CN107255540B - 基于含孔金属结构中光纤光栅传感器温度应力解耦方法 - Google Patents

基于含孔金属结构中光纤光栅传感器温度应力解耦方法 Download PDF

Info

Publication number
CN107255540B
CN107255540B CN201710457296.3A CN201710457296A CN107255540B CN 107255540 B CN107255540 B CN 107255540B CN 201710457296 A CN201710457296 A CN 201710457296A CN 107255540 B CN107255540 B CN 107255540B
Authority
CN
China
Prior art keywords
temperature
stress
fiber
grating sensor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710457296.3A
Other languages
English (en)
Other versions
CN107255540A (zh
Inventor
张卫方
李英武
任飞飞
金博
张萌
梁小贝
魏巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Aeronautics and Astronautics
Original Assignee
Beijing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Aeronautics and Astronautics filed Critical Beijing University of Aeronautics and Astronautics
Priority to CN201710457296.3A priority Critical patent/CN107255540B/zh
Publication of CN107255540A publication Critical patent/CN107255540A/zh
Application granted granted Critical
Publication of CN107255540B publication Critical patent/CN107255540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0004Force transducers adapted for mounting in a bore of the force receiving structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供一种金属孔结构中光纤光栅传感器温度应力解耦方法,步骤如下:一,光纤光栅传感器布局设计;二,测量被测基体的初始状态;三,为被测基体施加递增的拉力,测量第一组两个栅点的中心波长变化情况;四,给被测基体同时施加外力和温度的影响,测量各栅点中心波长的变化量;五,进一步计算出孔边其他各点所受应力应变;通过以上步骤,本发明实现了金属孔结构中光纤光栅传感器温度、应力解耦,分别求出了其所受的温度大小和应力大小,从而提高了光纤光栅应力传感器监测结构应力时的精度,解决了实际应用中光纤光栅应力传感器受到温度影响导致精度下降的问题,同时有利于光纤布拉格光栅传感器的推广应用。

Description

基于含孔金属结构中光纤光栅传感器温度应力解耦方法
技术领域
本发明提供一种基于含孔金属结构的光纤光栅传感器温度应力解耦方法,它涉及一种将光纤光栅传感器用于监测金属材料孔结构裂纹或者应力时,受到温度影响导致监测准确度下降的情况,实现光纤光栅传感器的应力、温度解耦方法,属于结构健康监测技术领域。
背景技术
光纤光栅以其质量轻、抗电磁干扰、抗腐蚀等多种优点被广泛应用于结构健康监测领域,但是在光纤光栅传感器的实际应用中,不仅受到应力应变的作用,也受到温度变化的影响,导致光纤光栅传感器解调精度的降低,限制了光纤光栅传感器的推广应用。
光纤光栅传感器的应力、温度解耦是提高光纤光栅传感器解调精度的有效方法之一。现今光纤光栅传感器应力、温度解耦主要采用温度应变双参数同时测量法或者温度补偿法。温度应变双参数同时测量法主要包括了双参数矩阵法、双光栅叠加法等。其中双参数矩阵法引入了另外一个参量,故需要增加与此参量对应的测试系统,具有一定的局限性;双光栅叠加法需要两个宽带光源,并在光纤传感器同一位置写入波长相差较大的栅点,其制作难度和成本都较高。至于温度补偿法,最常见的是参考光栅法,该方法能有效实现光纤光栅传感器的温度、应变解耦,但是参考光纤易受到破坏,若考虑埋入式的金属管,则会造成基体本身力学性质的变化,导致其强度、韧性等的下降;此外,温度补偿法还采用聚合物封装法或负膨胀系数法,该类方法由于材料性质特殊,导致造价十分昂贵,不利于广泛应用。
针对以上问题和现状,提出一种含孔金属结构中光纤光栅传感器温度应力解耦方法。
发明内容
(一)本发明的目的是:
针对光纤光栅传感器用于监测金属材料孔结构裂纹或者应力时,受到温度影响导致精度下降的情况,提出一种光纤光栅传感器的温度、应力解耦方法,将光纤光栅传感器所受温度和应力的大小解调出来,从而提高光纤光栅应力应变传感器的精度。
(二)其具体技术路线如下:
本发明一种金属孔结构中光纤光栅传感器温度应力解耦方法,其具体步骤如下:
步骤一,光纤光栅传感器布局设计。针对金属孔结构的特点,采用环形布局的思想,使用两路埋入式光纤光栅传感器,将所有栅点分为8组,每组两个栅点,分别来自两路传感器;
步骤二,测量被测基体的初始状态,即不受外力且温度稳定的状态下各栅点的中心波长及温度;
步骤三,为被测基体施加递增的拉力,测量第一组两个栅点的中心波长变化情况,如图4所示;可以看出,给光纤光栅传感器的横向和纵向施加相同的力,导致中心波长的变化幅度差别很大,且中心波长变化的差值大小与力的大小成正比;
步骤四,给被测基体同时施加外力和温度的影响,测量各栅点中心波长的变化量,并计算每组栅点中心波长变化量的差值,取中心波长变化量差值最小的点作为“理想不受应力点”。“理想不受应力点”是指八组栅点中受应力影响最小的点,可近似认为该点不受应力的影响;
步骤五,由于“理想不受应力点”被认为不受到应力应变的作用,所以可根据“理想不受应力点”的波长变化计算出此时金属孔结构温度的变化量,从而进一步计算出孔边其他各点所受应力应变。
通过以上步骤,实现了金属孔结构中光纤光栅传感器温度、应力解耦,对光纤布拉格光栅传感器在工作中同时收到的温度和应力进行了解耦,分别求出了其所受的温度大小和应力大小,从而提高了光纤光栅应力传感器监测结构应力时的精度,解决了实际应用中光纤光栅应力传感器受到温度影响导致精度下降的问题,同时有利于光纤布拉格光栅传感器的推广应用。
其中,在步骤一中所述的“光纤光栅传感器布局设计”,是指针对金属孔结构的特点,采用环形布局的思想,使用两路埋入式光纤光栅传感器,本发明采用的被测基体为500mm*500mm*2mm的薄金属板,板中间有一个直径为100mm的圆孔,将所有栅点分为8组,分别命名为组1、组2、组3、组4、组5、组6、组7、组8,每组均包含了分别来自两路光纤光栅传感器的栅点;
其中,在步骤二中所述的“被测基体”,是指实验所采用的带孔结构的金属板,本实验利用光纤布拉格光栅传感器监测金属孔结构周围所受应力的情况;
其中,在步骤二中所述的“测量被测基体的初始状态”,其作法为:利用温度计测量金属孔表面的温度,作为初始温度,同时,利用光纤布拉格光栅传感器测量此时被测基体所受的应力,作为初始应力;
其中,在步骤三中所述的“为被测基体施加递增的拉力”,其作法为:由于选用的实验板为中心带有圆孔的正方形金属板,所以使用拉伸机向正方形的某一组对边施加递增的拉力进行实验;
其中,在步骤四中所述的“给被测基体同时施加外力和温度的影响”,其作法如下:首先利用拉伸机为被测基体任意方向施加恒定大小的拉力,然后为金属实验板上靠近孔结构的地方施加热源,达到为基体施加温度变化的目的;
其中,在步骤五中所述的“根据“理想不受应力点”的波长变化计算出此时金属孔结构温度的变化量”,其作法如下:
由定义,认为该“理想不受应力点”不受施加应力的影响,只受到温度变化的影响,根据此时光纤布拉格光栅传感器波长变化与温度变化成正比的规律,可以计算出此时的温度,根据求得的温度,可计算出孔结构周围其他点所受应力的情况,从而实现温度应力的解耦。
(三)本发明的优点在于:
1、实现了金属孔结构中光纤光栅传感器温度应力解耦,提高了监测精度。
2、采用埋入式布贴方法,避免了光纤光栅易损坏的问题,同时克服了传统参考光纤法埋入空心管对基体强度和特性造成损伤的问题。
3、结构和实现方式均较为简单,成本较低且解耦精度较高,有利于广泛应用和推广。
附图说明
图1本发明所述方法流程图。
图2本发明所述传感器布局方式示意图。
图3本发明所述具体实施步骤中采用的基体及传感器布局情况。
图4对被测基体施加拉力示意图。
图5对第一组栅点施加拉力时中心波长变化情况。
图6为基体同时施加外力和温度时各组栅点中心波长变化量差值。
图7本发明中各点所受应力解耦结果。
图中序号、符号、代号说明如下:
图3、图4中“F”表示施加的外力。
具体实施方式
本发明一种金属孔结构中光纤光栅传感器温度应力解耦方法,如图1所示,其具体实施步骤如下:
步骤一:光纤栅传感器布局实现。针对金属孔结构的特点,采用环形布局的思想,使用两路埋入式光纤光栅传感器如图2所示。本发明采用的被测基体为500mm*500mm*2mm的薄金属板,板中间有一个直径为100mm的圆孔。如图3所示,将所有栅点分为8组,分别命名为组1、组2、组3、组4、组5、组6、组7、组8。每组均包含了分别来自两路光纤光栅传感器的栅点。
步骤二:测量被测基体的初始状态,即不受外力且温度稳定状态下各栅点的中心波长及温度。即各点初始中心波长及基体的初始温度。
步骤三:为被测基体施加递增的纵向拉力如图4所示,测量组1中两个栅点的中心波长变化情况如图5所示。可以看出,给光纤光栅传感器的横向和纵向施加相同的力,导致中心波长的变化幅度差别很大,且中心波长变化的差值大小与力的大小成正比;
步骤四:给被测基体同时施加外力和温度的影响,测量各栅点中心波长的变化量,并计算每组栅点中心波长变化量的差值,取中心波长变化量差值最小的点作为“理想不受应力点”,如图6所示。由实验结果,可取第3组或者第7组栅点所在的点作为“理想不受应力点”
步骤五:温度与应力的解耦。根据上述光纤光栅布局及得到的结果,并结合光纤光栅传感器受温度与应力时中心波长变化的原理:
ΔλB=λB(1-Pe)ΔgFBGBξΔT
其中,Pe为弹光系数,ΔεFBG为光纤光栅传感器应力变化,为热光系数,ΔT为光纤光栅传感器温度变化,λB为当前中心波长,ΔλB为应力和温度作用下光纤光栅传感器中心波长的漂移量。可知,在本发明所述方法中,对于步骤四中“理想不受应力点”,可近似认为其不受应力ΔεFBG的影响,也即ΔεFBG=0,于是此时的中心波长变化表达式可简化为:
从而计算出温度变量ΔT。由于金属孔结构导热性较好,故假设所有栅点所受温度影响一致,则可进一步求解其他栅点应力变化量的大小如图7所示,从而通过本文所属布局及解耦方法实现应力和温度的解耦。

Claims (6)

1.一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:其具体步骤如下:
步骤一,光纤光栅传感器布局设计;针对金属孔结构的特点,采用环形布局的思想,使用两路埋入式光纤光栅传感器,将所有栅点分为8组,每组两个栅点,分别来自两路传感器;
步骤二,测量被测基体的初始状态,即不受外力且温度稳定的状态下各栅点的中心波长及温度;
步骤三,为被测基体施加递增的拉力,测量第一组两个栅点的中心波长变化情况,能看出,给光纤光栅传感器的横向和纵向施加相同的力,导致中心波长的变化幅度差别很大,且中心波长变化的差值大小与力的大小成正比;
步骤四,给被测基体同时施加外力和温度的影响,测量各栅点中心波长的变化量,并计算每组栅点中心波长变化量的差值,取中心波长变化量差值最小的点作为“理想不受应力点”;该“理想不受应力点”是指八组栅点中受应力影响最小的点,认为该点不受应力的影响;
步骤五,由于该“理想不受应力点”被认为不受到应力应变的作用,所以根据该“理想不受应力点”的波长变化计算出此时金属孔结构温度的变化量,从而进一步计算出孔边其他各点所受应力应变;
其中,在步骤一中所述的光纤光栅传感器布局设计,是指针对金属孔结构的特点,采用环形布局的思想,使用两路埋入式光纤光栅传感器,本发明采用的被测基体为500mm*500mm*2mm的薄金属板,板中间有一个直径为100mm的圆孔,将所有栅点分为8组,分别命名为组1、组2、组3、组4、组5、组6、组7、组8,每组均包含了分别来自两路光纤光栅传感器的栅点。
2.根据权利要求1所述的一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:在步骤二中所述的被测基体,是指实验所采用的带孔结构的金属板,本实验利用光纤布拉格光栅传感器监测金属孔结构周围所受应力的情况。
3.根据权利要求1所述的一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:在步骤二中所述的测量被测基体的初始状态,其作法为:利用温度计测量金属孔表面的温度,作为初始温度,同时,利用光纤布拉格光栅传感器测量此时被测基体所受的应力,作为初始应力。
4.根据权利要求1所述的一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:在步骤三中所述的为被测基体施加递增的拉力,其作法为:由于选用的实验板为中心带有圆孔的正方形金属板,所以使用拉伸机向正方形的一预定组对边施加递增的拉力进行实验。
5.根据权利要求1所述的一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:在步骤四中所述的给被测基体同时施加外力和温度的影响,其作法如下:首先利用拉伸机为被测基体任意方向施加恒定大小的拉力,然后为金属实验板上靠近孔结构的地方施加热源,达到为基体施加温度变化的目的。
6.根据权利要求1所述的一种金属孔结构中光纤光栅传感器温度应力解耦方法,其特征在于:在步骤五中所述的根据该理想不受应力点的波长变化计算出此时金属孔结构温度的变化量,其作法如下:由定义,认为该理想不受应力点不受施加应力的影响,只受到温度变化的影响,根据此时光纤布拉格光栅传感器波长变化与温度变化成正比的规律,能计算出此时的温度,根据求得的温度,计算出孔结构周围其他点所受应力的情况,从而实现温度应力的解耦。
CN201710457296.3A 2017-06-16 2017-06-16 基于含孔金属结构中光纤光栅传感器温度应力解耦方法 Expired - Fee Related CN107255540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710457296.3A CN107255540B (zh) 2017-06-16 2017-06-16 基于含孔金属结构中光纤光栅传感器温度应力解耦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710457296.3A CN107255540B (zh) 2017-06-16 2017-06-16 基于含孔金属结构中光纤光栅传感器温度应力解耦方法

Publications (2)

Publication Number Publication Date
CN107255540A CN107255540A (zh) 2017-10-17
CN107255540B true CN107255540B (zh) 2019-10-18

Family

ID=60023846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710457296.3A Expired - Fee Related CN107255540B (zh) 2017-06-16 2017-06-16 基于含孔金属结构中光纤光栅传感器温度应力解耦方法

Country Status (1)

Country Link
CN (1) CN107255540B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657906B (zh) * 2019-10-23 2020-06-09 南京航空航天大学 一种基于光纤光栅传感器的冲击监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564643A (zh) * 2012-02-28 2012-07-11 西南交通大学 准分布式光纤光栅传感网络自动标定与变量分离感知方法及其装置
CN202329869U (zh) * 2011-11-24 2012-07-11 南开大学滨海学院 光纤光栅温度压力多点监测系统
CN102944253A (zh) * 2012-11-15 2013-02-27 南京师范大学 基于偏振测量的光纤光栅横向压力和温度同时测量系统
CN106525299A (zh) * 2016-10-25 2017-03-22 武汉理工大学 一种温度自补偿光纤光栅微力传感器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476699B2 (en) * 2015-03-05 2016-10-25 General Photonics Corporation Measurements of strain, stress and temperature by using 1-dimensional and 2-dimensional distributed fiber-optic sensors based on sensing by polarization maintaining fiber of distributed polarization crosstalk distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202329869U (zh) * 2011-11-24 2012-07-11 南开大学滨海学院 光纤光栅温度压力多点监测系统
CN102564643A (zh) * 2012-02-28 2012-07-11 西南交通大学 准分布式光纤光栅传感网络自动标定与变量分离感知方法及其装置
CN102944253A (zh) * 2012-11-15 2013-02-27 南京师范大学 基于偏振测量的光纤光栅横向压力和温度同时测量系统
CN106525299A (zh) * 2016-10-25 2017-03-22 武汉理工大学 一种温度自补偿光纤光栅微力传感器及其制备方法

Also Published As

Publication number Publication date
CN107255540A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
Wang et al. High-frequency optical fiber Bragg grating accelerometer
CN108760109A (zh) 基于布拉格光纤光栅的可变量程的土体压力测量装置和方法
Liu et al. Fiber Bragg grating based displacement sensors: State of the art and trends
US20150114130A1 (en) Distributed pressure measurement by embedded fiber optic strain sensor
CN107255540B (zh) 基于含孔金属结构中光纤光栅传感器温度应力解耦方法
Alias et al. A high-precision extensometer system for ground displacement measurement using fiber Bragg grating
Wei et al. Simultaneous sensing of displacement and temperature with a single FBG
Tung et al. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks
de Oliveira et al. Prototype of a sensor for simultaneous monitoring of water level and temperature of rivers in the Amazon using FBG
KR20110105301A (ko) 변형률계를 구비한 온도 보상 로드 셀
Guozhen et al. A novel fiber Bragg grating acceleration sensor for measurement of vibration
Bajić et al. Design calibration and characterization of a robust low-cost fiber-optic 2D deflection sensor
CN104034458A (zh) 基于光纤光栅传感器的桥上无缝线路钢轨综合测试方法
US8590385B2 (en) High pressure fiber optic sensor system
Lin et al. Packaged in-line Mach–Zehnder interferometer for highly sensitive curvature and flexural strain sensing
CN210862557U (zh) 光纤光栅传感器装置
Liu et al. Regional strain homogenized diaphragm based FBG high pressure sensor
Wu et al. Investigation on low-temperature characteristics of FBG sensors and the technology to enhance sensitivity
CN208672668U (zh) 一种基于表面等离子体共振的风速测量装置
Kesavan et al. Studies on apparent strain using FBG strain sensors for different structural materials
Yang et al. A study for optical fiber multi-direction strain monitoring technology
CN110207734A (zh) 光纤传感中消除温度应变交叉敏感的测量方法
Jiang et al. Three methods for improving an axial strain sensitivity of polarization maintaining fiber loop mirror
He et al. Zigzag pattern of Brillouin OF sensor for spatial resolution enhancement
Lao et al. An FBG-Based Liquid Pressure Sensor Integrated with Flange Cylinder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191018

Termination date: 20210616