CN107290685A - A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation - Google Patents

A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation Download PDF

Info

Publication number
CN107290685A
CN107290685A CN201710615126.3A CN201710615126A CN107290685A CN 107290685 A CN107290685 A CN 107290685A CN 201710615126 A CN201710615126 A CN 201710615126A CN 107290685 A CN107290685 A CN 107290685A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
mtd
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710615126.3A
Other languages
Chinese (zh)
Inventor
芮忠南
王昶卜
李健
孙兰娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Red Sun New Energy Co Ltd
Original Assignee
Nanjing Red Sun New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Red Sun New Energy Co Ltd filed Critical Nanjing Red Sun New Energy Co Ltd
Priority to CN201710615126.3A priority Critical patent/CN107290685A/en
Publication of CN107290685A publication Critical patent/CN107290685A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Abstract

The invention discloses a kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation.The application uses internal resistance of cell equivalent model, and by the internal resistance of cell and battery state of charge(SOC)As state-space model, based on this model use Unscented kalman filtering device(UFK)To the state of charge of battery(SOC)Estimated.Internal resistance of cell equivalent model clearly expresses the relation between the internal state variable of battery and external electrical characteristic.The built-in variable of battery can be calculated according to the variable quantity of external electrical characteristic, in Practical Project utilization, amount of calculation is simplified, and be easy to parameter identification.Unscented kalman filtering device(UFK)The internal resistance of the Space admittance can be constantly adjusted, with compensation model deviation so that the estimation to battery state of charge is more accurate.This method not only avoid the calculating of complexity, and precision is accurate, is easily realized in engineering application.

Description

A kind of Unscented kalman filtering method based on internal resistance model is estimated in battery state of charge Application in calculation
Technical field
The present invention relates to new energy battery management system technical field, it is specially a kind of based on internal resistance model without mark karr Application of the graceful filtering method in battery state of charge estimation.
Background technology
Battery management system is one of indispensable core component of electric automobile, and the stability and accuracy of its system are determined The efficient usability and service life of battery are determined.Estimation wherein to battery state of charge SOC directly affects battery management system The performance of system.The state of charge of battery has directly reacted the state of battery, is an important parameter of battery remaining power.And it is electric The size of pond residual capacity directly affects the mileage that electric automobile can continue to traveling, therefore battery remaining power is carried out accurately Estimation it is particularly significant.
The state of charge of battery not only reflects the course continuation mileage of electric automobile, and can show different battery capacities Size.Therefore the state of charge of battery is the harmonious offer condition of power battery pack, and then ensures the one of power battery pack Cause property, gives full play to the overall performance of power battery pack, extends the service life of electric automobile power battery group, it is to avoid power electric The infringement of pond group.
Accurate estimation in real time is carried out in terms of electric automobile energy utilization rate is improved to the state of charge of power battery pack Have great importance.But in the actual operating state of electric automobile power battery, by external environment condition and inside battery The influence of the factors such as electrical characteristic, it is a nonlinear quantity of state that the state of charge of battery, which becomes, have impact on the accurate fixed of estimation. It is particularly important how nonlinear state amount is handled.
The content of the invention
It is an object of the invention to provide a kind of Unscented kalman filtering method based on internal resistance model in battery charge shape Application in state estimation, to solve the problems mentioned in the above background technology.
To achieve the above object, the present invention provides following technical scheme:A kind of Unscented kalman filter based on internal resistance model Application of the wave method in battery state of charge estimation, is comprised the following steps that:
Step one:State equation is set up according to internal resistance of cell model
V=Voc-I×Re+C
Step 2:Quantity of state and margin of error initialization
Step 3:Calculate Sigma points
(3)
Step 4:Time propagation equation
Step 5:Measurement updaue equation
Step 6:Unscented kalman filtering
v0(k)=E-I (k) × R (k)+C+ ε
Wherein, QmaxIt is battery rated capacity, ω1、ω2It is process noise, ε is measurement noise, and Δ T is discrete time.
It is preferred that, need not to nonlinear system when being estimated using Unscented kalman filtering method battery charge levels Processing, is brought directly to the nonlinear equation of battery model, the non-linear form of changeable internal damp bvattery equivalent-circuit model is as follows:
Y (k)=vocv(x1,k)-x2(k)×u(k)-0.0028+ε
It is preferred that, converted using UT, approximation linear function is converted into approximation probability density function.
It is preferred that, set up Space admittance.
Compared with prior art, the beneficial effects of the invention are as follows:Design and establish a kind of battery state of charge estimation and calculate Method, i.e. the Unscented kalman filtering method based on internal resistance model, this method establishes the internal resistance of cell and battery state of charge (SOC) state-space model, and internal resistance compensation can be carried out to model according to actual state, it is ensured that the reliability of estimation result, Accuracy and accuracy.Simplify simultaneously and calculate, this method is used in engineering practice.
Brief description of the drawings
Fig. 1 is the structural representation of internal resistance model equivalent-circuit model figure in the present invention;
Fig. 2 is UT shift theory figures in Unscented kalman filtering method in the present invention.
Embodiment
Below in conjunction with the accompanying drawing in the embodiment of the present invention, the technical scheme in the embodiment of the present invention is carried out clear, complete Site preparation is described, it is clear that described embodiment is only a part of embodiment of the invention, rather than whole embodiments.It is based on Embodiment in the present invention, it is every other that those of ordinary skill in the art are obtained under the premise of creative work is not made Embodiment, belongs to the scope of protection of the invention.
Fig. 1-2 is referred to, the present invention provides a kind of technical scheme:A kind of Unscented kalman filtering side based on internal resistance model Application of the method in battery state of charge estimation, is comprised the following steps that:
Step one:State equation is set up according to internal resistance of cell model
V=Voc-I×Re+C
Internal resistance of cell model is as shown in figure 1, wherein VocElectrokinetic cell open-circuit voltage is represented, is existed necessarily with battery SOC Functional relation, ReThe internal resistance of cell is represented, V represents the port voltage of electrokinetic cell, and constant C is used for correction model error.
Step 2:Quantity of state and margin of error initialization
Step 3:Calculate Sigma points
(3)
Step 4:Time propagation equation
Step 5:Measurement updaue equation
Step 6:Unscented kalman filtering
v0(k)=E-I (k) × R (k)+C+ ε
Wherein, QmaxIt is battery rated capacity, ω1、ω2It is process noise, ε is measurement noise, and Δ T is discrete time.
Specifically, when being estimated using Unscented kalman filtering method battery charge levels, to nonlinear system without Processing is needed, the nonlinear equation of battery model is brought directly to, the non-linear form of changeable internal damp bvattery equivalent-circuit model is as follows:
Y (k)=vocv(x1,k)-x2(k)×u(k)-0.0028+ε
Specifically, converted using UT, approximation linear function be converted into approximation probability density function, converted using UT, Filtration efficiency is high, and filter effect is good.
Specifically, Space admittance is set up, Space admittance is established, it is considered to the actual operating state of battery, Complicated computing is simplified.
Operation principle:The application uses internal resistance of cell equivalent model, and the internal resistance of cell and battery state of charge (SOC) are made For state-space model, the state of charge (SOC) of battery is estimated based on this model use Unscented kalman filtering device (UFK) Calculate, internal resistance of cell equivalent model clearly expresses the relation between the internal state variable of battery and external electrical characteristic, can The built-in variable of battery is calculated according to the variable quantity of external electrical characteristic, in Practical Project utilization, amount of calculation is simplified, and And it is easy to parameter identification, Unscented kalman filtering device (UFK) can constantly adjust the internal resistance of the Space admittance, to compensate Model bias.
Although an embodiment of the present invention has been shown and described, for the ordinary skill in the art, can be with A variety of changes, modification can be carried out to these embodiments, replace without departing from the principles and spirit of the present invention by understanding And modification, the scope of the present invention is defined by the appended.

Claims (4)

1. a kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation, its feature exists In:Comprise the following steps that:
Step one:State equation is set up according to internal resistance of cell model
V=Voc-I×Re+C
Step 2:Quantity of state and margin of error initialization
<mrow> <mover> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>^</mo> </mover> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <mover> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <mover> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> </mrow>
Step 3:Calculate Sigma points
(3)
Step 4:Time propagation equation
<mrow> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>-</mo> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>Q</mi> <mi>K</mi> </msub> </mrow>
<mrow> <msubsup> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msubsup> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> </mrow>
Step 5:Measurement updaue equation
<mrow> <msub> <mi>P</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&amp;lsqb;</mo> <msubsup> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>i</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow>
<mrow> <mi>K</mi> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow>
<mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> <mo>-</mo> </msubsup> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>-</mo> </msubsup> <mo>-</mo> <msub> <mi>KP</mi> <mrow> <mi>Y</mi> <mo>,</mo> <mi>K</mi> </mrow> </msub> <msup> <mi>K</mi> <mi>T</mi> </msup> </mrow> 1
Step 6:Unscented kalman filtering
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mi>&amp;Delta;</mi> <mi>T</mi> </mrow> <msub> <mi>Q</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
v0(k)=E-I (k) × R (k)+C+ ε
Wherein, QmaxIt is battery rated capacity, ω1、ω2It is process noise, ε is measurement noise, and Δ T is discrete time.
2. a kind of Unscented kalman filtering method based on internal resistance model according to claim 1 is estimated in battery state of charge Application in calculation, it is characterised in that:When being estimated using Unscented kalman filtering method battery charge levels, to nonlinear system System is brought directly to the nonlinear equation of battery model, the non-linear form of changeable internal damp bvattery equivalent-circuit model is as follows without processing:
<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mo>-</mo> <mn>0.00078</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;times;</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Y (k)=vocv(x1,k)-x2(k)×u(k)-0.0028+ε
3. a kind of Unscented kalman filtering method based on internal resistance model according to claim 1 is estimated in battery state of charge Application in calculation, it is characterised in that:Converted using UT, approximation linear function is converted into approximation probability density function.
4. a kind of Unscented kalman filtering method based on internal resistance model according to claim 1 is estimated in battery state of charge Application in calculation, it is characterised in that:Set up Space admittance.
CN201710615126.3A 2017-07-25 2017-07-25 A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation Pending CN107290685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710615126.3A CN107290685A (en) 2017-07-25 2017-07-25 A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710615126.3A CN107290685A (en) 2017-07-25 2017-07-25 A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation

Publications (1)

Publication Number Publication Date
CN107290685A true CN107290685A (en) 2017-10-24

Family

ID=60103615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710615126.3A Pending CN107290685A (en) 2017-07-25 2017-07-25 A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation

Country Status (1)

Country Link
CN (1) CN107290685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459278A (en) * 2018-07-05 2018-08-28 宁波均胜科技有限公司 A kind of lithium ion battery internal resistance evaluation method synchronous with state-of-charge
CN110412472A (en) * 2019-09-02 2019-11-05 西北工业大学 A kind of battery charge state estimation method based on the filtering of normal state gamma

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744028A (en) * 2013-12-25 2014-04-23 广西科技大学 UKF-based storage battery SOC (state of charge) estimation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744028A (en) * 2013-12-25 2014-04-23 广西科技大学 UKF-based storage battery SOC (state of charge) estimation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
胡小军: "基于无迹卡尔曼滤波的动力锂电池SOC估计与实现", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *
陈宁等: "基于无迹卡尔曼滤波的锂电池SOC和SOH的估算方法", 《2014 26TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459278A (en) * 2018-07-05 2018-08-28 宁波均胜科技有限公司 A kind of lithium ion battery internal resistance evaluation method synchronous with state-of-charge
CN108459278B (en) * 2018-07-05 2021-01-19 宁波均胜科技有限公司 Lithium ion battery internal resistance and charge state synchronous estimation method
CN110412472A (en) * 2019-09-02 2019-11-05 西北工业大学 A kind of battery charge state estimation method based on the filtering of normal state gamma

Similar Documents

Publication Publication Date Title
CN104617623B (en) A kind of electric automobile power battery group balance control method
US10557892B2 (en) Energy storage device state estimation device and energy storage device state estimation method
CN103779869B (en) Consider the energy-accumulating power station capacity optimized calculation method of state-of-charge dynamic conditioning
CN108594135A (en) A kind of SOC estimation method for the control of lithium battery balance charge/discharge
CN104392080A (en) Lithium-battery variable fractional order and equivalent circuit model and identification method thereof
CN110286332A (en) A kind of electric automobile power battery SOC estimation method theoretical based on more new breaths
CN102645637A (en) Method for estimating SOC (state of charge) of equalized batteries
CN103884996A (en) Residual electricity quantity calculation method of lithium iron phosphate battery
CN102420427B (en) Method for calculating voltage stability margin of regional power grid by considering outer network equivalence
CN103675706A (en) Power battery electric charge quantity estimation method
CN106443492A (en) Method for estimating SOC (State Of Charge) of lithium battery of low-velocity electronic vehicle
CN107677892B (en) A kind of super capacitor equivalent-circuit model structure and verification method
CN105116346A (en) Series-connected battery system and method for estimating state of charge thereof
CN108090244B (en) Parallel lithium ion battery system modeling method
CN105445665A (en) Method for estimating state of charge of battery through Kalman filtering
CN103810646A (en) Improved projection integral algorithm based active power distribution system dynamic simulation method
CN107192961A (en) Novel power battery SOC estimation method
CN105182246A (en) Parallel battery system charge state estimation method based on unscented Kalman filter
CN105116338A (en) Parallel type battery system modeling method based on SOC compensator
CN105353314A (en) Estimation method of state of charge of parallel-connected battery system
Tanaka et al. Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit
CN107290685A (en) A kind of application of Unscented kalman filtering method based on internal resistance model in battery state of charge estimation
CN111679212B (en) Method, system and device for calculating SOC of battery under different temperatures and charge-discharge multiplying power
CN106291366A (en) A kind of lithium ion battery equivalent cycle Life Calculating Methods
CN109061509A (en) A kind of battery capacity remaining value evaluation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171024