them;
Step 2: determining the constraints of diameter changing mechanism design variable;
Step 3: determining diameter changing mechanism design object and setting up its optimized mathematical model;
Step 4: given initial value, solves the nonlinear constrained programming as optimized algorithm using interior point method, obtains mechanism chi Very little parameter.
2. a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel according to claim 1, it is characterised in that:It is described Step one specifically includes following sub-step:
Sub-step 1:Assuming that taken turns during reducing leg can holding structure stability, opened according to diameter-variable wheel and close up two The geometrical relationship of extreme position, projection by horizontal direction is equal to be obtained:
<mrow> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>l</mi> <mo>&amp;times;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>s</mi> <mi>l</mi> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>l</mi> <mo>&amp;times;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>s</mi> <mi>l</mi> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 2:Formula (1) is subtracted each other with formula (2) and obtained:
<mrow> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mo>&amp;lsqb;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mi>l</mi> <mo>&amp;times;</mo> <mo>&amp;lsqb;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
It can must then connect wheel hub and the spoke pole length of caster is:
<mrow> <mi>l</mi> <mo>=</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 3:Formula (4) is substituted into formula (1), can obtain clipping room of the spoke bar on caster away from for:
<mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mo>&amp;times;</mo> <mrow> <mo>{</mo> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mo>&amp;times;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 4:To sum up sub-step 1 is to step 3, it may be determined that design variable is:
X=[x1, x2, x3, x4, x5]=[θ1, β1, β2, Dcq, θ2] (6)
Wherein β2Angle during wheel footpath maximum for same wheel leg between the spoke bar of both sides, the angle in minimum wheel diameter is β1;θ2For Central angle, the circle in minimum wheel diameter folded by mount point and core wheel of the both sides spoke bar in gear ring during same wheel leg maximum wheel footpath Heart angle is θ1, DcqFor hub diameter.
3. a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel according to claim 1, it is characterised in that:It is described Step 2 is specific as follows:
Edge-restraint condition:
90 ° of < θ1180 ° of < (7)
0 ° of < β190 ° of < (8)
0 ° of < β290 ° of < (9)
0 < l (10)
0 < Dcq (11)
Installation interval constraint of the spoke bar on caster:
60 < sl< Dminsin30° (12)。
4. a kind of design method of the submissive diameter changing mechanism of diameter-variable wheel according to claim 1, it is characterised in that:It is described Step 3 specifically includes following sub-step:
Sub-step 1:Arc caster outer rim midpoint to installed in caster spoke bar midpoint between radial distance:
<mrow> <msub> <mi>s</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>s</mi> <mi>l</mi> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 2:When closing up extreme position, the actual radial displacement of caster outer rim central point:
<mrow> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>l</mi> <mo>&amp;times;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>s</mi> <mi>p</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 3:When opening extreme position, the actual radial displacement of caster outer rim central point:
<mrow> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>l</mi> <mo>&amp;times;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>c</mi> <mi>q</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>s</mi> <mi>p</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Sub-step 4:Object function f (θ1, β1, β2, Dcq, θ2) according to make the actual radial displacement of caster outer rim central point with it is given Radial displacement is set up opening and closing up the error mean square root minimum of two extreme positions, and its expression formula is:
<mrow> <mi>min</mi> <mi> </mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 2
CN201710480670.1A 2017-06-22 2017-06-22 Design method of flexible reducing mechanism of variable-diameter wheel Active CN107301292B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710480670.1A CN107301292B (en) 2017-06-22 2017-06-22 Design method of flexible reducing mechanism of variable-diameter wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710480670.1A CN107301292B (en) 2017-06-22 2017-06-22 Design method of flexible reducing mechanism of variable-diameter wheel

Publications (2)

Publication Number Publication Date
CN107301292A true CN107301292A (en) 2017-10-27
CN107301292B CN107301292B (en) 2020-09-22

Family

ID=60135961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710480670.1A Active CN107301292B (en) 2017-06-22 2017-06-22 Design method of flexible reducing mechanism of variable-diameter wheel

Country Status (1)

Country Link
CN (1) CN107301292B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117171863A (en) * 2023-11-02 2023-12-05 长江勘测规划设计研究有限责任公司 Design method of variable-diameter type water delivery tunnel for reducing large deformation of soft rock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486295B (en) * 2009-02-11 2010-08-18 北京航空航天大学 Reducing mechanism for diameter variable wheel
CN101954834A (en) * 2010-08-05 2011-01-26 北京航空航天大学 Combined spring variable-diameter wheel carrier for variable-diameter wheel
CN103921786A (en) * 2014-04-11 2014-07-16 北京工业大学 Nonlinear model prediction control method of regenerative braking of electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486295B (en) * 2009-02-11 2010-08-18 北京航空航天大学 Reducing mechanism for diameter variable wheel
CN101954834A (en) * 2010-08-05 2011-01-26 北京航空航天大学 Combined spring variable-diameter wheel carrier for variable-diameter wheel
CN103921786A (en) * 2014-04-11 2014-07-16 北京工业大学 Nonlinear model prediction control method of regenerative braking of electric vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN GANG 等: "Mobility performance analysis of an innovation lunar rover with diameter-variable wheel", 《SECOND INTERNATIONAL CONFERENCE ON SPACE INFORMATION TECHNOLOGY》 *
崔莹 等: "可变直径轮月球探测车运动学建模与分析", 《北京航空航天大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117171863A (en) * 2023-11-02 2023-12-05 长江勘测规划设计研究有限责任公司 Design method of variable-diameter type water delivery tunnel for reducing large deformation of soft rock
CN117171863B (en) * 2023-11-02 2024-02-13 长江勘测规划设计研究有限责任公司 Design method of variable-diameter type water delivery tunnel for reducing large deformation of soft rock

Also Published As

Publication number Publication date
CN107301292B (en) 2020-09-22

Similar Documents

Publication Publication Date Title
CN103281083B (en) Approach by inchmeal fully differential analog-digital converter with figure adjustment and processing method thereof
CN103076743B (en) Tension fuzzy PID (Proportion Integration Differentiation) control method for recoiling machine
CN104765350B (en) Cement decomposing furnace control method and system based on Combined model forecast control technology
CN102411304A (en) Optimization method of spacecraft small-angle attitude maneuver control parameters
CN107301292A (en) A kind of design method of the submissive diameter changing mechanism of diameter-variable wheel
CN102733311A (en) Line shape control method for short line method segment prefabrication construction
CN109782759B (en) Approximate decoupling and rapid track following control method of wheeled mobile robot
CN109214093A (en) The restorative procedure of the recessed cusp design defect of N leaf non-circular gear pitch curve
CN106655226A (en) Active power distribution network asymmetric operation optimization method based on intelligent soft open point
CN108511908A (en) A kind of satellite antenna automatic following control system and method inhibiting function with phase
CN110103740A (en) A kind of control method of the wireless dynamic charging system of electric car
CN103411628B (en) A kind of disposal route of MEMS gyro instrument Random Drift Error
CN104298834A (en) Object oriented technology-based direct current system modeling method and fault simulation method
CN207256090U (en) Air passage coaming plate detent mechanism and wind channel ring clamping apparatus
CN103474774B (en) A kind of antenna for base station lower decline angle adjusting apparatus and method
CN106127348A (en) A kind of multi-reservoir joint optimal operation feasible decision space discrimination method
CN205518368U (en) Five flush coaters
CN102497209B (en) Sliding window type data sampling method and device
CN103995469A (en) Method for designing controller of non-minimum-phase constant-temperature continuous stirred tank reactor
CN204195116U (en) Numerical control automatic welding platform
CN107703899B (en) A kind of catalyst hybrid reaction control device based on empirical mode decomposition dynamic optimization
CN103777994B (en) Heavy truck double-front-axle steering optimization method
CN208654613U (en) A kind of bamboo coiled composite tube road Winding machine control system
CN107256305A (en) A kind of method for determining the vehicle steering knuckle radius of gyration
CN109815636B (en) Cement paste rheological iterative algorithm for rotary viscometer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant