CN107271802B - 一种基于噪声系数分析仪的噪声功率谱密度测量方法 - Google Patents

一种基于噪声系数分析仪的噪声功率谱密度测量方法 Download PDF

Info

Publication number
CN107271802B
CN107271802B CN201710451656.9A CN201710451656A CN107271802B CN 107271802 B CN107271802 B CN 107271802B CN 201710451656 A CN201710451656 A CN 201710451656A CN 107271802 B CN107271802 B CN 107271802B
Authority
CN
China
Prior art keywords
noise
spectral density
source
analyzer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710451656.9A
Other languages
English (en)
Other versions
CN107271802A (zh
Inventor
宋青娥
许建华
梁胜利
李文军
郑利颖
薛龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Institute
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201710451656.9A priority Critical patent/CN107271802B/zh
Publication of CN107271802A publication Critical patent/CN107271802A/zh
Application granted granted Critical
Publication of CN107271802B publication Critical patent/CN107271802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio

Abstract

本发明提出一种基于噪声系数分析仪的噪声功率谱密度测量方法,可解决单端口电子设备、非线性电子设备噪声性能评定难题。本发明的技术方案包括校准过程和测量过程;还需要配备噪声源,其超噪比数据经过精确定标,用噪声源作为测量的标准激励源,噪声功率谱密度测量精度可溯源到噪声源超噪比的定标精度上,测量精度高;通过校准和测量过程中噪声功率的比值运算得到被测微波电子设备的输出噪声功率谱密度,噪声系数分析仪通道增益和测量带宽等参数在比值运算中抵消了,避免了现有技术方案中测量仪器通道增益变化和带宽修正引入的测量误差。

Description

一种基于噪声系数分析仪的噪声功率谱密度测量方法
技术领域
本发明涉及测试技术领域,特别涉及一种基于噪声系数分析仪的噪声功率谱密度测量方法。
背景技术
任何电子设备都会产生噪声,噪声通常是有害的,它干扰甚至淹没有用的信号。噪声的存在,妨碍了微波电子设备对微弱信号的检测;噪声测量的误差,不可避免地对设备造成危害。为了度量微波电子设备内部噪声的影响,引入了噪声系数的概念。噪声系数是从微波电子设备对传输信号的信噪比的恶化程度方面来度量微波电子设备内部的噪声特性,但噪声系数只适合于放大器类的双端口线性电子设备、上下变频器件或多级变频接收链路,无法用来表征单端口电子设备、非线性电子设备的噪声性能。
现有技术方案是利用频谱分析仪测量微波电子设备的输出功率谱密度。频谱分析仪具备噪声标记(Marker Noise)功能,用于测量1Hz等效噪声带宽内的噪声功率,即噪声功率谱密度。当选择噪声标记时,其显示值即是对等效噪声带宽内的功率进行了归一化处理。
现有技术方案的测试框图如图1所示,包括如下测试步骤:
(1)如图1连接好测试系统,被测件正常加电,同时打开频谱分析仪进行必要的预热,以获得较高的测量精度。
对于单端口电子设备,测量时只需把被测件的输出端直接连接到频谱分析仪的射频输入端口;对于双端口或多端口电子设备,如放大器类线性双端口电子设备和上下变频器以及多级变频接收链路等电子设备,测量时需要在被测件的射频输入端口连接匹配负载。
(2)设置频谱分析仪,按前面板硬键设置测试的起始频率(Start Frequency)和终止频率(Stop Frequency)。
(3)使用标记(Marker)功能标记需要测量的频率点,按标记功能(Marker Fctn),选择噪声标记(Marker Noise)。
(4)如有必要,按带宽/平均(BW/Avg)键,将平均(average)打开,以保持读数稳定,记录测量结果。
现有技术方案的主要缺点是:
(1)频谱分析仪灵敏度低,通常为-150dBm左右,被测件微波电子设备输出噪声功率谱密度低于频谱分析仪显示的平均噪声电平(DANL)时,无法用频谱分析仪测量。
(2)频谱分析仪对信号和噪声的响应方式不同,测量噪声信号时需要对频谱分析仪的分辨率带宽和检波方式进行修正,测量精度低,测量结果存在一定的不确定性。
发明内容
本发明提出一种基于噪声系数分析仪的噪声功率谱密度测量方法,可解决单端口电子设备、非线性电子设备噪声性能评定难题,也可解决线性电子设备在不具备噪声系数测试条件下(比如噪声源无法和被测设备的输入端口直接连接时),噪声性能评定的难题。
本发明的技术方案是这样实现的:
一种基于噪声系数分析仪的噪声功率谱密度测量方法,包括校准过程和测量过程;还需要配备噪声源,用作噪声功率测量的标准激励源,噪声源有一个精确定标的超噪比,定义为:
Figure BSA0000146126570000021
式中:
ENR-噪声源的超噪比;
Th-噪声源开时的等效输出噪声温度;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
在校准过程中,噪声系数分析仪控制噪声源关和开,测得噪声源关和开两种状态下接收到的冷、热噪声功率,记为Pc-cal和Ph-cal
Pc-cal=GNFAkB(Te+Tc) (2)
Ph-cal=GNFAkB(Te+Th) (3)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tc-噪声源关时的等效输出噪声温度;
Th-噪声源开时的等效输出噪声温度。
根据式(1)、式(2)和式(3),可得到噪声系数分析仪的等效输入噪声温度Te
Figure BSA0000146126570000031
测量过程包括以下步骤:
步骤(21),将噪声源取下换为被测件,将被测件输出连接至噪声系数分析仪的射频输入端口;
步骤(22),设置被测件的电源开,测得被测件和噪声系数分析仪级联的总噪声功率,记为Pmeas
Pmeas=GNFAkB(Te+Tmeas) (5)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tmeas-被测件的等效输出噪声温度。
由式(3)、式(4)和式(5)被测件的等效输出噪声温度Tmeas
Figure BSA0000146126570000041
被测件的等效输出功率谱密度记为Pdensity,根据噪声功率和噪声温度的关系可求得:
Pdensity=kTmeas (7)
式中:
k-1.38×10-23J/K,为玻耳兹曼常数。
可选地,所述校准过程包括以下步骤:
步骤(11),连接好测试系统,开机对噪声系数分析仪进行预热;
步骤(12),输入噪声源的超噪比数值;
步骤(13),根据测量要求设置噪声系数分析仪;
步骤(14),对噪声系数分析仪进行校准。
可选地,对于单端口电子设备,测量时只需把被测件的输出直接连接到噪声系数分析仪的射频输入端口;对于双端口或多端口电子设备,测量时需要在被测件的射频输入端口连接匹配负载。
可选地,所述噪声功率谱密度显示值Pdisplay常用公式(8)表达:
Figure BSA0000146126570000042
式中:
T0-标准噪声温度290K。
可选地,通过噪声功率谱密度显示值,换算出线性微波电子设备的噪声系数,换算公式为:
Figure BSA0000146126570000051
式中:
NF-线性微波电子设备的噪声系数;
G-线性微波电子设备的增益;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
可选地,对于单端口微波电子设备,如固态噪声源,通过测得的功率谱密度显示值换算出其超噪比值,如公式(10):
Figure BSA0000146126570000052
式中:
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
本发明的有益效果是:
(1)噪声系数分析仪的接收灵敏度可达到-170dBm,能够对低增益、低噪声微波电子设备输出噪声功率谱密度进行测量;
(2)以噪声源作为测量的标准激励源,噪声功率谱密度测量可溯源到噪声源超噪比的定标精度上,测量精度高;
(3)通过校准和测量过程中噪声功率的比值运算得到被测微波电子设备的输出噪声功率谱密度,噪声系数分析仪通道增益GNFA、测量带宽B等参数在比值运算中抵消了,避免了现有技术方案中测量仪器通道增益变化和带宽修正引入的测量误差。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的噪声功率谱密度测试方案原理框图;
图2为本发明的校准连接原理框图;
图3为本发明的测量连接原理框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出一种基于噪声系数分析仪的噪声功率谱密度测量方法,能够快速、精确测量微波电子设备输出噪声功率谱密度,测量精度可以溯源到噪声源超噪比的定标精度上。噪声系数分析仪是一种高灵敏度的噪声接收机,能够对极低噪声信号功率谱密度进行精确测量。
本发明提出一种基于噪声系数分析仪的噪声功率谱密度测量方法,该方法需要配备噪声源,用作噪声功率测量的标准激励源,噪声源有一个精确定标的超噪比,定义为:
Figure BSA0000146126570000061
式中:ENR-噪声源的超噪比;
Th-噪声源开时的等效输出噪声温度;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
本发明的测量方法主要包括校准、测量两个过程,详细阐述如下:
(一)校准
校准过程中对固态噪声源输出噪声功率进行测量,以便噪声功率谱密度的测量精度能够溯源到噪声源超噪比的定标精度上。
校准过程包括以下步骤:
步骤(11),连接好测试系统,如图2所示,开机对噪声系数分析仪进行必要的预热。
步骤(12),输入噪声源的超噪比数值。
步骤(13),根据测量要求设置噪声系数分析仪:按噪声系数分析仪前面板频率/点数(Frequency/Points)、平均(Averaging)和带宽(Bandwidth)等主要设置功能键,设置测试的起始频率(Start Frequency)、终止频率(Stop Frequency)、测量点数(Points)和平均因子(Averages)等参数。
步骤(14),按两次校准(Calibrate)键,对噪声系数分析仪进行校准。
在校准过程中,噪声系数分析仪控制噪声源关和开,测得噪声源关和开两种状态下接收到的冷、热噪声功率,记为Pc-cal和Ph-cal
Pc-cal=GNFAkB(Te+Tc) (2)
Ph-cal=GNFAkB(Te+Th) (3)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tc-噪声源关时的等效输出噪声温度;
Th-噪声源源开时的等效输出噪声温度。
根据式(1)、式(2)和式(3),可得噪声系数分析仪的等效输入噪声温度Te
Figure BSA0000146126570000081
(二)测量
测量过程包括以下步骤:
步骤(21),将噪声源取下换为被测件,将被测件输出连接至噪声系数分析仪的射频输入端口,如图3所示。
对于单端口电子设备,测量时只需把被测件的输出直接连接到噪声系数分析仪的射频输入端口;对于双端口或多端口电子设备,如放大器类线性双端口电子设备和上下变频器以及多级变频接收链路等电子设备,测量时需要在被测件的射频输入端口连接匹配负载。
步骤(22),设置被测件的电源开,测得被测件和噪声系数分析仪级联的总噪声功率,记为Pmeas
Pmeas=GNFAkB(Te+Tmeas) (5)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tmeas-被测件的等效输出噪声温度。
由式(3)、式(4)和式(5)可得到被测件的等效输出噪声温度Tmeas
Figure BSA0000146126570000082
被测件的等效输出功率谱密度记为Pdensity,可按噪声功率和噪声温度的关系的求得:
Pdensity=kTmeas (7)
式中:
k-1.38×10-23J/K,为玻耳兹曼常数。
为了便于和标准噪声温度290K下1Hz带宽内的热噪声功率-174dBm做比较,在噪声系数分析仪中,噪声功率谱密度显示值Pdisplay常用下面的公式(8)表达:
Figure BSA0000146126570000091
式中:
T0-标准噪声温度290K。
以上即为本发明的噪声功率谱密度的测量原理和计算方法的详细阐述,通过本发明的技术方案,可以测得微波电子设备输出噪声功率谱密度,用于量化微波电子设备的噪声特性。
对于非线性电子设备,使用本发明的技术方案,可以解决设备内部噪声性能评估的难题。本发明的方法也可解决线性电子设备在不具备噪声系数测试条件下,噪声系数指标精确测量的难题。通过本发明测得的噪声功率谱密度及其显示值,可以方便地换算出线性微波电子设备的噪声系数,换算公式为:
Figure BSA0000146126570000092
式中:
NF-线性微波电子设备的噪声系数;
G-线性微波电子设备的增益;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
对于单端口微波电子设备,如固态噪声源,通过本发明的方法测得的功率谱密度显示值能够换算出其超噪比值,如公式(10)。
Figure BSA0000146126570000093
式中:
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
本发明在噪声系数分析仪上实现了微波电子设备的噪声功率谱密度测量,具有如下突出的优点:
(1)噪声系数分析仪的接收灵敏度可达到-170dBm,能够对低增益、低噪声微波电子设备输出噪声功率谱密度进行测量。
(2)本发明的技术方案以噪声源作为测量的标准激励源,噪声功率谱密度测量可溯源到噪声源超噪比的定标精度上,测量精度高。
(3)本发明的技术方案是通过校准和测量过程中噪声功率的比值运算得到被测微波电子设备的输出噪声功率谱密度,噪声系数分析仪通道增益GNFA、测量带宽B等参数在比值运算中抵消了,避免了现有技术方案中测量仪器通道增益变化和带宽修正引入的测量误差。
对于单端口电子设备、非线性电子设备,无法用噪声系数来表征其噪声性能;另外在特殊使用环境下中的线性电子设备不具备噪声系数测试条件,比如噪声源无法和被测设备的输入端口直接连接等,上述这些情况都可以采用本发明的技术方案,对通过其输出端的噪声功率谱密度的测量来衡量设备的噪声性能。本发明可解决单端口电子设备、非线性电子设备噪声性能评定难题,同时解决线性电子设备在不具备噪声系数测试条件下,噪声性能评定的难题,应用领域广阔。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于噪声系数分析仪的噪声功率谱密度测量方法,其特征在于,包括校准过程和测量过程;还需要配备噪声源,用作噪声功率测量的标准激励源,噪声源有一个精确定标的超噪比,定义为:
Figure FSB0000185158520000011
式中:
ENR-噪声源的超噪比;
Th-噪声源开时的等效输出噪声温度;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K;
在校准过程中,噪声系数分析仪控制噪声源关和开,测得噪声源关和开两种状态下接收到的冷、热噪声功率,记为Pc-cal和Ph-cal
Pc-cal=GNFAkB(Te+Tc) (2)
Ph-cal=GNFAkB(Te+Th) (3)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tc-噪声源关时的等效输出噪声温度;
Th-噪声源开时的等效输出噪声温度;
根据式(1)、式(2)和式(3),得到噪声系数分析仪的等效输入噪声温度Te
Figure FSB0000185158520000012
测量过程包括以下步骤:
步骤(21),将噪声源取下换为被测件,将被测件输出连接至噪声系数分析仪的射频输入端口;
步骤(22),设置被测件的电源开,测得被测件和噪声系数分析仪级联的总噪声功率,记为Pmeas
Pmeas=GNFAkB(Te+Tmeas) (5)
式中:
GNFA-噪声系数分析仪通道增益;
k-1.38×10-23J/K,为玻耳兹曼常数;
B-测量带宽;
Te-噪声系数分析仪的等效输入噪声温度;
Tmeas-被测件的等效输出噪声温度;
由式(3)、式(4)和式(5)得到被测件的等效输出噪声温度Tmeas
Figure FSB0000185158520000021
被测件等效输出功率谱密度记为Pdensity,根据噪声功率和噪声温度的关系求得:
Pdensity=kTmea (7)
式中:
k-1.38×10-23J/K,为玻耳兹曼常数;
噪声功率谱密度显示值Pdisplay用公式(8)表达:
Figure FSB0000185158520000022
式中:
T0-标准噪声温度290K。
2.如权利要求1所述的一种基于噪声系数分析仪的噪声功率谱密度测量方法,其特征在于,所述校准过程包括以下步骤:
步骤(11),连接好测试系统,开机对噪声系数分析仪进行预热;
步骤(12),输入噪声源的超噪比数值
步骤(13),根据测量要求设置噪声系数分析仪;
步骤(14),对噪声系数分析仪进行校准。
3.如权利要求1所述的一种基于噪声系数分析仪的噪声功率谱密度测量方法,其特征在于,对于单端口电子设备,测量时只需把被测件的输出直接连接到噪声系数分析仪的射频输入端口;对于双端口或多端口电子设备,测量时需要在被测件的射频输入端口连接匹配负载。
4.如权利要求1所述的一种基于噪声系数分析仪的噪声功率谱密度测量方法,其特征在于,通过噪声功率谱密度显示值,换算出线性微波电子设备噪声系数,换算公式为:
Figure FSB0000185158520000031
式中:
NF-线性微波电子设备的噪声系数;
G-线性微波电子设备的增益;
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
5.如权利要求1所述的一种基于噪声系数分析仪的噪声功率谱密度测量方法,其特征在于,对于单端口微波电子设备,通过测得的功率谱密度显示值,换算出其超噪比值,如公式(10):
Figure FSB0000185158520000032
式中:
Tc-噪声源关时的等效输出噪声温度;
T0-标准噪声温度290K。
CN201710451656.9A 2017-06-07 2017-06-07 一种基于噪声系数分析仪的噪声功率谱密度测量方法 Active CN107271802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710451656.9A CN107271802B (zh) 2017-06-07 2017-06-07 一种基于噪声系数分析仪的噪声功率谱密度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710451656.9A CN107271802B (zh) 2017-06-07 2017-06-07 一种基于噪声系数分析仪的噪声功率谱密度测量方法

Publications (2)

Publication Number Publication Date
CN107271802A CN107271802A (zh) 2017-10-20
CN107271802B true CN107271802B (zh) 2020-04-28

Family

ID=60067708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710451656.9A Active CN107271802B (zh) 2017-06-07 2017-06-07 一种基于噪声系数分析仪的噪声功率谱密度测量方法

Country Status (1)

Country Link
CN (1) CN107271802B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828336B (zh) * 2018-06-08 2019-09-24 中国电子科技集团公司第四十一研究所 一种基于矢量网络分析仪和噪声源的噪声系数测试方法
CN108982983A (zh) * 2018-08-27 2018-12-11 湖南红太阳新能源科技有限公司 一种电阻热噪声测试方法及测试系统
CN110346659B (zh) * 2019-07-16 2020-08-07 西安电子科技大学 高精度定信变噪方式的载噪比标定方法
CN110333401B (zh) * 2019-07-16 2020-09-11 西安电子科技大学 高精度定噪变信方式的载噪比标定方法
CN110515020B (zh) * 2019-08-12 2021-08-13 中电科仪器仪表有限公司 一种噪声系数分析仪接收通道最佳线性增益校准补偿方法
CN110441621B (zh) * 2019-08-19 2022-02-22 苏州华兴源创科技股份有限公司 噪声系数的测量方法、装置、设备和存储介质
CN111835439B (zh) * 2020-07-27 2021-11-19 中国电子科技集团公司第五十四研究所 一种测量一体化卫星电视高频头噪声系数的方法
CN112067915B (zh) * 2020-08-04 2022-05-06 中电科思仪科技股份有限公司 一种噪声源定标系统
CN112067914A (zh) * 2020-08-04 2020-12-11 中电科仪器仪表有限公司 一种修正噪声系数测量额外网络引入误差的方法
CN112684264A (zh) * 2020-11-23 2021-04-20 北京航天测控技术有限公司 一种基于多通道频谱仪的噪声系数测量方法
CN113204230B (zh) * 2021-04-30 2022-06-28 广东电网有限责任公司电力科学研究院 滑动窗跟踪微分器的高频噪声功率增益的在线测量方法
CN113376452B (zh) * 2021-05-26 2022-08-09 中电科思仪科技股份有限公司 一种基于矢量网络分析仪的噪声源定标系统及定标方法
CN115963333B (zh) * 2023-03-16 2023-05-16 国仪量子(合肥)技术有限公司 噪声谱密度扫描方法、扫描装置、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488771A (zh) * 2009-03-04 2009-07-22 上海闻泰电子科技有限公司 手机射频前端接收灵敏度的优化方法
CN105842552A (zh) * 2015-01-15 2016-08-10 中国科学院空间科学与应用研究中心 一种微波接收机噪声测量装置及测量方法
CN105842551A (zh) * 2015-01-15 2016-08-10 中国科学院空间科学与应用研究中心 一种微波射频前端的噪声测量装置及测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488771A (zh) * 2009-03-04 2009-07-22 上海闻泰电子科技有限公司 手机射频前端接收灵敏度的优化方法
CN105842552A (zh) * 2015-01-15 2016-08-10 中国科学院空间科学与应用研究中心 一种微波接收机噪声测量装置及测量方法
CN105842551A (zh) * 2015-01-15 2016-08-10 中国科学院空间科学与应用研究中心 一种微波射频前端的噪声测量装置及测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Comparison Between Two Calibration Methods of Noise Source;Song Qing’e;《2016 IEEE International Conference on Microwave and Millimeter Wave Technology(ICMMT)》;20161201;第1-3页 *

Also Published As

Publication number Publication date
CN107271802A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN107271802B (zh) 一种基于噪声系数分析仪的噪声功率谱密度测量方法
US7026807B2 (en) Power measurement system
US8792785B2 (en) Circuit for monitoring the receiver of an optical transceiver and the method for monitoring burst mode optical power thereof
CN105929222B (zh) 适用于高稳射频信号功率稳定度的测试系统及方法
CN108614152B (zh) 负载牵引系统及其被测件的输入端面功率的测量方法
CN107247696B (zh) 一种在噪声系数分析仪中调用s2p文件获取损耗补偿数据的方法
US11609225B2 (en) Breath alcohol content device security and sensing
CN109521407B (zh) 雷达发射分系统工作带宽测试方法
US20120265469A1 (en) Calibration method and device
CN112067915B (zh) 一种噪声源定标系统
CN108918966B (zh) 基于频谱仪的底噪对消方法
KR101697932B1 (ko) 단일 센서를 이용하여 온도측정과 압력측정이 가능한 반도체 센서장치
JP3456202B2 (ja) 受信レベルモニタ回路
CN215867074U (zh) 一种误差校准系统
CN111678594B (zh) 一种激光功率测试仪响应线性的对数校准方法
Ning et al. Common Measurement Methods and Uncertainty Analysis of Noise Figure of Receiving System
CN113376452B (zh) 一种基于矢量网络分析仪的噪声源定标系统及定标方法
CN220490230U (zh) 一种热电堆红外传感器热噪声测试装置
CN116299246B (zh) 一种合成孔径雷达系统内定标精度评定方法
CN211928040U (zh) 行波管脉间噪声测试系统
CN115950539A (zh) 一种热噪声测试装置及方法
CN118033251A (zh) 一种频谱仪测量变频噪声系数的系统及方法
CN117031116A (zh) 一种片上微波功率精密测量方法及其系统
CN114609437A (zh) 一种微波负载的吸收功率的测试方法
CN117471216A (zh) 一种低温器件的噪声温度与增益的测量装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant