CN107298033B - A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car - Google Patents

A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car Download PDF

Info

Publication number
CN107298033B
CN107298033B CN201710570664.5A CN201710570664A CN107298033B CN 107298033 B CN107298033 B CN 107298033B CN 201710570664 A CN201710570664 A CN 201710570664A CN 107298033 B CN107298033 B CN 107298033B
Authority
CN
China
Prior art keywords
vehicle
oxide
semiconductor
circuit
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710570664.5A
Other languages
Chinese (zh)
Other versions
CN107298033A (en
Inventor
王云钊
鲁卫申
肖胜然
庄启超
蒋荣勋
苏伟
魏跃远
王可峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Electric Vehicle Co Ltd
Original Assignee
Beijing Electric Vehicle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electric Vehicle Co Ltd filed Critical Beijing Electric Vehicle Co Ltd
Priority to CN201710570664.5A priority Critical patent/CN107298033B/en
Publication of CN107298033A publication Critical patent/CN107298033A/en
Application granted granted Critical
Publication of CN107298033B publication Critical patent/CN107298033B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

The present invention provides a kind of vehicle-mounted bidirectional charger driving circuit, system and electric cars, and wherein driving circuit includes: drive control unit;Level conversion unit, input terminal is connect with drive control unit, output end is connect with vehicle-mounted bidirectional charger, the task driven signal that drive control unit is inputted by input terminal is converted to the target drives signal with target level by level conversion unit, is exported by output end to vehicle-mounted bidirectional charger;Supply control unit is connected with drive control unit, receives the power request signal of drive control unit output, output power supply enable signal;Power supply circuit is connect with level conversion unit and supply control unit, when power supply circuit receives power supply enable signal, is powered to level conversion unit, is closed driving circuit in time when unusual service condition occurs, it is ensured that the safety driving of vehicle-mounted bidirectional charger.

Description

A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car
Technical field
The present invention relates to a kind of automobile component more particularly to a kind of vehicle-mounted bidirectional charger driving circuits, system and electronic Automobile.
Background technique
Vehicle-mounted bidirectional charger for electric automobile is that one kind can convert energy between power grid and electric automobile power battery Device, tool is there are two types of basic function: charge function and inversion function.Either charge function or inversion function, it is necessary to The conversion that each power MOS pipe realizes energy is controlled by certain control algolithm, energy conversion is terminated when metal-oxide-semiconductor is all off.
Since there are the electrolytic capacitors of larger capacitance in vehicle-mounted bidirectional charger, after charger work, electrolytic capacitor meeting There is higher residual voltage, if drive control chip is interfered at this time or other factors cause driving signal abnormal, such as into Line program programming operation, can make the port output state of drive control chip uncontrollable, be easy to produce abnormal driving signal, be easy Cause metal-oxide-semiconductor above and below in vehicle-mounted bidirectional charger straight-through, at this time the remaining high voltage on vehicle-mounted bidirectional charger median generatrix In the case of, it is easy to produce the even more serious consequence of metal-oxide-semiconductor bombing.
Summary of the invention
A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car are provided in the embodiment of the present invention, it is existing to solve If having, drive control chip is interfered in technology or other factors cause driving signal abnormal, is easy to cause vehicle-mounted two-way charging Metal-oxide-semiconductor is straight-through up and down in machine, leads to the problem of the even more serious consequence of metal-oxide-semiconductor bombing.
In order to solve the above-mentioned technical problem, the embodiment of the present invention adopts the following technical scheme that
On the one hand, the embodiment of the present invention provides a kind of vehicle-mounted bidirectional charger driving circuit, comprising: drive control unit, For output services driving signal and power request signal;
Level conversion unit, input terminal are connect with the drive control unit, and output end is connect with vehicle-mounted bidirectional charger, The level conversion unit has for being converted to the task driven signal that the drive control unit is inputted by input terminal The target drives signal of target level, and exported by output end to the vehicle-mounted bidirectional charger;
Supply control unit is connected with the drive control unit, and the supply control unit receives the driving control The power request signal of unit processed output, according to the power request signal, in the drive control unit and described vehicle-mounted double When being in nominal situation to charger, output power supply enable signal;
Power supply circuit is separately connected with the level conversion unit and the supply control unit, and the power supply circuit connects When receiving the power supply enable signal, the power supply of Xiang Suoshu level conversion unit;When not receiving the power supply enable signal, to The level conversion unit power-off.
Optionally, the vehicle-mounted bidirectional charger driving circuit further include:
Over-current detection circuit is connected with the level conversion unit and the vehicle-mounted bidirectional charger, the overcurrent inspection Slowdown monitoring circuit is used for when the output electric current for detecting the vehicle-mounted bidirectional charger is greater than given threshold, output cut-off signals to institute State level conversion unit.
Optionally, the power supply circuit includes:
First metal-oxide-semiconductor and the second metal-oxide-semiconductor;
Wherein, the grid of the first metal-oxide-semiconductor is connected to the supply control unit, and the first pole of first metal-oxide-semiconductor is grounded, Second pole of first metal-oxide-semiconductor is connected to the grid of second metal-oxide-semiconductor, and the first pole of second metal-oxide-semiconductor is connected to institute Level conversion unit is stated, the second pole of second metal-oxide-semiconductor is connected to the first power supply.
Optionally, the power supply circuit further include:
The first resistor and first capacitor being connected in parallel between the grid and the first order of first metal-oxide-semiconductor;
The second electricity being connected on the connection circuit of the grid of the second metal-oxide-semiconductor described in the second best of first metal-oxide-semiconductor Resistance;
The 3rd resistor being connected between the second pole of second metal-oxide-semiconductor and the grid of second metal-oxide-semiconductor;
Second capacitor, one end of second capacitor are connected in level conversion described in the first best of second metal-oxide-semiconductor On the connection circuit of unit, other end grounding connection.
Optionally, the output end of the level conversion unit is connected with the first current potential pull-up circuit.
Optionally, level conversion unit tool is respectively connected with an output circuit on each output end there are four output end, The first current potential pull-up circuit includes the pull-up resistor connected on the output circuit respectively.
Optionally, the input terminal of the level conversion unit is connected with the second current potential pull-up circuit.
Optionally, level conversion unit tool is respectively connected with an input circuit on each input terminal there are four input terminal, The second current potential pull-up circuit includes the pull-up resistor connected on the input circuit respectively.
On the other hand, the embodiment of the present invention also provides a kind of vehicle-mounted bidirectional charger system, including as described above vehicle-mounted Bidirectional charger driving circuit.
On the other hand, the embodiment of the present invention also provides a kind of electric car, which is characterized in that including as described above vehicle-mounted Two-way charger system.
One or more embodiments of the invention has the advantages that
In the vehicle-mounted bidirectional charger driving circuit, mainly by drive control unit output services driving signal, pass through The task driven signal is carried out level conversion by level conversion unit, is obtained target drives signal, is output this to vehicle-mounted two-way Charger, to carry out drive control to vehicle-mounted bidirectional charger;Supply control unit and power supply circuit therein are realized to level The individual power supply control of converting unit, supply control unit pass through power supply according to the power request signal of drive control unit The transmission of enable signal makes power supply circuit be powered or power off level conversion unit, so that drive control unit and vehicle-mounted pair When being in nominal situation to charger, realize that the driving circuit to the drive control of vehicle-mounted bidirectional charger, and works as drive control When driving signal exports extremely in unit programming program process, then realizes the power-off control of level conversion unit, do not export target Driving signal avoids causing in vehicle-mounted bidirectional charger on metal-oxide-semiconductor because driving signal during programming and enable signal are abnormal Down tube is straight-through, avoids bombing risk, screens to unusual service condition, closes driving circuit in time when unusual service condition occurs, really The safety driving for protecting vehicle-mounted bidirectional charger, promotes driveability.
Detailed description of the invention
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are some of the embodiments of the present invention, instead of all the embodiments.Based on this hair Embodiment in bright, every other implementation obtained by those of ordinary skill in the art without making creative efforts Example, shall fall within the protection scope of the present invention.
Fig. 1 shows the control logic figures one of vehicle-mounted bidirectional charger driving circuit in the embodiment of the present invention;
Fig. 2 indicates the control logic figure two of vehicle-mounted bidirectional charger driving circuit in the embodiment of the present invention;
Fig. 3 indicates the internal circuit detail view of vehicle-mounted bidirectional charger driving circuit in the embodiment of the present invention.
Specific embodiment
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are some of the embodiments of the present invention, instead of all the embodiments.Based on this hair Embodiment in bright, every other implementation obtained by those of ordinary skill in the art without making creative efforts Example, shall fall within the protection scope of the present invention.
A kind of vehicle-mounted bidirectional charger driving circuit is disclosed in the embodiment of the present invention, in conjunction with shown in Fig. 1, Fig. 2, Fig. 3, packet It includes: drive control unit, level conversion unit U7, supply control unit and power supply circuit A.Wherein, drive control unit is used for Output services driving signal and power request signal.
Level conversion unit, input terminal are connect with the drive control unit, and output end is connect with vehicle-mounted bidirectional charger, The level conversion unit has for being converted to the task driven signal that the drive control unit is inputted by input terminal The target drives signal of target level, and exported by output end to the vehicle-mounted bidirectional charger.
Supply control unit is connected with the drive control unit, and the supply control unit receives the driving control The power request signal of unit processed output, according to the power request signal, in the drive control unit and described vehicle-mounted double When being in nominal situation to charger, output power supply enable signal.
Power supply circuit A is separately connected with the level conversion unit and the supply control unit, the power supply circuit A When receiving the power supply enable signal, the power supply of Xiang Suoshu level conversion unit;When not receiving the power supply enable signal, It is powered off to the level conversion unit.
In the vehicle-mounted bidirectional charger driving circuit, mainly by drive control unit output services driving signal, pass through The task driven signal is carried out level conversion by level conversion unit, is obtained target drives signal, is output this to vehicle-mounted two-way Charger, to carry out drive control to vehicle-mounted bidirectional charger;Supply control unit and power supply circuit A therein is realized to level The individual power supply control of converting unit, supply control unit pass through power supply according to the power request signal of drive control unit The transmission of enable signal makes power supply circuit A be powered or power off level conversion unit, so that drive control unit and vehicle-mounted When bidirectional charger is in nominal situation, realize the driving circuit to the drive control of vehicle-mounted bidirectional charger, and when driving control When driving signal exports extremely in unit programming program process processed, then realizes the power-off control of level conversion unit, do not export mesh Driving signal is marked, avoids leading to MOS in vehicle-mounted bidirectional charger because driving signal during programming and enable signal are abnormal Down tube is straight-through on (Metal-Oxide-Semiconductor, Metal-oxide-semicondutor) pipe, bombing risk is avoided, to different Normal operating condition is screened, and closes driving circuit in time when unusual service condition occurs, it is ensured that the safety driving of vehicle-mounted bidirectional charger, Promote driveability.
Specifically, which is DSP (Digital Signal Processor, digital signal processor), The supply control unit is Freescale single-chip microcomputer.
In conjunction with shown in Fig. 1, Fig. 2, Fig. 3, in vehicle-mounted bidirectional charger course of normal operation, from DSP to Freescale list Piece machine issues power request signal, when Freescale single-chip microcomputer detection complete machine and drive control unit are under nominal situation, hair It powers out enable signal, power supply circuit A is made to give level conversion unit power supply, it is ensured that level conversion unit is exported two-way to be filled to vehicle-mounted The driving signal of motor is normal, and each metal-oxide-semiconductor is not in unusual service condition in vehicle-mounted bidirectional charger, and in DSP programming or other are different Under normal operating condition, Freescale single-chip microcomputer detects that DSP working signal is abnormal, and power supply circuit A can be made to disconnect, and does not give level conversion list Member power supply prevents abnormal driving signal from causing metal-oxide-semiconductor in vehicle-mounted bidirectional charger straight-through up and down.
As a preferred embodiment, wherein in conjunction with shown in Fig. 2, Fig. 3, vehicle-mounted bidirectional charger driving circuit is also wrapped It includes:
Over-current detection circuit B is connected with the level conversion unit and the vehicle-mounted bidirectional charger, the overcurrent inspection Slowdown monitoring circuit B is used for when the output electric current for detecting the vehicle-mounted bidirectional charger is greater than given threshold, and output cut-off signals are extremely The level conversion unit.
Over-current detection circuit B is when the upper down tube of generation is straight-through in vehicle-mounted bidirectional charger or other bad working environments cause When actual current is more than setting value, output cut-off signals to level conversion unit, so that the output and latch of shutdown driving signal, Whole driving circuit is protected, enables level conversion again after drive control unit issues Restart Signal to level conversion unit Unit keeps task driven signal effective, and over-current detection circuit B and supply control unit two parts are realized to vehicle-mounted two-way charging The duplicate protection of machine.
Specifically, wherein when the task driven signal of drive control unit is low level, drive vehicle-mounted bidirectional charger In power MOS pipe;When the task driven signal of drive control unit is high level, the function in vehicle-mounted bidirectional charger is turned off Rate metal-oxide-semiconductor.
As a preferred embodiment, wherein as shown in connection with fig. 3, power supply circuit A include: the first metal-oxide-semiconductor Q20 and Second metal-oxide-semiconductor Q13.
Wherein, the grid of the first metal-oxide-semiconductor Q20 is connected to the supply control unit, and the first of the first metal-oxide-semiconductor Q20 Pole ground connection, the second pole of the first metal-oxide-semiconductor Q20 is connected to the grid of the second metal-oxide-semiconductor Q13, the second metal-oxide-semiconductor Q13 The first pole be connected to the level conversion unit, the second pole of the second metal-oxide-semiconductor Q13 is connected to the first power supply.Preferably, The first metal-oxide-semiconductor Q20 is N-channel type, and the second metal-oxide-semiconductor Q13 is P-channel type.
Preferably, the extremely source electrode of the first of first metal-oxide-semiconductor Q20, second extremely drains;The first of second metal-oxide-semiconductor Q13 Grade is drain electrode, the second extremely source electrode.
As shown in Fig. 2, left side input terminal of the drive control unit output services driving signal to level conversion unit U7, supplies Electric control unit inputs power supply enable signal by the grid of the first metal-oxide-semiconductor Q20, and the first metal-oxide-semiconductor Q20 gets the confession in grid It is connected when electric enable signal, then the second metal-oxide-semiconductor Q13 is connected, and then the first power supply is made to power to level conversion unit U7, realizes To the power supply control process of power supply circuit A.
Preferably, the supply voltage of first power supply is 5V.
As a preferred embodiment, wherein power supply circuit A further include: be connected in first metal-oxide-semiconductor in parallel First resistor and first capacitor between the grid and the first order of Q20;It is connected in the second best institute of the first metal-oxide-semiconductor Q20 State the second resistance on the connection circuit of the grid of the second metal-oxide-semiconductor Q13;It is connected to the second pole and the institute of the second metal-oxide-semiconductor Q13 State the 3rd resistor between the grid of the second metal-oxide-semiconductor Q13;One end of second capacitor, second capacitor is connected in described second On the connection circuit of level conversion unit described in the first best of metal-oxide-semiconductor Q13, other end grounding connection.
Each capacitor and resistor assembly being arranged in power supply circuit A, by with the first metal-oxide-semiconductor Q20's and the second metal-oxide-semiconductor Q13 The effect of circuit filtering, partial pressure protection is realized in circuit cooperation, it is ensured that the good operation of circuit structure in power supply circuit A, protection two The normal operation of a metal-oxide-semiconductor, and circuit structure is simple, integrated level is high, highly reliable.
Further, as a preferred embodiment, wherein the output end of the level conversion unit is connected with the first electricity Position pull-up circuit, to avoid power on, mislead power MOS pipe in vehicle-mounted bidirectional charger in lower electricity or programming program process, In no driving signal, it is ensured that each power MOS pipe is not turned on.
Specifically, wherein level conversion unit tool is respectively connected with output electricity there are four output end on each output end Road, the first current potential pull-up circuit include the pull-up resistor connected on the output circuit respectively.
I.e. the first current potential pull-up circuit is specially pull-up resistor set on each output circuit, passes through the upper of setting Pull-up resistor ensures to make to keep high level in no driving signal, it is ensured that each power MOS pipe is absolutely turned off and is not turned on.
Specifically, the application voltage value of the pull-up resistor connected on output circuit is 5V.
As a preferred embodiment, wherein the input terminal of the level conversion unit is connected with the second current potential pull-up Circuit is matched with the first current potential pull-up circuit connecting on the output, further avoid power on, it is lower electricity or programming program Mislead power MOS pipe in vehicle-mounted bidirectional charger in the process, in no driving signal, it is ensured that each power MOS pipe is not turned on.
Specifically, level conversion unit tool is respectively connected with an input circuit, institute on each input terminal there are four input terminal Stating the second current potential pull-up circuit includes the pull-up resistor connected on the input circuit respectively.
I.e. the second current potential pull-up circuit is specially pull-up resistor set on each input circuit, passes through the upper of setting Pull-up resistor ensures to make to keep high level in no driving signal, it is ensured that each power MOS pipe is absolutely turned off and is not turned on.
Specifically, the application voltage value of the pull-up resistor connected on input circuit is 3.3V.In the defeated of level conversion unit Enter and is pulled up with output end two sides, to avoid powering on, misleading power MOS pipe in lower electricity or programming program process, In no driving signal, guarantee in one-chip machine port high-impedance state, it is ensured that each power MOS pipe is not turned on.
A kind of vehicle-mounted bidirectional charger system, including vehicle-mounted two-way charging as described above are also disclosed in the embodiment of the present invention Drive circuit screens unusual service condition, closes driving circuit in time when unusual service condition occurs, avoids bombing risk, Promote driveability.
A kind of electric car is also disclosed in the embodiment of the present invention, comprising: vehicle-mounted bidirectional charger system as described above is right Unusual service condition is screened, and closes driving circuit in time when unusual service condition occurs, and avoids bombing risk, promotes vehicle performance.
All the embodiments in this specification are described in a progressive manner, the highlights of each of the examples are with The difference of other embodiments, the same or similar parts between the embodiments can be referred to each other.
Although the preferred embodiment of the embodiment of the present invention has been described, once a person skilled in the art knows bases This creative concept, then additional changes and modifications can be made to these embodiments.So the following claims are intended to be interpreted as Including preferred embodiment and fall into all change and modification of range of embodiment of the invention.
Finally, it is to be noted that, in embodiments of the present invention, relational terms such as first and second and the like are only Only it is used to distinguish one entity or operation from another entity or operation, without necessarily requiring or implying these realities There are any actual relationship or orders between body or operation.Moreover, the terms "include", "comprise" or its it is any its He is intended to non-exclusive inclusion by variant, so that process, method, article or terminal including a series of elements are set Standby includes not only those elements, but also including other elements that are not explicitly listed, or further includes for this process, side Method, article or the intrinsic element of terminal device.In the absence of more restrictions, being limited by sentence "including a ..." Fixed element, it is not excluded that including that there is also other identical in the process, method of the element, article or terminal device Element.
Above-described is the preferred embodiment of the present invention, it should be pointed out that the ordinary person of the art is come It says, can also make several improvements and retouch under the premise of not departing from principle of the present invention, these improvements and modifications also exist In protection scope of the present invention.

Claims (10)

1. a kind of vehicle-mounted bidirectional charger driving circuit, including drive control unit and power supply circuit, which is characterized in that also wrap It includes:
Level conversion unit, input terminal are connect with the drive control unit, and output end is connect with vehicle-mounted bidirectional charger, described Level conversion unit is for being converted to the task driven signal that the drive control unit is inputted by input terminal with target The target drives signal of level, and exported by output end to the vehicle-mounted bidirectional charger;
Supply control unit is connected with the drive control unit, and the supply control unit receives the drive control list The power request signal of member output in the drive control unit and described vehicle-mounted two-way is filled according to the power request signal When motor is in nominal situation, output power supply enable signal;
Wherein, the drive control unit is used for output services driving signal and power request signal;
The power supply circuit is separately connected with the level conversion unit and the supply control unit, and the power supply circuit connects When receiving the power supply enable signal, the power supply of Xiang Suoshu level conversion unit;When not receiving the power supply enable signal, to The level conversion unit power-off.
2. vehicle-mounted bidirectional charger driving circuit according to claim 1, which is characterized in that further include:
Over-current detection circuit is connected with the level conversion unit and the vehicle-mounted bidirectional charger, the over-current detection electricity Road is used for when the output electric current for detecting the vehicle-mounted bidirectional charger is greater than given threshold, output cut-off signals to the electricity Flat converting unit.
3. vehicle-mounted bidirectional charger driving circuit according to claim 1, which is characterized in that the power supply circuit includes:
First metal-oxide-semiconductor and the second metal-oxide-semiconductor;
Wherein, the grid of the first metal-oxide-semiconductor is connected to the supply control unit, and the first pole ground connection of first metal-oxide-semiconductor is described Second pole of the first metal-oxide-semiconductor is connected to the grid of second metal-oxide-semiconductor, and the first pole of second metal-oxide-semiconductor is connected to the electricity Second pole of flat converting unit, second metal-oxide-semiconductor is connected to the first power supply.
4. vehicle-mounted bidirectional charger driving circuit according to claim 3, which is characterized in that the power supply circuit also wraps It includes:
The first resistor and first capacitor being connected in parallel between the grid and the first order of first metal-oxide-semiconductor;
The second resistance being connected on the connection circuit of the grid of the second metal-oxide-semiconductor described in the second best of first metal-oxide-semiconductor;
The 3rd resistor being connected between the second pole of second metal-oxide-semiconductor and the grid of second metal-oxide-semiconductor;
Second capacitor, one end of second capacitor are connected in level conversion unit described in the first best of second metal-oxide-semiconductor Connection circuit on, other end grounding connection.
5. vehicle-mounted bidirectional charger driving circuit according to claim 1, which is characterized in that
The output end of the level conversion unit is connected with the first current potential pull-up circuit.
6. vehicle-mounted bidirectional charger driving circuit according to claim 5, which is characterized in that the level conversion unit tool There are four output end, an output circuit is respectively connected on each output end, the first current potential pull-up circuit includes respectively in institute State the pull-up resistor connected on output circuit.
7. vehicle-mounted bidirectional charger driving circuit according to claim 5, which is characterized in that the level conversion unit Input terminal is connected with the second current potential pull-up circuit.
8. vehicle-mounted bidirectional charger driving circuit according to claim 7, which is characterized in that the level conversion unit tool There are four input terminal, an input circuit is respectively connected on each input terminal, the second current potential pull-up circuit includes respectively in institute State the pull-up resistor connected on input circuit.
9. a kind of vehicle-mounted bidirectional charger system, which is characterized in that described in any item vehicle-mounted two-way including such as claim 1-8 Charge drive circuit.
10. a kind of electric car characterized by comprising vehicle-mounted bidirectional charger system as claimed in claim 9.
CN201710570664.5A 2017-07-13 2017-07-13 A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car Active CN107298033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710570664.5A CN107298033B (en) 2017-07-13 2017-07-13 A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710570664.5A CN107298033B (en) 2017-07-13 2017-07-13 A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car

Publications (2)

Publication Number Publication Date
CN107298033A CN107298033A (en) 2017-10-27
CN107298033B true CN107298033B (en) 2019-08-09

Family

ID=60132784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710570664.5A Active CN107298033B (en) 2017-07-13 2017-07-13 A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car

Country Status (1)

Country Link
CN (1) CN107298033B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222958B (en) * 2011-06-21 2013-10-16 清华大学深圳研究生院 Vehicle-mounted bidirectional charger for electric automobile
CN204966636U (en) * 2015-07-23 2016-01-13 北汽福田汽车股份有限公司 Battery heating device , power battery package equipment and electric vehicle
CN205010017U (en) * 2015-07-29 2016-02-03 中国汽车技术研究中心 Battery management main system suitable for new energy automobile
CN105490363A (en) * 2016-01-06 2016-04-13 北京新能源汽车股份有限公司 Vehicle-mounted bidirectional charger and electric vehicle

Also Published As

Publication number Publication date
CN107298033A (en) 2017-10-27

Similar Documents

Publication Publication Date Title
CN104600676B (en) Battery protecting circuit, electric energy provide device and electronic installation
CN103439577B (en) The insulation resistance detection system of electric automobile power battery and detection method
CN1956287B (en) Power control method of vehicle battery and its device
CN107306043A (en) The control method of charging Rouser and the Rouser that charges
CN102756701B (en) Power delay system for automobile electric control unit
CN103182949B (en) Cut-off/wake-up circuit of whole vehicle controller
CN206650446U (en) A kind of low-power consumption standby circuit of BMS
CN110261794A (en) A kind of CP signal deteching circuit and onboard charger with detection of negative pressure circuit
CN105098891A (en) Common-port charging awakening circuit for battery management system
CN104467040A (en) Vehicle-mounted uninterruptible power supply (UPS) storage battery control and management device
CN106787058A (en) A kind of reception terminal protecting circuit and charging equipment charged for battery
CN103368144B (en) Overvoltage crowbar
CN106602532A (en) Current limiting circuit, driving method thereof, PMIC protection system and display device protection system
CN107298033B (en) A kind of vehicle-mounted bidirectional charger driving circuit, system and electric car
CN104215810A (en) EV (electric vehicle) conductive charge guide signal detection circuit and system
CN105576758B (en) A kind of fuel vehicle high voltage startup battery control system
CN218783715U (en) High-low side drive control circuit and control system
CN102664122B (en) Controller for vacuum-breaker permanent-magnet operating mechanism
CN205489434U (en) On -vehicle USB power short -circuit protection circuit
CN107508582A (en) A kind of electronic reset circuit and functional module or device
CN209805458U (en) battery cell charging and discharging control module and battery cell protection device
CN107994683A (en) A kind of open system of photovoltaic DC-to-AC converter
CN211075600U (en) Signal control circuit and electric automobile with same
CN106786356A (en) A kind of low-voltage power-off protection control circuit
CN206461345U (en) The voltage protection circuit of low voltage permanent magnetic synchronous motor controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant