CN107300370A - 测距扫描传感器的测量调整方法 - Google Patents

测距扫描传感器的测量调整方法 Download PDF

Info

Publication number
CN107300370A
CN107300370A CN201610235280.3A CN201610235280A CN107300370A CN 107300370 A CN107300370 A CN 107300370A CN 201610235280 A CN201610235280 A CN 201610235280A CN 107300370 A CN107300370 A CN 107300370A
Authority
CN
China
Prior art keywords
adjustment
measurement
scanning
scanning angle
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610235280.3A
Other languages
English (en)
Other versions
CN107300370B (zh
Inventor
汤进举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecovacs Robotics Suzhou Co Ltd
Original Assignee
Ecovacs Robotics Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecovacs Robotics Suzhou Co Ltd filed Critical Ecovacs Robotics Suzhou Co Ltd
Priority to CN201610235280.3A priority Critical patent/CN107300370B/zh
Publication of CN107300370A publication Critical patent/CN107300370A/zh
Application granted granted Critical
Publication of CN107300370B publication Critical patent/CN107300370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距扫描传感器的测量调整方法,包括如下步骤:步骤100:以扫描角度(1)进行距离测量,并计算相邻两次距离测量之间的实际分辨长度(c);步骤200:根据实际分辨长度(c)判断是否需要调整扫描角度,如果是,则将按照调整后的扫描角度进行下一次测量,否则,继续进行下一次测量;步骤300:重复执行步骤100至步骤200,据此往复调整,直至扫描结束。本发明解决了传感器在测量范围内的数据点密度不均匀,且在较远距离上的数据点较少的问题,使得后续的建图以及导航算法更加可靠;简单实用,安全有效。

