CN107275646A - 一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 - Google Patents
一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 Download PDFInfo
- Publication number
- CN107275646A CN107275646A CN201710459015.8A CN201710459015A CN107275646A CN 107275646 A CN107275646 A CN 107275646A CN 201710459015 A CN201710459015 A CN 201710459015A CN 107275646 A CN107275646 A CN 107275646A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- shell structure
- core shell
- noble metal
- exchange film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 51
- 239000000446 fuel Substances 0.000 title claims abstract description 17
- 239000011258 core-shell material Substances 0.000 title claims abstract description 10
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- -1 black phosphorus alkene Chemical class 0.000 claims abstract description 19
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 33
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052697 platinum Inorganic materials 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 239000001307 helium Substances 0.000 claims description 8
- 229910052734 helium Inorganic materials 0.000 claims description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 238000010792 warming Methods 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000005253 cladding Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 1
- 231100000572 poisoning Toxicity 0.000 abstract description 10
- 230000000607 poisoning effect Effects 0.000 abstract description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 26
- 239000010410 layer Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003863 metallic catalyst Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 241000790917 Dioxys <bee> Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
本发明属于燃料电池催化剂的制备领域,具体为一种核壳结构的质子交换膜燃料电池催化剂及其制备方法。其中贵金属的质量分数9~90%,黑磷烯的质量分数为10~91%。本发明的催化剂具有良好的抗SO2中毒的性能,能够提高燃料电池的稳定性及耐久性,具有非常重要的意义。
Description
技术领域
本发明属于燃料电池催化剂的制备领域,具体为一种二维层状材料黑磷烯包覆贵金属催化剂的核壳结构燃料电池催化剂。
背景技术
质子交换膜燃料电池以氢气为燃料、氧气(空气)为氧化剂,具有高功率、工作温度低、低污染甚至零污染等优点,被公认为理想的洁净能源。但氢气和氧气(空气)中存在二氧化硫等杂质气体,会毒化铂基催化剂,使得电池的性能大幅下降甚至失效。因而提高质子交换膜燃料电池催化剂抗二氧化硫中毒性能,是保障电池性能、提高电池稳定性的重要途径。
二氧化硫分子在铂表面的吸附能低于氢,会抢先占据铂表面并阻碍氢在铂表面的吸附。因而提高催化剂抗二氧化硫中毒性能,可以通过提高催化剂对二氧化硫的氧化能力,亦可通过降低二氧化硫在催化剂表面的吸附而实现。黑磷烯是一种二维材料,可沉积于催化剂表面形成保护层,阻碍二氧化硫在催化剂表面的吸附;同时由于其具有多元环状结构,可保障氢的顺利通过并吸附于催化剂表面而发生氧化反应。
发明内容
本发明目的旨在提供一种具有抗二氧化硫中毒性能的质子交换膜燃料电池催化剂及其制备方法。
实现上述目的的方案为:
一种核壳结构的质子交换膜燃料电池催化剂,所述催化剂为二维层状材料黑磷烯包覆的贵金属,催化剂的颗粒尺寸为1~100 nm。
贵金属的质量分数9~90%,黑磷烯的质量分数为10~91%,二者质量分数和为100%。
所述黑磷烯是以红磷为原料制备而成,其层数为1~20层。
贵金属为金、银、铂、钌、铑、钯、锇、铱中的一种或几种。
制备方法包括如下具体步骤:
1)将贵金属与红磷混合并在保护气氛下烘干;
2)将步骤1)所得贵金属与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在保护气氛下升温至500~800°C并保温2~4小时,而后降温至300~400 °C并保温2~4小时,最后冷却得到所述的核壳结构的质子交换膜燃料电池催化剂。
步骤1)和步骤3)中所述的保护气氛是氮气、氩气、氦气中的一种或氮气、氩气、氦气任意体积比的混合气体。
本发明的有益效果在于:
本发明通过在金属催化剂表面形成黑磷烯保护层,阻碍二氧化硫在催化剂表面的吸附,同时由于黑磷烯保护层具有多元环状结构,可保障氢的顺利通过并吸附于催化剂表面而发生氧化反应,使得催化剂在确保其催化性能的同时具有良好的抗二氧化硫中毒性能,能够提高燃料电池的稳定性能及寿命。
附图说明
图1为实施例1制得的催化剂的二氧化硫电化学氧化性能曲线。
将实施例1所制备的P@Pt催化剂做二氧化硫电化学氧化实验并与Pt/C催化剂做对比,结果显示催化剂在1.2 V 均出现了二氧化硫的氧化峰。但P@Pt催化剂的峰值明显比Pt/C催化剂小,说明P@Pt催化剂中Pt表面所吸附的二氧化硫少于Pt/C催化剂,即P@Pt催化剂具有较好的抗二氧化硫中毒的性能。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
1)将铂催化剂与红磷混合并在氮气气氛下烘干,其中铂颗粒的尺寸为1nm;
2)将步骤1)所得铂催化剂与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在氮气气氛下升温至800 °C并保温4小时,而后降温至400 °C并保温4小时,最后冷却得到具有抗二氧化硫中毒性能的燃料电池催化剂,其中黑磷烯的层数为1层,铂金属的质量分数90%,黑磷烯的质量分数为10%。
实施例2
1)将钯催化剂与红磷混合并在氦气气氛下烘干,其中铂颗粒的尺寸为100 nm;
2)将步骤1)所得钯催化剂与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在氦气气氛下升温至500 °C并保温2小时,而后降温至300 °C并保温2小时,最后冷却得到具有抗二氧化硫中毒性能的燃料电池催化剂,其中黑磷烯的层数为20层,钯金属的质量分数9%,黑磷烯的质量分数为91%。
实施例3
1)将铂金催化剂与红磷混合并在氩气气氛下烘干,其中铂颗粒的尺寸为50 nm;
2)将步骤1)所得铂金属催化剂与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在氩气气氛下升温至650 °C并保温3小时,而后降温至350 °C并保温3小时,最后冷却得到具有抗二氧化硫中毒性能的燃料电池催化剂,其中黑磷烯的层数为10层,铂金属的质量分数17%,黑磷烯的质量分数为83%。
实施例4
1)将钌催化剂与红磷混合并在体积比为1:1的氮气/氦气混合气氛下烘干,其中钌颗粒的尺寸为30 nm;
2)将步骤1)所得钌金属催化剂与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在体积比为1:1的氮气/氦气混合气氛下升温至700 °C并保温3.5小时,而后降温至320 °C并保温3小时,最后冷却得到具有抗二氧化硫中毒性能的燃料电池催化剂,其中黑磷烯的层数为15层,钌金属的质量分数12%,黑磷烯的质量分数为88%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (6)
1.一种核壳结构的质子交换膜燃料电池催化剂,其特征在于,所述催化剂为二维层状材料黑磷烯包覆的贵金属,催化剂的颗粒尺寸为1~100 nm。
2.根据权利要求1所述的催化剂,其特征在于,贵金属的质量分数9~90%,黑磷烯的质量分数为10~91%,二者质量分数和为100%。
3.根据权利要求1所述的催化剂,其特征在于,所述黑磷烯是以红磷为原料制备而成,其层数为1~20层。
4.根据权利要求1所述的催化剂,其特征在于,贵金属为金、银、铂、钌、铑、钯、锇、铱中的一种或几种。
5.一种制备如权利要求1-4任一所述的核壳结构的质子交换膜燃料电池催化剂的方法,其特征在于,包括如下具体步骤:
1)将贵金属与红磷混合并在保护气氛下烘干;
2)将步骤1)所得贵金属与红磷的混合物研磨;
3)将步骤2)所得研磨后的混合物置于管式炉中,在保护气氛下升温至500~800 °C并保温2~4小时,而后降温至300~400 °C并保温2~4小时,最后冷却得到所述的核壳结构的质子交换膜燃料电池催化剂。
6.根据权利要求5所述的核壳结构的质子交换膜燃料电池催化剂的制备方法,其特征在于,步骤1)和步骤3)中所述的保护气氛是氮气、氩气、氦气中的一种或氮气、氩气、氦气任意体积比的混合气体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710459015.8A CN107275646B (zh) | 2017-06-16 | 2017-06-16 | 一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710459015.8A CN107275646B (zh) | 2017-06-16 | 2017-06-16 | 一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107275646A true CN107275646A (zh) | 2017-10-20 |
CN107275646B CN107275646B (zh) | 2020-03-10 |
Family
ID=60066421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710459015.8A Expired - Fee Related CN107275646B (zh) | 2017-06-16 | 2017-06-16 | 一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107275646B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449449A (zh) * | 2018-10-26 | 2019-03-08 | 哈尔滨工业大学 | 一种抗so2毒化的燃料电池氧还原贵金属催化剂及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505523A (zh) * | 2015-01-13 | 2015-04-08 | 哈尔滨工业大学 | 一种铂基催化剂/石墨烯复合材料及其制备方法 |
CN104787736A (zh) * | 2015-04-04 | 2015-07-22 | 成都育芽科技有限公司 | 一种大规模制备双层结构黑磷的方法 |
CN105435780A (zh) * | 2015-12-29 | 2016-03-30 | 南京大学(苏州)高新技术研究院 | 一种担载纳米铂钌合金的掺氮石墨烯催化剂 |
CN106159282A (zh) * | 2015-03-30 | 2016-11-23 | 宜兴市四通家电配件有限公司 | 质子交换膜燃料电池膜电极电催化剂及其制备方法 |
-
2017
- 2017-06-16 CN CN201710459015.8A patent/CN107275646B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505523A (zh) * | 2015-01-13 | 2015-04-08 | 哈尔滨工业大学 | 一种铂基催化剂/石墨烯复合材料及其制备方法 |
CN106159282A (zh) * | 2015-03-30 | 2016-11-23 | 宜兴市四通家电配件有限公司 | 质子交换膜燃料电池膜电极电催化剂及其制备方法 |
CN104787736A (zh) * | 2015-04-04 | 2015-07-22 | 成都育芽科技有限公司 | 一种大规模制备双层结构黑磷的方法 |
CN105435780A (zh) * | 2015-12-29 | 2016-03-30 | 南京大学(苏州)高新技术研究院 | 一种担载纳米铂钌合金的掺氮石墨烯催化剂 |
Non-Patent Citations (1)
Title |
---|
新型: "都柏林三一学院采用黑磷取代石墨烯研究取得新进展", 《化工新型材料》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449449A (zh) * | 2018-10-26 | 2019-03-08 | 哈尔滨工业大学 | 一种抗so2毒化的燃料电池氧还原贵金属催化剂及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107275646B (zh) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Devrim et al. | Experimental investigation of CO tolerance in high temperature PEM fuel cells | |
Wu et al. | Proton exchange membrane fuel cell degradation under close to open-circuit conditions: Part I: In situ diagnosis | |
Chen et al. | Assessment of PrBaCo2O5+ δ+ Sm0. 2Ce0. 8O1. 9 composites prepared by physical mixing as electrodes of solid oxide fuel cells | |
Shimizu et al. | Effects of both oxygen permeability and ion exchange capacity for cathode ionomers on the performance and durability of polymer electrolyte fuel cells | |
Brett et al. | Methanol as a direct fuel in intermediate temperature (500–600∘ C) solid oxide fuel cells with copper based anodes | |
Gao et al. | A cobalt-free bismuth ferrite-based cathode for intermediate temperature solid oxide fuel cells | |
Matsuda et al. | Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications | |
US9859568B2 (en) | Fuel cell electrode and method for manufacturing membrane-electrode assembly using the same | |
Meng et al. | Symmetrical solid oxide fuel cells with impregnated SrFe0. 75Mo0. 25O3− δ electrodes | |
US20070292742A1 (en) | Fuel Cell System | |
Huang et al. | Enhancing cathode performance for CO2 electrolysis with Ce0. 9M0. 1O2− δ (M= Fe, Co, Ni) catalysts in solid oxide electrolysis cell | |
Yin et al. | Design of Pt-C/Fe-NSC cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity | |
US8133634B2 (en) | Fuel cell with porous frit based composite proton exchange membrane | |
Xu et al. | Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell–effect of catalyst/bonding layer loading | |
Baek et al. | Anodic behavior of 8Y2O3–ZrO2/NiO cermet using an anode-supported electrode | |
CN104332637B (zh) | 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法 | |
Chunjiao et al. | Doping effects of alkaline earth element on oxygen reduction property of high-entropy perovskite cathode for solid oxide fuel cells | |
Rodgers et al. | Comparison of proton exchange membranes degradation rates between accelerated and performance tests | |
CN107275646A (zh) | 一种核壳结构的质子交换膜燃料电池催化剂及其制备方法 | |
Pretschuh et al. | Electrochemical and microstructural characterization of the high‐entropy perovskite La0. 2Pr0. 2Nd0. 2Sm0. 2Sr0. 2CoO3‐δ for solid oxide cell air electrodes | |
EP2553751A1 (en) | High temperature membrane electrode assembly with high power density and corresponding method of making | |
Hashimasa et al. | PEFC Power Generation Performance Degradation by Hydrogen Sulfide and Ammonia—Effects of Lowering Platinum Loading— | |
Bierschenk et al. | Electrochemical characteristics of La0. 8Sr0. 2Cr0. 82Ru0. 18O3− δ–Gd0. 1Ce0. 9O2 solid oxide fuel cell anodes in H2–H2O–CO–CO2 fuel mixtures | |
Welles et al. | A novel solid oxide fuel cell based catalytic converter replacement for enhanced emission control and power generation in automotive exhaust | |
Liu et al. | Effects of the single chamber SOFC stack configuration on the performance of the single cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200310 |
|
CF01 | Termination of patent right due to non-payment of annual fee |