CN107290360B - 双波长中子光栅干涉仪的成像方法 - Google Patents

双波长中子光栅干涉仪的成像方法 Download PDF

Info

Publication number
CN107290360B
CN107290360B CN201710478922.7A CN201710478922A CN107290360B CN 107290360 B CN107290360 B CN 107290360B CN 201710478922 A CN201710478922 A CN 201710478922A CN 107290360 B CN107290360 B CN 107290360B
Authority
CN
China
Prior art keywords
grating
neutron
detector
imaged object
speed selector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710478922.7A
Other languages
English (en)
Other versions
CN107290360A (zh
Inventor
王志立
刘达林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201710478922.7A priority Critical patent/CN107290360B/zh
Publication of CN107290360A publication Critical patent/CN107290360A/zh
Application granted granted Critical
Publication of CN107290360B publication Critical patent/CN107290360B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/05Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • G01N23/202Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/045Investigating materials by wave or particle radiation combination of at least 2 measurements (transmission and scatter)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/054Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/106Different kinds of radiation or particles neutrons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种双波长中子光栅干涉仪的成像方法,其特征包括:1移动光栅,将中子光栅干涉仪的工作点固定在光强曲线的半腰位置;2设置第一等效波长为λ1,分别获取背景投影图像和被成像物体的投影图像;3设置第二等效波长为λ2,分别获取背景投影图像和被成像物体的投影图像;4分别提取被成像物体在等效波长λ的吸收和折射信号。本发明摒弃繁琐的光栅机械扫描,简化中子光栅干涉仪的成像过程,提高数据采集效率,并定量获得被成像物体在等效波长λ的吸收、折射信号,从而为被成像物体的快速、定量表征提供新途径。

Description

双波长中子光栅干涉仪的成像方法
技术领域
本发明涉及中子成像物理和方法领域,具体的说是一种双波长中子光栅干涉仪的成像方法。
背景技术
中子光栅干涉仪利用中子的波动性来产生被成像物体的图像,并且能够同时提供被成像物体的吸收、折射和暗场图像。其中吸收图像与被成像物体的衰减性质相关,折射图像与中子穿透被成像物体时的相移相关,暗场图像则来源于被成像物体的小角散射性质。近年来,中子光栅干涉仪已经被应用于块材内部磁畴结构的原位可视化、燃料电池内部结构的表征等。
在中子光栅干涉仪中,类似于X射线光栅干涉仪情形,探测器记录的被成像物体的投影图像同时包含了被成像物体的吸收、折射和暗场信号,即图像衬度来自于被成像物体吸收信号、折射信号、暗场信号的非线性混合贡献。而定量表征、图像判读、计算机三维断层重建等实际应用都要求获取独立、纯粹的被成像物体吸收、折射和暗场信号。因此,如何从被成像物体投影图像中分离得到纯粹的吸收、折射和暗场信号是近年来的研究热点之一。
目前,中子光栅干涉仪普遍采用相位步进法进行被成像物体的三种不同信号的分离。这种方法要求繁琐的机械步进光栅扫描,导致了冗长的成像实验时间,降低了中子光源的利用效率;受中子源多色性的影响,分离得到的物体吸收信号、折射信号都不是定量的,带有一定的不确定性。这些局限性阻碍了中子光栅干涉仪在材料定量表征等领域的推广应用。因此,发展新的成像方法,克服相位步进法光栅步进扫描、不定量的局限性,是未来中子光栅干涉仪推广应用中必须解决的问题之一。
发明内容
本发明为避免现有成像方法的不足之处,提出一种双波长中子光栅干涉仪的成像方法,以期能简化硬中子光栅干涉仪的成像过程,提高数据采集效率,并定量提取被成像物体的吸收和折射信号,从而为实现快速、定量的中子光栅干涉仪成像提供新途径。
为达到上述发明目的,本发明采用如下技术方案:
本发明一种双波长中子光栅干涉仪的成像方法,所述中子光栅干涉仪包括:中子源、源光栅、速度选择器、相位光栅、分析光栅和探测器;在所述速度选择器和相位光栅之间设置有被成像物体;所述被成像物体贴于所述相位光栅的内侧设置;在所述相位光栅的外侧设置有所述分析光栅;所述相位光栅到所述分析光栅的轴向距离为d;所述探测器贴于所述分析光栅的外侧;其特征是,所述成像方法按如下步骤进行:
步骤1、固定所述相位光栅和所述分析光栅,并移动所述源光栅,移动距离为所述源光栅的四分之一周期,使得所述中子光栅干涉仪固定在光强曲线的半腰位置;所述移动方向为同时垂直于光轴和光栅栅条的方向;
步骤2、依次启动所述中子源和所述速度选择器,设置第一等效波长为λ1;启动所述探测器,设置曝光时间为t;
利用所述探测器按照所述曝光时间t获取第一背景投影图像I1后,依次关闭所述中子源和所述速度选择器;
步骤3、将所述被成像物体放置到所述相位光栅的视场中央,依次启动所述中子源和所述速度选择器,设置第一等效波长为λ1,并利用所述探测器按照所述曝光时间t获取所述被成像物体的第一投影图像I′1后,依次关闭所述中子源、所述速度选择器和所述探测器;
步骤4、依次启动所述中子源和所述速度选择器,设置第二等效波长为λ2;启动所述探测器,设置曝光时间为t;
利用所述探测器按照所述曝光时间t获取第二背景投影图像I2后,依次关闭所述中子源和所述速度选择器;
步骤5、将所述被成像物体放置到所述相位光栅的视场中央,依次启动所述中子源和所述速度选择器,设置第二等效波长为λ2,并利用所述探测器按照所述曝光时间t获取所述被成像物体的第二投影图像I′2后,依次关闭所述中子源、所述速度选择器和所述探测器;
步骤6、利用式提取所述被成像物体在等效波长λ的吸收信号Tλ
式(1)中,常数K1满足K1=lnS(p2/4)或K1=lnS(-p2/4),其中,p2是所述分析光栅的周期;S(p2/4)为所述中子光栅干涉仪的光强曲线在p2/4处的数值;
步骤7、利用式(2)提取所述被成像物体在等效波长λ的折射信号αλ
式(2)中,常数K2满足其中,为所述中子光栅干涉仪的光强曲线的一阶导数在p2/4处的数值;
以所述被成像物体在等效波长λ的吸收信号Tλ和折射信号αλ作为所述成像方法的结果。
与已有技术相比,本发明的有益效果是:
1、本发明利用了被成像物体的吸收信号与折射信号的能量变化规律,提出了双波长中子光栅干涉仪成像新方法,解决了物体吸收、折射信号的定量提取问题;克服了现有相位步进法要求光栅机械扫描的局限性,简化了成像过程,实现了快速、定量的中子光栅干涉仪成像;
2、与现有的相位步进法相比,本发明利用被成像物体的吸收信号与折射信号的能量变化规律,简化了中子光栅干涉仪的成像方程,能够定量提取物体的吸收和折射信号;
3、与现有的相位步进法相比,本发明在获取物体投影图像时,通过将中子光栅干涉仪固定在光强曲线的半腰位置,摒弃了繁琐的光栅机械扫描,极大地提高了数据采集效率。
附图说明
图1为现有技术中中子光栅干涉仪示意图;
图2为现有技术中中子光栅干涉仪的光强曲线图;
图3为现有技术中材料钛的吸收信号的能量变化规律图;
图4为现有技术中材料钛的折射信号的能量变化规律图;
图5为本发明中被成像物体7在等效波长4埃的吸收信号;
图6为本发明中被成像物体7在等效波长4埃的折射信号;
图中标号:1中子源;2源光栅;3速度选择器;4相位光栅;5分析光栅;6探测器;7被成像物体。
具体实施方式
如图1所示,中子光栅干涉仪包括:中子源1、源光栅2、速度选择器3、相位光栅4、分析光栅5和探测器6;在速度选择器3和相位光栅4之间设置有被成像物体7;被成像物体7贴于相位光栅4的内侧设置;在相位光栅4的外侧设置有分析光栅5;相位光栅4到分析光栅5的轴向距离为d;探测器6贴于分析光栅5的外侧;本实施例中,双波长中子光栅干涉仪的成像方法是按如下步骤进行:
步骤1、固定相位光栅4和分析光栅5,并移动源光栅2,移动距离为源光栅2的四分之一周期,使得中子光栅干涉仪固定在光强曲线的半腰位置,如图2所示;移动方向为同时垂直于光轴和光栅栅条的方向;
中子光栅干涉仪固定在光强曲线的左半腰或右半腰位置,不仅摒弃了繁琐的光栅机械扫描,而且能够更加准确地提取被成像物体7的吸收和折射信号。
步骤2、依次启动中子源1和速度选择器3,设置第一等效波长为λ1;启动探测器6,设置曝光时间为t1;
利用探测器6按照曝光时间t1获取第一背景投影图像I1后,依次关闭中子源1和速度选择器3;
步骤3、将被成像物体7放置到相位光栅4的视场中央,依次启动中子源1和速度选择器3,设置第一等效波长为λ1,并利用探测器6按照曝光时间t1获取被成像物体7的第一投影图像I′1后,依次关闭中子源1、速度选择器3和探测器6;
以中子光栅干涉仪固定在右半腰p2/4为例。探测器6获取的被成像物体7的第一投影图像I′1满足:
I′1=I1×exp(-Tλ1)×S(p2/4+dαλ1) (3.1)
式(3.1)中,Tλ1是被成像物体7在等效波长λ1的吸收信号;S()是中子光栅干涉仪的光强曲线(图2所示);p2是分析光栅5的周期;αλ1是被成像物体7在等效波长λ1的折射信号。对式(3.1)取对数,得到
-ln(I′1/I1)=Tλ1-lnS(p2/4+dαλ1) (3.2)
被成像物体7对中子的折射信号αλ1是非常小的,满足αλ1<<(p2/4d);对于小折射信号,能够合理地对ln S(p2/4+dαλ1)作一阶线性近似,将非线性成像方程简化为线性方程,
式(3.3)代入式(3.2)可得到,
K1-ln(I′1/I1)=Tλ1-K2×αλ1 (3.4)
式(3.4)中,常数K1满足K1=lnS(p2/4);S(p2/4)为中子光栅干涉仪的光强曲线在p2/4处的数值;常数K2满足 为中子光栅干涉仪的光强曲线的一阶导数在p2/4处的数值。
如图3所示,被成像物体7的吸收信号Tλ1随波长的变化规律满足,
Tλ1=C1×λ1 (3.5)
其中C1是与波长无关的常数。
如图4所示,被成像物体7的折射信号αλ1随波长的变化规律满足,
αλ1=C2×λ12 (3.6)
其中C2是与波长无关的常数。
式(3.5)、(3.6)代入式(3.4)得到,
K1-ln(I′1/I1)=C1×λ1-K2×C2×λ12 (3.7)
步骤4、依次启动中子源1和速度选择器3,设置第二等效波长为λ2;启动探测器6,设置曝光时间为t2;
利用探测器6按照曝光时间t2获取第二背景投影图像I2后,依次关闭中子源1和速度选择器3;
步骤5、将被成像物体7放置到相位光栅4的视场中央,依次启动中子源1和速度选择器3,设置第二等效波长为λ2,并利用探测器6按照曝光时间t2获取被成像物体7的第二投影图像I′2后,依次关闭中子源1、速度选择器3和探测器6;
以中子光栅干涉仪工作固定在右半腰p2/4为例。探测器6获取的被成像物体7的第二投影图像I′2满足:
I′2=I2×exp(-Tλ2)×S(p2/4+dαλ2) (5.1)
式(5.1)中,Tλ2是被成像物体7在等效波长λ2的吸收信号;S()是中子光栅干涉仪的光强曲线(图2所示);p2是分析光栅5的周期;αλ2是被成像物体7在等效波长λ2的折射信号。对式(5.1)取对数,得到
-ln(I′2/I2)=Tλ2-lnS(p2/4+dαλ2) (5.2)
被成像物体7对中子的折射信号αλ2是非常小的,满足αλ2<<(p2/4d);对于小折射信号,能够合理地对ln S(p2/4+dαλ2)作一阶线性近似,将非线性成像方程简化为线性方程,
式(5.3)代入式(5.2)可得到,
K1-ln(I′2/I2)=Tλ2-K2×αλ2 (5.4)
式(5.4)中,常数K1满足K1=lnS(p2/4);S(p2/4)为中子光栅干涉仪的光强曲线在p2/4处的数值;常数K2满足 为中子光栅干涉仪的光强曲线的一阶导数在p2/4处的数值。
如图3所示,被成像物体7的吸收信号Tλ2随波长的变化规律满足,
Tλ2=C1×λ2 (5.5)
其中C1是与波长无关的常数。
如图4所示,被成像物体7的折射信号αλ2随波长的变化规律满足,
αλ2=C2×λ22 (5.6)
其中C2是与波长无关的常数。
式(5.5)、(5.6)代入式(5.4)得到,
K1-ln(I′2/I2)=C1×λ2-K2×C2×λ22 (5.7)
步骤6、利用式(1)提取被成像物体7在等效波长λ的吸收信号Tλ
式(1)中,常数K1满足K1=lnS(p2/4)或K1=lnS(-p2/4),其中,p2是分析光栅5的周期;S(p2/4)为中子光栅干涉仪的光强曲线在p2/4处的数值。
利用式(3.7)、(5.7),得到,
利用式(6.1)、(3.5),得到被成像物体7在等效波长λ的吸收信号Tλ
图5为被成像物体7的吸收信号的提取结果图。以直径5毫米的钛圆柱作为被成像物体7,等效波长λ为4埃。如图5所示,利用式(1)提取的吸收信号与理论值吻合的很好,证实了本发明能够定量提取被成像物体7的吸收信号。
步骤7、利用式(2)提取被成像物体7在等效波长λ的折射信号αλ
式(2)中,常数K2满足其中,为中子光栅干涉仪的光强曲线的一阶导数在p2/4处的数值。
利用式(3.7)、(5.7),得到,
利用式(7.1)、(3.6),得到被成像物体7的等效波长λ时的折射信号αλ
图6为被成像物体7的折射信号的提取结果图。以直径5毫米的钛圆柱作为被成像物体7,等效波长λ为4埃。根据图6,利用式(2)提取的折射信号与理论值吻合的很好,证实了本发明能够定量提取被成像物体7的折射信号。
以被成像物体7在等效波长λ的吸收信号Tλ和折射信号αλ作为成像方法的结果。

Claims (1)

1.一种双波长中子光栅干涉仪的成像方法,所述中子光栅干涉仪包括:中子源(1)、源光栅(2)、速度选择器(3)、相位光栅(4)、分析光栅(5)和探测器(6);在所述速度选择器(3)和相位光栅(4)之间设置有被成像物体(7);所述被成像物体(7)贴于所述相位光栅(4)的内侧设置;在所述相位光栅(4)的外侧设置有所述分析光栅(5);所述相位光栅(4)到所述分析光栅(5)的轴向距离为d;所述探测器(6)贴于所述分析光栅(5)的外侧;其特征是,所述成像方法按如下步骤进行:
步骤1、固定所述相位光栅(4)和所述分析光栅(5),并移动所述源光栅(2),移动距离为所述源光栅(2)的四分之一周期,使得所述中子光栅干涉仪固定在光强曲线的半腰位置;所述移动方向为同时垂直于光轴和光栅栅条的方向;
步骤2、依次启动所述中子源(1)和所述速度选择器(3),设置第一等效波长为λ1;启动所述探测器(6),设置曝光时间为t1;
利用所述探测器(6)按照所述曝光时间t1获取第一背景投影图像I1后,依次关闭所述中子源(1)和所述速度选择器(3);
步骤3、将所述被成像物体(7)放置到所述相位光栅(4)的视场中央,依次启动所述中子源(1)和所述速度选择器(3),设置第一等效波长为λ1,并利用所述探测器(6)按照所述曝光时间t1获取所述被成像物体(7)的第一投影图像I′1后,依次关闭所述中子源(1)、所述速度选择器(3)和所述探测器(6);
步骤4、依次启动所述中子源(1)和所述速度选择器(3),设置第二等效波长为λ2;启动所述探测器(6),设置曝光时间为t2;
利用所述探测器(6)按照所述曝光时间t2获取第二背景投影图像I2后,依次关闭所述中子源(1)和所述速度选择器(3);
步骤5、将所述被成像物体(7)放置到所述相位光栅(4)的视场中央,依次启动所述中子源(1)和所述速度选择器(3),设置第二等效波长为λ2,并利用所述探测器(6)按照所述曝光时间t2获取所述被成像物体(7)的第二投影图像I′2后,依次关闭所述中子源(1)、所述速度选择器(3)和所述探测器(6);
步骤6、利用式(1)提取所述被成像物体(7)在等效波长λ的吸收信号Tλ
式(1)中,常数K1满足K1=lnS(p2/4)或K1=lnS(-p2/4),其中,p2是所述分析光栅(5)的周期;S(p2/4)为所述中子光栅干涉仪的光强曲线在p2/4处的数值;
步骤7、利用式(2)提取所述被成像物体(7)在等效波长λ的折射信号αλ
式(2)中,常数K2满足其中,为所述中子光栅干涉仪的光强曲线的一阶导数在p2/4处的数值;
以所述被成像物体(7)在等效波长λ的吸收信号Tλ和折射信号αλ作为所述成像方法的结果。
CN201710478922.7A 2017-06-22 2017-06-22 双波长中子光栅干涉仪的成像方法 Expired - Fee Related CN107290360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710478922.7A CN107290360B (zh) 2017-06-22 2017-06-22 双波长中子光栅干涉仪的成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710478922.7A CN107290360B (zh) 2017-06-22 2017-06-22 双波长中子光栅干涉仪的成像方法

Publications (2)

Publication Number Publication Date
CN107290360A CN107290360A (zh) 2017-10-24
CN107290360B true CN107290360B (zh) 2019-07-19

Family

ID=60097469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710478922.7A Expired - Fee Related CN107290360B (zh) 2017-06-22 2017-06-22 双波长中子光栅干涉仪的成像方法

Country Status (1)

Country Link
CN (1) CN107290360B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896584B (zh) * 2018-05-18 2020-11-27 合肥工业大学 基于双探测器光栅干涉仪的单次曝光x射线暗场成像方法
CN110133012B (zh) * 2019-07-02 2022-01-18 合肥工业大学 基于三探测器光栅干涉仪的单次曝光多模式x射线成像方法
CN110567814B (zh) * 2019-08-26 2024-02-20 中国科学院地质与地球物理研究所 一种天然气水合物沉积物三轴力学试验中子成像方法
CN111595877B (zh) * 2020-05-27 2022-03-29 合肥工业大学 一种x射线衍射增强成像的多衬度图像提取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104970815A (zh) * 2014-04-04 2015-10-14 曹红光 基于光栅相位衬度和光子计数的x射线成像系统及方法
CN105852895A (zh) * 2016-04-29 2016-08-17 合肥工业大学 单次曝光的硬x射线光栅干涉仪的信息提取新方法
CN106618623A (zh) * 2017-01-11 2017-05-10 合肥工业大学 一次曝光的硬x射线光栅干涉仪的成像方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207194B2 (en) * 2013-03-07 2015-12-08 Lawrence Livermore National Security, Llc Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
US10117629B2 (en) * 2014-12-03 2018-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High energy grating techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104970815A (zh) * 2014-04-04 2015-10-14 曹红光 基于光栅相位衬度和光子计数的x射线成像系统及方法
CN105852895A (zh) * 2016-04-29 2016-08-17 合肥工业大学 单次曝光的硬x射线光栅干涉仪的信息提取新方法
CN106618623A (zh) * 2017-01-11 2017-05-10 合肥工业大学 一次曝光的硬x射线光栅干涉仪的成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Single-shot x-ray phase imaging with grating interferometry and photon-counting detectors;Zhili Wang et al.;《OPTICS LETTERS》;20140215;第39卷(第4期);877-879
Wavelength-dispersive dark-field contrast: micrometre structure resolution in neutron imaging with gratings;M. Strobl et al.;《J. Appl. Cryst. 》;20161231;第49卷;569-573

Also Published As

Publication number Publication date
CN107290360A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107290360B (zh) 双波长中子光栅干涉仪的成像方法
Zuo et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination
Lee et al. Single-exposure quantitative phase imaging in color-coded LED microscopy
Liu et al. Deep learning‐based color holographic microscopy
US9830501B2 (en) High throughput partial wave spectroscopic microscopy and associated systems and methods
CN104062233B (zh) 精密表面缺陷散射三维显微成像装置
US6885442B1 (en) Phase determination of a radiation wave field
US11022731B2 (en) Optical phase retrieval systems using color-multiplexed illumination
CA2579958A1 (en) Apparatus and method for producing a calibrated raman spectrum
Bostan et al. Variational phase imaging using the transport-of-intensity equation
KR102246439B1 (ko) 기계학습 알고리즘을 활용한 신속한 3차원 단층촬영의 정규화 방법 및 장치
Claveau et al. Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy
Lee et al. Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data
Lee et al. Color-coded LED microscopy for quantitative phase imaging: Implementation and application to sperm motility analysis
Nogo et al. Identification of black microplastics using long-wavelength infrared hyperspectral imaging with imaging-type two-dimensional Fourier spectroscopy
Lin et al. Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm
Zhou et al. Fast automatic multiple positioning for lensless coherent diffraction imaging
Ma et al. Light-field tomographic fluorescence lifetime imaging microscopy
CN107238616B (zh) 基于中子光栅干涉仪的暗场成像方法
CN104280120B (zh) 一种光谱带宽测量方法和装置
Juntunen et al. Hyperspectral three-dimensional absorption imaging using snapshot optical tomography
Phillips et al. Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope
KR20180081657A (ko) 디지털 마이크로미러 소자와 시간 복합 구조화 조명을 이용한 구조화 조명 현미경 시스템 및 그 동작 방법
Bai et al. Ptychographic microscopy via wavelength scanning
Zhang et al. Optical design and laboratory test of an internal pushbroom hyperspectral microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190719