Description

测距扫描传感器的测量调整方法
技术领域
本发明涉及一种测距扫描传感器的测量调整方法,属于小家电制造技术领域。
背景技术
传统的测距传感器通过旋转的动作获得环境360°的距离信息,通常该类测距传感器是以单点测量为基础,通过电机带动传感器组件旋转,配合预先设置的单位角度信息,即可获得360°范围内的离散一圈的距离信息。由于传感器的测程具有一定的范围,即:根据传感器的系统设计由最近到最远的动态范围。但是通过现有测距传感器扫描环境信息存在很大的缺陷。图1为现有测距传感器扫描存在的缺陷的示意图。如图1所示,根据数学原理可知,若传感器100设置固定的扫描角度α,则近距离两个测量点之间的距离L1较小,远距离两点之间的距离L4较大。因此,对于360°的平面环境中,相对于扫描中心较远处的扫描分辨长度将会远大于较近处的扫描分辨长度,从而导致远处环境信息很不准确,容易产生误判。
另外,图2为现有技术CN204679638U的示意图。如图2所示,该实用新型专利公开了一种可变扫描分辨率的测距传感器,通过在不同角度区域内采用不同发光频率发光,实现区域范围内变分辨率扫描,以解决路面边界区域或者特殊区域扫描点数过少的问题,从而提高边界识别的精度及准确度。但是,该技术方案的区域的划分依据当前扫描位置的角度信息来确定,对于测距传感器与扫描边界之间的位置关系不确定的情况下,无法根据测距传感器的旋转角度调整分辨率去确保不会出现局部扫描分辨率过低的情况。
因此,有必要寻求一种新的通过测距仪扫描边界的解决方案,以避免扫描分辨率分布不均。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种测距扫描传感器的测量调整方法,解决了传感器在测量范围内的数据点密度不均匀,且在较远距离上的数据点较少的问题,使得后续的建图以及导航算法更加有效和可靠。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种测距扫描传感器的测量调整方法,包括如下步骤:
步骤100:以扫描角度1进行距离测量,并计算相邻两次距离测量之间的实际分辨长度c;
步骤200:根据实际分辨长度c判断是否需要调整扫描角度,如果是,则将按照调整后的扫描角度进行下一次测量,否则,继续进行下一次测量;
步骤300:重复执行步骤100至步骤200,据此往复调整,直至扫描结束。
为了有效判断是否需要调整扫描角度,所述步骤100之前还包括有:步骤001:在分辨精度的范围内设定实际分辨长度的上限阈值TH和下限阈值TL;则:
步骤200具体包括:将实际分辨长度c的大小与上限阈值TH和下限阈值TL进行比较,如果TL≤c≤TH,则保持扫描角度1作为下一次测量的扫描角度4;否则,对扫描角度进行调整,并将调整后的扫描角度作为下一次测量的扫描角度4。
进一步地,步骤100具体包括:以扫描角度1旋转扫描,得到相邻两次扫描的第一距离a和第二距离b,通过余弦公式得到前述相邻两次扫描的实际分辨长度c。
更具体地,所述步骤200中对扫描角度进行调整的过程进一步包括:
步骤210:将步骤100中相邻两次扫描的第一落点设为点A及第二落点设为点B,以与直线AB相交于点C限制待调整的下一次所述测距传感器的测量路径;
步骤220:限定点C与第二落点点B的距离为d,且d=(TL+TH)/2;
步骤230:根据已知信息计算出调整后的扫描角度的大小,并将调整后的扫描角度作为下一次测量的扫描角度4。
所述步骤230中的已知信息包括:扫描角度、相邻两次扫描的第一距离a和第二距离b及点B与点C之间的距离d。
另外,所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测量的频率,保持现有的测距仪的转速,将扫描角度转换为测量的频率来实现调整。
所述调整测量的频率来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将测量频率调整为1秒2n次,即:m*360(度/秒)/2n(次/秒)=m*180/n(度/次)。
除此之外,所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测距仪的转速,保持现有发射频率,将扫描角度转换为测距仪转速来实现调整。
所述调整测距仪的转速来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将转速变成1秒m/2圈,即:(m/2)*360(度/秒)/n(次/秒)=m*180/n(度/次)。
本发明还提供一种测距扫描传感器的测量调整方法,包括如下步骤:
步骤1000:预设扫描精度范围的上限阈值TH和下限阈值TL;
步骤2000:设定扫描测距器的多个档位测量频率;
步骤3000:根据以初始测量频率测量获得的相邻两次的测量距离及测量角度计算出实际扫描分辨长度,判断所述实际扫描分辨长度与预设扫描精度范围的上限阈值TH和下限阈值TL之间的关系;
步骤4000:根据步骤3000的比较结果调整所述测距扫描传感器的测量频率,并以调整后的测量频率进行下一次测量;
步骤5000:依此往复调整,直至扫描结束。
具体来说,步骤4000进一步包括:
4001:如果该实际扫描分辨长度小于预设扫描精度范围,则将测量频率下调一个档位;
4002:如果该实际扫描分辨长度大于预设扫描精度范围,则将测量频率上调一个档位;
4003:如果该实际扫描分辨长度在预设扫描精度范围内,则保持测量频率不变;
4004:以调整后的测量频率进行下一次测量。
综上所述,提供一种测距扫描传感器的测量调整方法,解决了传感器在测量范围内的数据点密度不均匀,且在较远距离上的数据点较少的问题,使得后续的建图以及导航算法更加有效和可靠。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为现有测距传感器扫描存在的缺陷的示意图;
图2为现有技术CN204679638U的示意图;
图3为本发明实施例一的工作原理示意图。
具体实施方式
实施例一
图3为本发明实施例一的工作原理示意图。如图3所示,本发明提供一种测距扫描传感器的测量调整方法。如背景技术中所述,如果测距仪为按照预设可变的扫描角度(分辨率)进行周期性测量,仍不能避免会在近距离处数据点过密,远距离处数据点过疏,而且对于处于陌生环境下的测距仪也无法制定所述可变的扫描角度调整方案,而本发明则解决了这个问题。具体来说,本发明提供一种测距扫描传感器的测量调整方法,包括如下步骤:步骤100:以扫描角度1进行距离测量,并计算相邻两次距离测量之间的实际分辨长度c;步骤200:根据实际分辨长度c判断是否需要调整扫描角度,如果是,则将按照调整后的扫描角度进行下一次测量,否则,继续进行下一次测量;步骤300:重复执行步骤100至步骤200,据此往复调整,直至扫描结束。需要说明的是,上述步骤100中的扫描角度1可以为一预设的角度。
为了准确判断是否需要调整扫描角度,所述步骤100之前还包括有:步骤001:在分辨精度的范围内设定实际分辨长度的上限阈值TH和下限阈值TL,分别为可分辨精度的最小值和最大值,来判断两次测距之间的分辨长度是否已经超出分辨精度。如图3所示:进一步地,步骤100具体包括:以扫描角度1旋转扫描,得到相邻两次扫描的第一距离a和第二距离b,通过余弦公式得到前述相邻两次扫描的实际分辨长度c。
步骤200具体包括:将实际分辨长度c的大小与上限阈值TH和下限阈值TL进行比较,如果TL≤c≤TH,则保持扫描角度1作为下一次测量的扫描角度4;否则,对扫描角度进行调整,并将调整后的扫描角度作为下一次测量的扫描角度4。
更具体地,所述步骤200中对扫描角度进行调整的过程进一步包括:
步骤210:将步骤100中相邻两次扫描的第一落点设为点A及第二落点设为点B,以与直线AB相交于点C限制待调整的下一次所述测距传感器的测量路径;
步骤220:限定点C与第二落点点B的距离为d,且d=(TL+TH)/2;
步骤230:根据已知信息计算出调整后的扫描角度的大小,并将调整后的扫描角度作为下一次测量的扫描角度4。
所述步骤230中的已知信息包括:扫描角度、相邻两次扫描的第一距离a和第二距离b及点B与点C之间的距离d。
具体地,对于优选的实施例中的下一次测量的扫描角度4的计算方式包括:首先,假定下一次测量的测量落点在图3所示的实际分辨长度c所在的线段的延长线上。其次,假设距离d为测量精度内的值,即TL和TH中间的某个值,TL≤d≤TH,例如:d=(TL+TH)/2。
由于以a,b,c为边的三角形已知,
第一辅助角度∠2也可通过余弦公式:
求得,第二辅助角度∠3=180°-∠2,通过已知的第二辅助角度∠3以及距离d:d=(TL+TH)/2和第二边b即可求得下一次扫描的扫描角度∠4。
但是需要注意的是,本发明旨在提供一种新的反馈机制,以避免出现测距扫描传感器的实际分辨长度过大或过小的问题,而以上计算下一次测量的扫描角度的方式仅是一种较佳的实施例,而不应以此来限制本发明的实现方式。而且根据对精度要求的不同,当需要调整当前扫描角度时,计算下一次测量的扫描角度的方式还可以为其他方式,比如按比例调整:不妨沿用上面的定义,相邻两次扫描的实际分辨长度为c,当前扫面角度为∠1,要求的实际分辨长度的阈值范围为[TL,TH],所述下一侧测量的扫描角度也可以为∠4=∠1*(TL+TH)/2c。
另外,需要注意的是,事实上,在实际操作中对扫描角度的大小的调节是很难控制的,理论上可以通过如下两种方式对扫描角度的大小进行间接调节:
所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测量的频率,保持现有的测距仪的转速,将扫描角度转换为测量的频率来实现调整。
举例来说,所述调整测量的频率来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将测量频率调整为1秒2n次,即:m*360(度/秒)/2n(次/秒)=m*180/n(度/次)。
也就是说,初始状态测距仪的旋转速度为1秒1圈,测量频率为1秒360次,即:360(度/秒)/360(次/秒)=1(度/次);
将测量频率调整为1秒720次,即:360(度/秒)/720(次/秒)=0.5(度/次)。
除此之外,所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测距仪的转速,保持现有发射频率,将扫描角度转换为测距仪转速来实现调整。
举例来说,所述调整测距仪的转速来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将转速变成1秒m/2圈,即:(m/2)*360(度/秒)/n(次/秒)=m*180/n(度/次)。
也就是说初始状态测距仪的旋转速度为1秒1圈,测量频率为1秒360次,即:360(度/秒)/360(次/秒)=1(度/次);
将转速变成1秒0.5圈,即:180(度/秒)/360(次/秒)=0.5(度/次)。
上述测量频率和转速可根据实际产品需要进行调整。
实施例二
鉴于实施例一中的技术方案比较繁琐,可选地,在本实施例中可以将所述测距扫描传感器的测量调整方法简化为如下步骤:
步骤1000:预设扫描精度范围的上限阈值TH和下限阈值TL;
步骤2000:设定扫描测距器的多个测量频率;
步骤3000:根据以初始测量频率测量获得的相邻两次的测量距离及测量角度计算出实际扫描分辨长度,判断所述实际扫描分辨长度与预设扫描精度范围的上限阈值TH和下限阈值TL之间的关系;
步骤4000:根据步骤3000的比较结果调整所述测距扫描传感器的测量频率,并以调整后的测量频率进行下一次测量;
步骤5000:依此往复调整,直至扫描结束。
具体来说,步骤4000进一步包括:
4001:如果该实际扫描分辨长度小于预设扫描精度范围,则将测量频率下调一个档位;
4002:如果该实际扫描分辨长度大于预设扫描精度范围,则将测量频率上调一个档位;
4003:如果该实际扫描分辨长度在预设扫描精度范围内,则保持测量频率不变;
4004:以调整后的测量频率进行下一次测量。
需要说明的是,本发明提供的根据实际分辨长度反馈调节扫描角度的调整方法并不局限于图3所示的平面情况,对于断面、曲面等同样适用。
综上所述,本发明提供一种测距扫描传感器的测量调整方法,解决了传感器在测量范围内的数据点密度不均匀,且在较远距离上的数据点较少的问题,使得后续的建图以及导航算法更加有效和可靠。

Claims (11)

1.一种测距扫描传感器的测量调整方法,其特征在于,该方法包括如下步骤:
步骤100:以扫描角度(1)进行距离测量,并计算相邻两次距离测量之间的实际分辨长度(c);
步骤200:根据实际分辨长度(c)判断是否需要调整扫描角度,如果是,则将按照调整后的扫描角度进行下一次测量,否则,继续进行下一次测量;
步骤300:重复执行步骤100至步骤200,据此往复调整,直至扫描结束。
2.如权利要求1所述的测距扫描传感器的测量调整方法,其特征在于,所述步骤100之前还包括有:
步骤001:在分辨精度的范围内设定实际分辨长度的上限阈值(TH)和下限阈值(TL);
则:
步骤200具体包括:将实际分辨长度(c)的大小与上限阈值(TH)和下限阈值(TL)进行比较,如果TL≤c≤TH,则保持扫描角度(1)作为下一次测量的扫描角度(4);
否则,对扫描角度进行调整,并将调整后的扫描角度作为下一次测量的扫描角度(4)。
3.如权利要求2所述的测距扫描传感器的测量调整方法,其特征在于,步骤100具体包括:以扫描角度(1)旋转扫描,得到相邻两次扫描的第一距离(a)和第二距离(b),通过余弦公式得到前述相邻两次扫描的实际分辨长度(c)。
4.如权利要求3所述的测距扫描传感器的测量调整方法,其特征在于,所述步骤200中对扫描角度进行调整的过程进一步包括:
步骤210:将步骤100中相邻两次扫描的第一落点设为点A及第二落点设为点B,以与直线AB相交于点C限制待调整的下一次所述测距传感器的测量路径;
步骤220:限定点C与第二落点点B的距离为d,且d=(TL+TH)/2;
步骤230:根据已知信息计算出调整后的扫描角度的大小,并将调整后的扫描角度作为下一次测量的扫描角度(4)。
5.如权利要求4所述的测距扫描传感器的测量调整方法,其特征在于,所述步骤230中的已知信息包括:扫描角度、相邻两次扫描的第一距离(a)和第二距离(b)及点B与点C之间的距离(d)。
6.如权利要求1所述的测距扫描传感器的测量调整方法,其特征在于,所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测量的频率,保持现有的测距仪的转速,将扫描角度转换为测量的频率来实现调整。
7.如权利要求6所述的测距扫描传感器的测量调整方法,其特征在于,所述调整测量的频率来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将测量频率调整为1秒2n次,即:m*360(度/秒)/2n(次/秒)=m*180/n(度/次)。
8.如权利要求1所述的测距扫描传感器的测量调整方法,其特征在于,所述步骤200中对所述扫描角度进行调整的方式,具体包括:调整测距仪的转速,保持现有发射频率,将扫描角度转换为测距仪转速来实现调整。
9.如权利要求8所述的测距扫描传感器的测量调整方法,其特征在于,所述调整测距仪的转速来改变扫描角度具体包括:
初始状态测距仪的旋转速度为1秒m圈,测量频率为1秒n次,即:m*360(度/秒)/n(次/秒)=m*360/n(度/次);
将转速变成1秒m/2圈,即:(m/2)*360(度/秒)/n(次/秒)=m*180/n(度/次)。
10.一种测距扫描传感器的测量调整方法,其特征在于,该方法包括如下步骤:
步骤1000:预设扫描精度范围的上限阈值TH和下限阈值TL;
步骤2000:设定扫描测距器的多个档位测量频率;
步骤3000:根据以初始测量频率测量获得的相邻两次的测量距离及测量角度计算出实际扫描分辨长度,判断所述实际扫描分辨长度与预设扫描精度范围的上限阈值TH和下限阈值TL之间的关系;
步骤4000:根据步骤3000的比较结果调整所述测距扫描传感器的测量频率,并以调整后的测量频率进行下一次测量;
步骤5000:依此往复调整,直至扫描结束。
11.如权利要求10所述的测距扫描传感器的测量调整方法,其特征在于,步骤4000进一步包括:
4001:如果该实际扫描分辨长度小于预设扫描精度范围,则将测量频率下调一个档位;
4002:如果该实际扫描分辨长度大于预设扫描精度范围,则将测量频率上调一个档位;
4003:如果该实际扫描分辨长度在预设扫描精度范围内,则保持测量频率不变;
4004:以调整后的测量频率进行下一次测量。
CN201610235280.3A 2016-04-15 2016-04-15 测距扫描传感器的测量调整方法 Active CN107300370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610235280.3A CN107300370B (zh) 2016-04-15 2016-04-15 测距扫描传感器的测量调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610235280.3A CN107300370B (zh) 2016-04-15 2016-04-15 测距扫描传感器的测量调整方法

Publications (2)

Publication Number Publication Date
CN107300370A true CN107300370A (zh) 2017-10-27
CN107300370B CN107300370B (zh) 2020-06-26

Family

ID=60137035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610235280.3A Active CN107300370B (zh) 2016-04-15 2016-04-15 测距扫描传感器的测量调整方法

Country Status (1)

Country Link
CN (1) CN107300370B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959939A (zh) * 2017-12-22 2019-07-02 北京万集科技股份有限公司 基于激光扫描的对象跟踪方法及装置
CN111566510A (zh) * 2018-12-05 2020-08-21 深圳市大疆创新科技有限公司 测距装置及其扫描视场的均衡方法、移动平台
WO2023218705A1 (ja) * 2022-05-13 2023-11-16 パナソニックIpマネジメント株式会社 測距装置、測距装置の制御方法、およびデータ処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137985A (ja) * 1992-10-29 1994-05-20 Fuji Xerox Co Ltd 回転不釣合調整装置
CN201199286Y (zh) * 2008-04-23 2009-02-25 一品光学工业股份有限公司 微机电激光扫描装置的单片式fθ镜片
CN104101333A (zh) * 2013-04-05 2014-10-15 莱卡地球系统公开股份有限公司 具有扫描功能性和可选择的扫描模式的全站仪
CN104613896A (zh) * 2015-02-10 2015-05-13 北京矿冶研究总院 一种三维激光扫描空间分辨率增强的方法
CN204679638U (zh) * 2015-06-24 2015-09-30 武汉万集信息技术有限公司 一种可变扫描分辨率的激光测距传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137985A (ja) * 1992-10-29 1994-05-20 Fuji Xerox Co Ltd 回転不釣合調整装置
CN201199286Y (zh) * 2008-04-23 2009-02-25 一品光学工业股份有限公司 微机电激光扫描装置的单片式fθ镜片
CN104101333A (zh) * 2013-04-05 2014-10-15 莱卡地球系统公开股份有限公司 具有扫描功能性和可选择的扫描模式的全站仪
CN104613896A (zh) * 2015-02-10 2015-05-13 北京矿冶研究总院 一种三维激光扫描空间分辨率增强的方法
CN204679638U (zh) * 2015-06-24 2015-09-30 武汉万集信息技术有限公司 一种可变扫描分辨率的激光测距传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959939A (zh) * 2017-12-22 2019-07-02 北京万集科技股份有限公司 基于激光扫描的对象跟踪方法及装置
CN109959939B (zh) * 2017-12-22 2021-04-06 北京万集科技股份有限公司 基于激光扫描的对象跟踪方法及装置
CN111566510A (zh) * 2018-12-05 2020-08-21 深圳市大疆创新科技有限公司 测距装置及其扫描视场的均衡方法、移动平台
WO2023218705A1 (ja) * 2022-05-13 2023-11-16 パナソニックIpマネジメント株式会社 測距装置、測距装置の制御方法、およびデータ処理方法

Also Published As

Publication number Publication date
CN107300370B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US6507406B1 (en) Three-dimensional data input apparatus
US8422035B2 (en) Distance-measuring method for a device projecting a reference line, and such a device
CN107300370A (zh) 测距扫描传感器的测量调整方法
CN108132025A (zh) 一种车辆三维轮廓扫描构建方法
CN110161513A (zh) 估计道路坡度的方法、装置、存储介质和计算机设备
KR20070009388A (ko) 거리 측정 장치, 거리 측정 방법 및 거리 측정 프로그램
CN104219512B (zh) 一种显示设备色域边界描述方法
CN203744974U (zh) 一种吊锤式道路坡度测量仪
CN101515331B (zh) 一种邻域相关的亚像素定位方法
CN106840093A (zh) 一种无人机飞行高度的检测方法、装置及无人机
CN105222727A (zh) 线阵ccd相机成像平面与工作台平行度的测量方法和系统
CN105606049B (zh) 一种相对水面的水田农业机具作业姿态测量方法
CN109557525A (zh) 一种激光雷达式车辆外廓尺寸测量仪的自动标定方法
CN104990501A (zh) 一种三维激光扫描装置的系统参数校准方法
CN107656278A (zh) 基于稠密雨量站定量降水估测方法
JP6880850B2 (ja) 測距装置,水位計測システム及び測距方法
CN109459030A (zh) 一种基于地标的行人定位修正方法及系统
CN108876862A (zh) 一种非合作目标点云位置姿态计算方法
CN104198985A (zh) 单天线测向方法
JPH08149022A (ja) 受信機の感度及び妨害波特性測定方法
CN206989894U (zh) 二维坐标测量系统
CN108072868A (zh) 一种基于fmcw雷达信号频率细化的高精度测距方法
Pan et al. Study of a GB-SAR rail error correction method based on an incident angle model
CN110145318A (zh) 一种盾构机上盾体变形检测及在线矫正的方法
CN113251962B (zh) 基于机器学习的超声波车位补偿系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant