CN107282900A - 一种钢连铸坯中MnS夹杂物尺寸预测方法 - Google Patents

一种钢连铸坯中MnS夹杂物尺寸预测方法 Download PDF

Info

Publication number
CN107282900A
CN107282900A CN201710470968.4A CN201710470968A CN107282900A CN 107282900 A CN107282900 A CN 107282900A CN 201710470968 A CN201710470968 A CN 201710470968A CN 107282900 A CN107282900 A CN 107282900A
Authority
CN
China
Prior art keywords
mrow
msub
mns
node
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710470968.4A
Other languages
English (en)
Other versions
CN107282900B (zh
Inventor
罗森
王冰钰
陈耀
赵群
王卫领
朱苗勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710470968.4A priority Critical patent/CN107282900B/zh
Publication of CN107282900A publication Critical patent/CN107282900A/zh
Application granted granted Critical
Publication of CN107282900B publication Critical patent/CN107282900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明涉及一种钢连铸坯中MnS夹杂物尺寸预测方法。该方法包括如下步骤:根据钢连铸凝固过程固液界面推进速率V和温度梯度G获取一次枝晶臂距离λ1;将一次枝晶臂距离λ1带入节点i的面积Ai与节点i的映射关系、以及节点j的面积Aj与节点j的映射关系;根据两个映射关系、以及计算域中控制单元体积内溶质元素Mn和S质量守恒特性,获取计算域内MnS夹杂物析出质量;根据MnS夹杂物析出质量获取MnS夹杂物的半径值。由此,建立了钢中MnS夹杂物尺寸与连铸坯凝固枝晶组织枝晶的定量关系,能够根据连铸坯凝固组织定量预测钢中MnS夹杂物尺寸,为连铸坯MnS夹杂物控制提供了新思路。

Description

一种钢连铸坯中MnS夹杂物尺寸预测方法
技术领域
本发明涉及一种钢连铸坯中MnS夹杂物尺寸预测方法。
背景技术
连铸坯在凝固过程中,随着枝晶生长,溶质元素向液相中排出,富集在枝晶间残余液相中。当枝晶间浓缩钢液内Mn和S元素溶质浓度积超过平衡浓度时,MnS夹杂物将会形核长大。MnS夹杂物是一种典型的塑性夹杂物,容易在后续热加工过程延展成长条形夹杂物,严重影响钢的抗拉强度、塑性等机械性能,容易造成板材Z向性能不合,以及钢材服役过程中钢基体与MnS夹杂物接触位置应力集中而产生裂纹。此外,MnS 夹杂物与钢基体的电极电位不同,在腐蚀环境下,在界面处易发生电化学腐蚀。因此,连铸坯中MnS夹杂物形态和分布控制对于高品质钢生产至关重要。
由于MnS塑性夹杂物对钢机械性能的不利影响早被人熟知,研究者在上世纪初便开展了大量研究工作,并由Sims和Dahle首次根据夹杂物形貌特征将MnS夹杂物分为三类,分别为Ⅰ类:凝固过程随机形成的球状液态硫化物,Ⅱ类:晶界处形成的棒状共晶硫化物,III类:凝固过程形成的多边形或小晶面固态硫化物。无论何种类型的MnS夹杂物,在后续热轧过程中将不可避免地发生位移和方向重构等弹塑性变形,Ⅰ类和 III类MnS夹杂物通常压延成椭圆形夹杂物,对钢的塑性和机械性能影响较小,而Ⅱ类MnS夹杂物由于具有枝晶特性,将会压延成平面长条形,不仅影响钢机械性能各向异性,还将造成应力集中使得夹杂物尖端与钢基体接触位置容易成为裂纹孕育点。因此,大颗粒和Ⅱ类MnS夹杂物成为了钢中MnS夹杂物控制的重点。为此,在过去几十年里,研究者对钢中MnS夹杂物类型和尺寸控制开展了大量实验研究工作。部分研究者采用Ca或者稀土REM处理方式,对钢中MnS夹杂物形态进行改性,以获得球状MnS夹杂物;部分研究者采用氧化物冶金思想,通过Al、Mn-Si、 Mn-Ti不同脱氧方式产生的高熔点氧化物,作为凝固后期MnS形核质点,细化硫化物尺寸;部分研究者研究了定向凝固条件下,不同冷却条件对 MnS夹杂物形态和尺寸的影响;部分研究者还研究了不同热处理工艺和轧制工艺对MnS夹杂物形态和尺寸的影响。所有这些研究工作基本覆盖了钢种冶炼、凝固和热处理工艺流程,较好地阐述了不同脱氧工艺、冷却速率和加热条件对钢中MnS夹杂物形态和尺寸的影响。然而,无论采用何种工艺手段控制钢中MnS夹杂物形态和尺寸,钢凝固过程枝晶生长和溶质偏析都会对钢中MnS夹杂物析出和尺寸分布产生影响,进而影响最终钢产品质量。
由此可见,连铸作为钢铁生产的核心环节,其工艺对于钢中MnS夹杂物形态产生重要影响。为此,连铸过程钢中MnS夹杂物形态和尺寸控制应该是钢中MnS夹杂物控制的核心环节。然而到目前之外,缺乏钢连铸过程MnS夹杂物尺寸预测方面的研究,使得目前连铸坯MnS夹杂物控制大多依靠经验,缺乏相应的理论指导,连铸坯质量波动较大。
发明内容
(一)要解决的技术问题
本发明的目的在于提供一种钢连铸坯中MnS夹杂物尺寸预测方法。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提供一种钢连铸坯中MnS夹杂物尺寸预测方法,包括如下步骤:
S1、根据钢连铸凝固过程固液界面推进速率V和温度梯度G获取一次枝晶臂距离λ1
S2、将步骤S1中获取的一次枝晶臂距离λ1带入节点i的面积Ai与节点i的映射关系、以及节点j的面积Aj与节点j的映射关系;
S3、根据步骤S2中获得的两个映射关系、以及计算域中控制单元体积内溶质元素Mn和S质量守恒特性,获取计算域内MnS夹杂物析出质量;
S4、根据步骤S3中所获得的MnS夹杂物析出质量获取MnS夹杂物的半径值。
根据本发明,在步骤S1中,根据如下公式获取一次枝晶臂距离λ1
λ1=ζ·V-0.25G-0.5
其中,ζ为常数。
根据本发明,根据如下公式获取ζ:
其中,Tl为钢液相温度,单位为K;Ts为钢固相温度,单位为K; Dl为溶质液相扩散系数;k为溶质平衡分配系数;Γ为Gibbs-Thomson系数;
根据本发明,在步骤S2中,节点i的面积Ai与节点i的映射关系表示为如下公式:
在步骤S2中,节点j的面积Aj与节点j的映射关系表示为如下公式:
上述两个公式中,N为总节点数。
根据本发明,在步骤S3中,控制单元体积内溶质元素Mn和S质量守恒的特性表示为如下公式:
其中,M为固相节点数;N为总节点数;为i节点开始凝固时 j节点由于MnS析出分别消耗的溶质Mn的量,为重量百分含量;为 i节点开始凝固时j节点由于MnS析出分别消耗的溶质S的量,为重量百分含量;为t时刻钢液中溶质元素Mn的浓度,为重量百分含量;为t 时刻钢液中溶质元素S浓度,为重量百分含量;为t时刻固相节点i 处溶质元素Mn的浓度,为重量百分含量;为t时刻固相节点i处溶质元素S的浓度,为重量百分含量;为溶质元素Mn在钢液中的初始浓度,为重量百分含量;为溶质元素S在钢液中的初始浓度,为重量百分含量;Ai为节点i的面积,单位为m2;Aj为节点i的面积,单位为m2
根据本发明,在步骤S3中,根据如下公式获取计算域内MnS夹杂物析出质量:
其中,MMnS为MnS的摩尔质量;MS为S的摩尔质量;ρsteel为钢夹杂物质量密度,单位为kg/m3;N为总节点数;Cini,s为不同位置处MnS 夹杂物析出所消耗的S元素含量,为重量百分含量;mMnS为计算域内MnS 夹杂物析出质量,单位为kg。
根据本发明,在步骤S4中,根据如下公式获取MnS夹杂物的半径值:
其中,r为MnS夹杂物的半径值,单位为m;ρMnS为MnS夹杂物质量密度,单位为kg/m3;mMnS为计算域内MnS夹杂物析出质量,单位为 kg。
(三)有益效果
本发明的有益效果是:
本发明提供了一种钢连铸坯中MnS夹杂物尺寸预测方法,建立了钢中MnS夹杂物尺寸与连铸坯凝固枝晶组织枝晶的定量关系(即与一次枝晶臂距离λ1的定量关系),能够根据连铸坯凝固组织定量预测钢中MnS 夹杂物尺寸,为连铸坯MnS夹杂物控制提供了新思路。
附图说明
图1为连铸示意图;
图2为如下具体实施方式中预测出的重轨钢U75V连铸坯中MnS夹杂物的尺寸分布图;
图3为如下具体实施方式中预测重轨钢U75V连铸坯中MnS夹杂物的尺寸的流程示意图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
参照图1为连铸示意图,连铸机总长度为20m,为节约计算时间,
可以选取断面380mm×280mm的重轨钢U75V连铸坯横截面的1/4作为研究对象。重轨钢U75V成分如表1所示。
表1 重轨钢U75V钢主要成分,wt.%
本实施例提供一种钢连铸坯中MnS夹杂物尺寸预测方法,包括如下步骤:
S1、根据钢连铸凝固过程固液界面推进速率V和温度梯度G获取一次枝晶臂距离λ1,具体可采用如下公式:
λ1=ζ·V-0.25G-0.5
其中,ζ为常数,与合金体系有关。对于Fe-C二元合金体系,通过如下公式获取ζ:
其中,Tl为钢液相温度,单位为K;Ts为钢固相温度,单位为K; Dl为溶质液相扩散系数;k为溶质平衡分配系数;Γ为Gibbs-Thomson系数。其中,钢液相温度Tl和钢固相温度Ts可以经过本领域技术人员的公知方式获得,溶质液相扩散系数Dl、溶质平衡分配系数k、Gibbs-Thomson 系数Γ均可由本领域技术人员在现有技术中查到。
S2、将步骤S1中获取的一次枝晶臂距离λ1带入节点i的面积Ai与节点i的映射关系、以及节点j的面积Aj与节点j的映射关系,其中,节点i的面积Ai与节点i的映射关系、以及节点j的面积Aj与节点j的映射关系分别表示为如下公式:
上述两个公式中,N为总节点数。
S3、根据步骤S2中获得的两个映射关系、以及计算域中控制单元体积(即计算域中的一个节点)内溶质元素Mn和S质量守恒特性,获取计算域内MnS夹杂物析出质量。其中,控制单元体积内溶质元素Mn和S 质量守恒的特性表示为如下公式:
其中,M为固相节点数;N为总节点数;为i节点开始凝固时 j节点由于MnS析出分别消耗的溶质Mn的量,为重量百分含量;为 i节点开始凝固时j节点由于MnS析出分别消耗的溶质S的量,为重量百分含量;为t时刻钢液中溶质元素Mn的浓度,为重量百分含量;为t 时刻钢液中溶质元素S浓度,为重量百分含量;为t时刻固相节点i 处溶质元素Mn的浓度,为重量百分含量;为t时刻固相节点i处溶质元素S的浓度,为重量百分含量;为溶质元素Mn在钢液中的初始浓度,为重量百分含量;为溶质元素S在钢液中的初始浓度,为重量百分含量;Ai为节点i的面积,单位为m2;Aj为节点i的面积,单位为 m2
计算域内MnS夹杂物析出质量通过如下公式获取:
其中,MMnS为MnS的摩尔质量;MS为S的摩尔质量;ρsteel为钢夹杂物质量密度,kg/m3;N为总节点数;Cini,s为不同位置处MnS夹杂物析出所消耗的S元素含量,为重量百分含量;mMnS为计算域内MnS夹杂物析出质量,单位为kg。
S4、钢连铸过程,随着温度降低,钢中溶质元素溶解度降低,当钢中Mn和S溶质元素含量超过临界平衡浓度时,钢液中将会析出MnS夹杂物。假设MnS析出过程以球型形核和长大,在二维情况下,MnS夹杂物成圆形,那么,根据步骤S3中所获得的MnS夹杂物析出质量获取MnS 夹杂物的半径值,即可表示其尺寸。具体地,根据如下公式获取MnS夹杂物的半径值:
其中,r为MnS夹杂物的半径值,单位为m;ρMnS为MnS夹杂物质量密度,单位为kg/m3;mMnS为计算域内MnS夹杂物析出质量,单位为 kg。
由此,建立了钢中MnS夹杂物尺寸与连铸坯凝固枝晶组织枝晶的定量关系(即与一次枝晶臂距离λ1的定量关系),能够根据连铸坯凝固组织定量预测钢中MnS夹杂物尺寸,为连铸坯MnS夹杂物控制提供了新思路。根据上述方法,预测出重轨钢U75V连铸坯中MnS夹杂物尺寸分布如图2所示,铸坯表面MnS夹杂物尺寸较小,直径dMnS基本在0.000003m (即3μm)以内,铸坯中心MnS夹杂物尺寸较大,达到0.00001m(即 10μm)以上。
为更加方便理解上述实施例中的各步骤及应用的公式,如下进行详细解释,但不应视为对上述各步骤及应用的公式的限定。
1)连铸温度场计算
钢连铸过程的二维凝固传热控制方程如下:
式中:T为温度,单位为℃;ρ为密度,单位为kg/m3;cp为热容,单位为J/(kg·℃);keff为导热系数,单位为W/(m·℃);L为凝固潜热,单位为J/kg;fs为固相分率;t为时间,单位为s;x和y分别为铸坯横截面宽面和窄面方向长度,单位为m。
为了计算整个铸流铸坯温度分布,将整个铸流划分为连续单元切片,切片产生于连铸结晶器弯月面处,整个切片初始温度与浇铸温度相等。随后单元切片以拉速相同的运动速度从结晶器向下运动,直到消失于连铸坯火焰切割处。单元切片温度采用有效体积法并结合不同位置处边界条件所确定:
(a)结晶器
在结晶器冷却区,结晶器传热采用Davies等提出的经验公式
式中:q为热流密度,单位为W/m2;z为离弯月面的距离,单位为m; vc为拉速,单位为m/s。在本实施例中,结晶器有效高度取850mm,拉速为0.68m/min(约0.0113m/s)。
(b)二冷区
在本实施例中,二冷区包括5个喷水冷却区(总长度10.36m)和1个空冷区(长度9.64m),见下表2。
表2 方坯铸机各区冷却长度和水量
连铸二冷区传热边界条件较为复杂,二冷区铸坯表面热量传递包括:铸坯表面辐射散热、铸坯表面与冷却水雾间的强制对流换热、冷却水加热蒸发传热、铸坯与支撑辊接触导热等。为简化处理,将二冷区冷却水加热蒸发传热、铸坯与支撑辊接触导热等传热方式带走的热量,采用增大对流系数的方式来考虑。因此连铸二冷区的传热可简化表示为对流传热和辐射传热之和。
q=h(Tsurf-Tamb)+δε[(Tsurf+273.15)4-(Tamb+273.15)4] (3)
式中:q为热流密度,单位为W/m2;h为综合对流换热系数,单位为W/(m2·℃);Tsurf为铸坯表面温度,单位为℃;Tamb为环境温度,单位为℃;σ为Stefan-Boltzman常数,5.67×10-8W/(m2·K4);ε为铸坯表面黑度系数,取0.8。
(c)空冷区
在空冷区内,铸坯表面主要以辐射的方式向外散热,辐射换热的热流公式如下:
q=σε[(Tsurf+273.15)4-(Tamb+273.15)4] (4)
结合单元切片所处位置和经历的时间关系,采用显示差分法求得单元切片各节点温度,从而求得铸坯不同位置处冷却速率CR,温度梯度G 和钢连铸凝固过程固液界面推进速率(也即凝固速率)V分别如下:
式中:Tl为液相线温度,单位为℃;Ts为固相线温度,单位为℃;△t 为凝固时间,单位为s;lm为两相区长度,单位为m。
2)连铸坯溶质微观偏析计算
假设枝晶形貌为横截面为正六边形,钢凝固过程中枝晶横截面一维溶质扩散控制方程为
初始条件:当t=0时,
边界条件:当x=0,λ1/2时,
以上各式中,λ1为一次枝晶间距,单位为m;Cl,i,Cs,i分别为元素i在钢液中的初始浓度,液相l和固相s中溶质浓度,为重量百分含量; Ds,i(T)为溶质元素i在固相s中的扩散系数,单位为m2/s;t为时间,单位为s;分别为溶质元素i在s/l,δ/l,γ/l界面平衡分配系数,具体物性参数见表3。
表3 元素的平衡分配系数和扩散系数
一次枝晶间距λ1为连铸坯凝固组织特征参数,其与钢连铸工艺冷却条件紧密相连,其值与钢连铸凝固过程固液界面推进速率V和温度梯度 G有关,满足如下关系式:
λ1=ζ·V-0.25G-0.5 (9)
式中:ζ为常数,与合金体系有关。对于Fe-C二元合金体系,满足如下关系式:
式中:Tl和Ts为钢固液相温度,单位为K;Dl为溶质液相扩散系数; k为溶质平衡分配系数,2.0*10-9m2;/S;Γ为Gibbs-Thomson系数, 1.9*10-7K·m。
钢液相线温度Tl和凝固过程中δ/γ相转变开始温度TAr4分别采用如下表达式:
式中:为元素i在钢液中的初始浓度;为元素i在δ/l相界面处液相中的浓度;为溶质元素i在δ/l界面平衡分配系数;mi和ni分别为伪二元Fe-i相图中液相线和Ar4线斜率,具体参数见表3。
钢固相温度Ts由如下公式计算:
式中:为元素i在钢液中的初始浓度;γi为是伪二元Fe-i相图中固相线斜率。
3)连铸坯MnS析出计算
随着钢凝固过程的推进,钢液中溶质元素Mn、S在固液界面前沿富集。当溶质元素浓度超过钢液中MnS平衡溶解度时,将以[Mn]+[S]=(MnS) 反应析出MnS,其标准吉布斯自由能变ΔGΘ(J/mol)采用下式计算:
液相中:ΔGΘ=-165248.81+90.90T (14)
δ相中:ΔGΘ=-202598.52+81.77T (15)
γ相中:ΔGΘ=-176892.30+57.95T (16)
此时,固液界面前沿剩余溶质元素浓度为平衡浓度:
式中:为t时刻钢液中溶质元素Mn的浓度;为t时刻钢液中溶质元素S浓度;Kl,MnS为MnS的平衡系数;为某一时间不同位置处MnS夹杂物析出所消耗的Mn元素含量,wt%;为某一时间不同位置处MnS夹杂物析出所消耗的S元素含量,wt%;MMnS为MnS的摩尔质量;MS为S的摩尔质量;fMn和fS分别为钢液中溶质元素Mn,S的活度系数,可由下式计算所得:
式中:%Cl,i为该节点i坐标处的浓度;%Cl,j为该节点j坐标处的浓度;为活度相互作用系数,如表4所示。
表4 1873K时活度相互作用系数
任意时刻t,无论是否有MnS夹杂的析出,控制单元体积内溶质元素Mn和S均满足质量守恒,即:
式中:其中,M为固相节点数;N为总节点数;为i节点开始凝固时j节点由于MnS析出分别消耗的溶质Mn的量,为重量百分含量;为i节点开始凝固时j节点由于MnS析出分别消耗的溶质S的量,为重量百分含量;为t时刻钢液中溶质元素Mn的浓度,为重量百分含量;为t时刻钢液中溶质元素S浓度,为重量百分含量;为t 时刻固相节点i处溶质元素Mn的浓度,为重量百分含量;为t时刻固相节点i处溶质元素S的浓度,为重量百分含量;为溶质元素Mn在钢液中的初始浓度,为重量百分含量;为溶质元素S在钢液中的初始浓度,为重量百分含量;Ai为节点i的面积,m2;Aj为节点j的面积, m2;可由如下公式求得:
钢液凝固过程,整个计算域内所析出的MnS夹杂物质量mMnS可由如下公式决定:
式中:mMnS为计算域内MnS夹杂物析出质量,单位为kg;MMnS和 MS分别为MnS和S的摩尔质量;ρsteel为钢夹杂物质量密度,单位为kg/m3
假设MnS析出过程以球型形核和长大,在二维情况下,MnS夹杂物成圆形,其半径可由如下公式求得:
式中:r为MnS夹杂物的半径值,单位为m;ρMnS为MnS夹杂物质量密度,单位为kg/m3;mMnS为计算域内MnS夹杂物析出质量,单位为 kg。
总体而言,参照图3,首先需要向模型中输入铸机特征参数(结晶器长度、铸坯尺寸、二冷各区位置和长度、压下辊位置、压下辊径等),连铸工艺参数(浇铸温度、拉速、结晶器冷却水流量、进出口温差、二冷水各区流量等),钢的热物性参数(密度、导热系数、比热、焓变、等),根据连铸坯凝固传热计算,采用有限差分方法获得铸坯不同位置处冷却速率CR,温度梯度G和凝固速率V,作为连铸坯溶质微观偏析计算的输入条件。结合连铸坯溶质微观偏析计算,确定不同位置处枝晶尺寸、溶质偏析程度和MnS夹杂物析出量,从而获得不同位置处MnS夹杂物尺寸。
综上,还考虑了钢中溶质元素和浇铸条件和连铸坯MnS夹杂物尺寸的影响,能够根据钢连铸浇铸工艺条件,实时确定钢连铸坯MnS夹杂物尺寸和分布规律,能够为优化连铸工艺,控制连铸坯中MnS夹杂物形态提供理论指导。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,包括如下步骤:
S1、根据钢连铸凝固过程固液界面推进速率V和温度梯度G获取一次枝晶臂距离λ1
S2、将步骤S1中获取的一次枝晶臂距离λ1带入节点i的面积Ai与节点i的映射关系、以及节点j的面积Aj与节点j的映射关系;
S3、根据步骤S2中获得的两个映射关系、以及计算域中控制单元体积内溶质元素Mn和S质量守恒特性,获取计算域内MnS夹杂物析出质量;
S4、根据步骤S3中所获得的MnS夹杂物析出质量获取MnS夹杂物的半径值。
2.根据权利要求1所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
在步骤S1中,根据如下公式获取一次枝晶臂距离λ1
λ1=ζ·V-0.25G-0.5
其中,ζ为常数。
3.根据权利要求2所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
根据如下公式获取ζ:
<mrow> <mi>&amp;zeta;</mi> <mo>=</mo> <mn>4.3</mn> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>l</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>D</mi> <mi>l</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>&amp;Gamma;</mi> </mrow> <mi>k</mi> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mn>0.25</mn> </msup> <mo>;</mo> </mrow>
其中,Tl为钢液相温度,单位为K;Ts为钢固相温度,单位为K;Dl为溶质液相扩散系数;k为溶质平衡分配系数;Γ为Gibbs-Thomson系数;
4.根据权利要求1至3中任一项所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
在步骤S2中,节点i的面积Ai与节点i的映射关系表示为如下公式:
<mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>&amp;lambda;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>8</mn> <msup> <mi>N</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msup> <mi>j</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
在步骤S2中,节点j的面积Aj与节点j的映射关系表示为如下公式:
<mrow> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>&amp;lambda;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>8</mn> <msup> <mi>N</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msup> <mi>j</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
上述两个公式中,N为总节点数。
5.根据权利要求4所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
在步骤S3中,控制单元体积内溶质元素Mn和S质量守恒的特性表示为如下公式:
<mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>M</mi> <mi>n</mi> </mrow> <mn>0</mn> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>M</mi> <mi>n</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>M</mi> <mi>n</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>Cin</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>M</mi> <mi>n</mi> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>S</mi> </mrow> <mn>0</mn> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>S</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>S</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>Cin</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>S</mi> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,M为固相节点数;N为总节点数;为i节点开始凝固时j节点由于MnS析出分别消耗的溶质Mn的量,为重量百分含量;为i节点开始凝固时j节点由于MnS析出分别消耗的溶质S的量,为重量百分含量;为t时刻钢液中溶质元素Mn的浓度,为重量百分含量;为t时刻钢液中溶质元素S浓度,为重量百分含量;为t时刻固相节点i处溶质元素Mn的浓度,为重量百分含量;为t时刻固相节点i处溶质元素S的浓度,为重量百分含量;为溶质元素Mn在钢液中的初始浓度,为重量百分含量;为溶质元素S在钢液中的初始浓度,为重量百分含量;Ai为节点i的面积,单位为m2;Aj为节点i的面积,单位为m2
6.根据权利要求1或5所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
在步骤S3中,根据如下公式获取计算域内MnS夹杂物析出质量:
<mrow> <msub> <mi>m</mi> <mrow> <mi>M</mi> <mi>n</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mn>6</mn> <mfrac> <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow> <mi>M</mi> <mi>n</mi> <mi>S</mi> </mrow> </msub> </mrow> <msub> <mi>M</mi> <mi>S</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>Cin</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>S</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,MMnS为MnS的摩尔质量;MS为S的摩尔质量;ρsteel为钢夹杂物质量密度,单位为kg/m3;N为总节点数;Cini,s为不同位置处MnS夹杂物析出所消耗的S元素含量,为重量百分含量;mMnS为计算域内MnS夹杂物析出质量,单位为kg。
7.根据权利要求1所述的钢连铸坯中MnS夹杂物尺寸预测方法,其特征在于,
在步骤S4中,根据如下公式获取MnS夹杂物的半径值:
<mrow> <mi>r</mi> <mo>=</mo> <msqrt> <mrow> <msub> <mi>m</mi> <mrow> <mi>M</mi> <mi>n</mi> <mi>S</mi> </mrow> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;pi;&amp;rho;</mi> <mrow> <mi>M</mi> <mi>n</mi> <mi>S</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow>
其中,r为MnS夹杂物的半径值,单位为m;ρMnS为MnS夹杂物质量密度,单位为kg/m3;mMnS为计算域内MnS夹杂物析出质量,单位为kg。
CN201710470968.4A 2017-06-20 2017-06-20 一种钢连铸坯中MnS夹杂物尺寸预测方法 Active CN107282900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710470968.4A CN107282900B (zh) 2017-06-20 2017-06-20 一种钢连铸坯中MnS夹杂物尺寸预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710470968.4A CN107282900B (zh) 2017-06-20 2017-06-20 一种钢连铸坯中MnS夹杂物尺寸预测方法

Publications (2)

Publication Number Publication Date
CN107282900A true CN107282900A (zh) 2017-10-24
CN107282900B CN107282900B (zh) 2019-03-05

Family

ID=60096556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710470968.4A Active CN107282900B (zh) 2017-06-20 2017-06-20 一种钢连铸坯中MnS夹杂物尺寸预测方法

Country Status (1)

Country Link
CN (1) CN107282900B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072747A (zh) * 2017-11-10 2018-05-25 中国航发北京航空材料研究院 一种高温合金夹杂面积定量估算方法
CN108213369A (zh) * 2018-01-05 2018-06-29 东北大学 一种降低重轨钢中a类夹杂物评级的连铸坯凝固组织控制方法
CN109785907A (zh) * 2019-01-28 2019-05-21 东北大学 一种钢液凝固过程中TiN夹杂物析出情况的预测方法
CN110765598A (zh) * 2019-10-11 2020-02-07 东北大学 一种钢液凝固过程MnS夹杂物析出情况的预测方法
CN110910967A (zh) * 2019-10-30 2020-03-24 东北大学 一种钢液凝固过程中CrN析出情况的预测方法
CN113770383A (zh) * 2021-09-16 2021-12-10 南京智能高端装备产业研究院有限公司 一种基于晶粒形貌预测确定增材制造成形工艺参数的方法
CN114441579A (zh) * 2022-01-07 2022-05-06 攀钢集团研究院有限公司 一种连铸坯枝晶间夹杂位置的检测方法
CN114850465A (zh) * 2022-06-15 2022-08-05 北京科技大学 一种钢水可浇性预测系统和方法
CN115862766A (zh) * 2023-01-31 2023-03-28 北京宝威新材科技有限公司 基于凝固偏析模型预测钢中MnS和MnS-MxOy夹杂物尺寸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152267A (zh) * 1995-03-29 1997-06-18 新日本制铁株式会社 连铸板坯的质量预测和质量控制
CN103192039A (zh) * 2013-04-18 2013-07-10 中冶赛迪工程技术股份有限公司 确定特厚板坯连铸机垂直段高度去除夹杂物的方法
JP2017024057A (ja) * 2015-07-24 2017-02-02 新日鐵住金株式会社 連続鋳造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152267A (zh) * 1995-03-29 1997-06-18 新日本制铁株式会社 连铸板坯的质量预测和质量控制
CN103192039A (zh) * 2013-04-18 2013-07-10 中冶赛迪工程技术股份有限公司 确定特厚板坯连铸机垂直段高度去除夹杂物的方法
JP2017024057A (ja) * 2015-07-24 2017-02-02 新日鐵住金株式会社 連続鋳造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEILINGWANG等: "Development of a CA-FVM Model withWeakened Mesh Anisotropy and Application to Fe-C Alloy", 《CRYSTALS》 *
斯考特 R.斯特瑞等: "浇注过程夹杂物的预测分析", 《山东金属学会2005炼钢学术交流会论文集》 *
罗森等: "钢连铸过程的溶质微观偏析模型", 《钢铁》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072747A (zh) * 2017-11-10 2018-05-25 中国航发北京航空材料研究院 一种高温合金夹杂面积定量估算方法
CN108072747B (zh) * 2017-11-10 2020-05-19 中国航发北京航空材料研究院 一种高温合金夹杂面积定量估算方法
CN108213369B (zh) * 2018-01-05 2020-07-17 东北大学 一种降低重轨钢中a类夹杂物评级的连铸坯凝固组织控制方法
CN108213369A (zh) * 2018-01-05 2018-06-29 东北大学 一种降低重轨钢中a类夹杂物评级的连铸坯凝固组织控制方法
CN109785907A (zh) * 2019-01-28 2019-05-21 东北大学 一种钢液凝固过程中TiN夹杂物析出情况的预测方法
CN109785907B (zh) * 2019-01-28 2023-06-09 东北大学 一种钢液凝固过程中TiN夹杂物析出情况的预测方法
CN110765598A (zh) * 2019-10-11 2020-02-07 东北大学 一种钢液凝固过程MnS夹杂物析出情况的预测方法
CN110910967A (zh) * 2019-10-30 2020-03-24 东北大学 一种钢液凝固过程中CrN析出情况的预测方法
CN113770383A (zh) * 2021-09-16 2021-12-10 南京智能高端装备产业研究院有限公司 一种基于晶粒形貌预测确定增材制造成形工艺参数的方法
CN113770383B (zh) * 2021-09-16 2023-08-18 南京智能高端装备产业研究院有限公司 一种基于晶粒形貌预测确定增材制造成形工艺参数的方法
CN114441579A (zh) * 2022-01-07 2022-05-06 攀钢集团研究院有限公司 一种连铸坯枝晶间夹杂位置的检测方法
CN114441579B (zh) * 2022-01-07 2024-05-28 攀钢集团研究院有限公司 一种连铸坯枝晶间夹杂位置的检测方法
CN114850465A (zh) * 2022-06-15 2022-08-05 北京科技大学 一种钢水可浇性预测系统和方法
CN115862766A (zh) * 2023-01-31 2023-03-28 北京宝威新材科技有限公司 基于凝固偏析模型预测钢中MnS和MnS-MxOy夹杂物尺寸的方法

Also Published As

Publication number Publication date
CN107282900B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN107282900A (zh) 一种钢连铸坯中MnS夹杂物尺寸预测方法
Siqueira et al. The columnar to equiaxed transition during solidification of Sn–Pb alloys
Lv et al. Centerline segregation mechanism of twin-roll cast A3003 strip
Zhao et al. Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip
CN101927432B (zh) 一种高强塑高锰带钢的制造方法
Hunter et al. Phase formation during solidification of AISI 304 austenitic stainless steel
Liu et al. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting
Zhang et al. Evolution of microstructures at a wide range of solidification cooling rate in a Ni-based superalloy
CN112570675B (zh) 宽厚板连铸板坯轻压下过程最小理论压下量的确定方法
CN102672130A (zh) 一种降低Cr、Mo钢轧材框形偏析的方法
Daaland et al. Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality
US20120006502A1 (en) System and method for casting and rolling metal
CN108213369A (zh) 一种降低重轨钢中a类夹杂物评级的连铸坯凝固组织控制方法
Lee et al. Sheet fabrication of bulk amorphous alloys by twin-roll strip casting
Lee et al. Continuous fabrication of bulk amorphous alloy sheets by twin-roll strip casting
CN107243611B (zh) 一种大方坯连铸凝固末端单辊压下位置确定方法
Berg et al. Gauge reduction in twin-roll casting of an AA5052 aluminium alloy: the effects on microstructure
Smyrnov et al. Application of numerical model of continuous cast bloom crystallization to improve the efficiency of mechanical soft reduction technology
Essadiqi et al. Twin roll casting of magnesium
Watari et al. Warm deep drawing of wrought magnesium alloy sheets produced by semi-solid roll strip-casting process
Hadadzadeh et al. Mathematical modeling of the twin roll casting process for AZ31 magnesium alloy-Effect of set-back distance
Tan et al. Numerical simulation on solidification behavior and structure of 38CrMoAl large round bloom using CAFE model
Pei et al. Simulation of critical cooling rate and process conditions for metallic glasses in vertical type twin-roll casting
Yang et al. Analysis about forming mechanism of equiaxed crystal zone for 1Cr18Ni9Ti stainless steel twin-roll thin strip
Bai et al. Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant