CN107249464A - 荧光成像中的鲁棒钙化跟踪 - Google Patents

荧光成像中的鲁棒钙化跟踪 Download PDF

Info

Publication number
CN107249464A
CN107249464A CN201680012285.8A CN201680012285A CN107249464A CN 107249464 A CN107249464 A CN 107249464A CN 201680012285 A CN201680012285 A CN 201680012285A CN 107249464 A CN107249464 A CN 107249464A
Authority
CN
China
Prior art keywords
conduit
data
processor
tracking
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680012285.8A
Other languages
English (en)
Other versions
CN107249464B (zh
Inventor
T.陈
S.胡赛因
M.约翰
V.K.辛格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN107249464A publication Critical patent/CN107249464A/zh
Application granted granted Critical
Publication of CN107249464B publication Critical patent/CN107249464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10121Fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Multimedia (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

在荧光图像中提供鲁棒钙化跟踪。随着时间扫描(22)具有插入导管的病人。处理器(14)从扫描图像数据检测(24)病人体内的导管。处理器(14)跟踪(26)导管的移动。处理器(14)还检测(28)在数据中表示的结构。所述结构作为导管移动的函数被检测(28)。处理器(14)基于病人体内的结构的前一位置使用采样跟踪(30)所述结构的移动。处理器(14)可输出(32)所述结构的图像。

Description

荧光成像中的鲁棒钙化跟踪
背景技术
本实施例涉及跟踪病人的图像中的解剖结构。在外科手术期间,外科医生经常使用荧光检查作为助视器以执行所述过程。然而,解剖结构的位置可能在荧光图像中并不清楚可见,并且可能由于心脏以及呼吸运动而难以在视觉上进行跟踪。已有方法要求操作人员仔细地标记用于跟踪解剖结构的一组预定义界标。经常地,这些标记必须在所述过程期间被更新。虽然采用离线训练的检测器的基于检测的跟踪器对于跟踪已知结构运行良好,但它们在预先没有已知形状的情况下跟踪某些解剖结构的性能仍然有限。当前用于跟踪例如主动脉根的位置和取向的一个方法是通过将碘化造影剂(血管造影术)注入到病人体内。然而,这种造影剂对病人有害,并且它们的使用应该被最小化。由此,外科医生经常必须仔细地权衡使用造影剂对过程成功的益处与由于造影剂对病人的副作用而导致的病人的安全。替代地,学习物体外观的半监督跟踪器运行良好,但对初始化非常敏感。
发明内容
作为介绍,以下描述的优选实施例包括用于跟踪医学图像(诸如,荧光图像)中的物体的方法、系统、指令和非暂态计算机可读介质。导管被插入到病人体内。导管的结构是预先已知的。这允许检测和跟踪导管。通过知道导管在病人体内看起来如何,导管的移动被跟踪。使用导管也不需要为跟踪算法进行手动初始化。所述系统知道寻找什么,因为预先知道导管成像特性。例如,在经导管主动脉瓣植入(TAVI)过程期间,导管位于主动脉根附近。如果外科医生需要跟踪解剖结构(诸如,钙沉着),则所述系统跟踪导管的移动。导管与主动脉根同步地移动。所述系统检测与导管同步地移动的任何其它解剖结构。这些结构是例如钙沉着。当所述过程进行时,所述系统使用采样策略跟踪检测到的结构。采样策略(诸如,使用离散结构森林)被应用于跟踪检测到的结构。
在第一方面中,提供一种用于跟踪和检测病人体内的结构的方法。随着时间扫描具有插入导管的病人。处理器从扫描图像数据检测病人体内的导管。处理器跟踪导管的移动。处理器还检测在来自扫描的数据中表示的结构,所述结构被检测为导管移动的函数。处理器基于病人体内的结构的前一位置使用采样跟踪结构的移动。处理器可输出结构的图像。
在第二方面,提供一种用于在具有插入导管的病人体内随着时间进行物体检测的系统。所述系统包括扫描器和处理器。扫描器被配置为随着时间对具有插入导管的病人进行成像。处理器被配置为检测和跟踪在来自成像的扫描数据中表示的导管。处理器还被配置为检测和跟踪在来自成像的数据中表示的物体,其中所述物体被检测为导管移动的函数。基于物体的前一位置使用采样跟踪物体。处理器被配置为输出物体的图像。
在第三方面,一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质中已存储表示指令的数据,所述指令可由编程的处理器执行以促进检测病人体内的物体。所述指令包括:随着时间扫描具有插入的猪尾形导管的病人。根据指令,处理器检测猪尾形导管。猪尾形导管的移动被跟踪。根据指令,处理器检测在来自扫描的数据中表示的结构。所述结构被检测为导管移动的函数。处理器跟踪在来自扫描的数据中表示的结构。所述跟踪基于所述结构的前一位置使用采样。处理器可输出结构的图像。
本发明由下面的权利要求定义,并且这个部分中的内容不应该被用作对那些权利要求的限制。以下结合优选实施例讨论本发明的另外方面和优点,并且可稍后独立地或组合地声明本发明的另外方面和优点。
附图说明
各部件和附图不必符合比例,而是重点在于说明本发明的原理。此外,在附图中,相似的标号在不同视图中始终指定对应的部分。
图1图示用于跟踪医学图像中的结构的示例性系统;
图2是用于跟踪医学图像中的解剖结构的流程图的一个实施例;
图3是用于跟踪医学图像中的解剖结构的另一实施例的流程图;
图4是用于跟踪医学图像中的解剖结构的替代实施例的流程图;
图5示出病人体内的插入的猪尾形导管的示例性荧光图像;和
图6示出用于跟踪解剖结构的已有方法与在本申请中详述的用于跟踪解剖结构的方案之间的示例性比较。
具体实施方式
由于物体形状的高可变性和从病人的器官发生的移动,病人体内的物体的手动检测可能繁重并且困难。对于自动检测,通过确定在哪里放置用于使检测算法开始其对物体的检测和跟踪的标记,初始化过程可能是复杂的。通过检测和跟踪已被插入到病人体内的导管,可解决这些问题。导管具有已知形状,并且因此可用作用于使检测和跟踪算法对解剖结构进行定位的初始化标记。
图2是用于检测病人体内的物体的方法的一个实施例的流程图。所述方法由图1的具有扫描器、处理器、存储器的系统或另一系统实现。例如,荧光扫描器对病人进行成像,并且扫描器的处理器和存储器利用所述图像帮助检测病人体内的物体。
所述方法包括:检测和跟踪病人体内的结构。所述结构可以是解剖结构,或者所述结构可以是插入在病人体内的外来物体(诸如,支架)。所述检测和跟踪包括分析来自医学扫描器(诸如,荧光扫描器)的图像。例如,在一过程(诸如,TAVI过程)期间,具有插入导管的病人可由荧光扫描器成像。根据成像数据,与插入导管一起移动的附加物体被检测和跟踪。一旦检测到所述物体,所述物体可在所述过程期间始终被跟踪。可使用其它类型的成像,诸如计算机断层扫描、超声或磁共振。可使用除导管之外的其它插入装置,诸如基准或支架。
按照示出的次序(例如,从上到下)或其它次序执行各动作。可提供附加的、不同的或更少的动作。例如,执行所述方法,而不在动作32中输出图像。作为另一示例,动作24和26是替代动作或者根本不被提供(例如,每次在动作24中进行检测或在动作26中随着时间进行跟踪,而没有另外的检测)。
在动作22中,扫描具有插入导管的病人。在替代实施例中,病人具有插入的支架。支架可按照与导管相同的方式被用于检测和/或跟踪目的。插入导管可以是猪尾形导管。在一些实施例中,支架和导管可都被插入并且一起工作以帮助检测和跟踪过程。
扫描可由荧光扫描器或用于医学成像的另一类型的扫描器进行。扫描还可帮助识别病人器官(诸如,例如心脏)的位置和移动。扫描器可被固定到图1的系统,诸如扫描器12。在其它实施例中,可从图1的存储器16产生扫描数据。可在图2中描绘的方法之前进行扫描。在一些实施例中,扫描随着时间被连续地或周期性地执行以用于图2中描绘的方法的操作。扫描器对具有插入导管的病人进行成像。
在一些实施例中,导管被插入在病人的主动脉根处。导管可具有吊钩,所述吊钩允许导管保持固定到病人的主动脉根。在一些实施例中,导管保持插入在病人体内,直至人工瓣膜将要被插入。插入导管可在所述过程期间被去除。在其它实施例中,导管在整个过程期间保持插入。
在动作24中,在通过利用扫描器扫描病人而产生的数据中检测导管。所述检测可由图1中描绘的系统的处理器14进行。在一些实施例中,处理器使用存储在图1中描绘的系统的存储器16中的指令来检测导管。以下关于图3和4描述用于检测导管的示例性方法。在一些实施例中,可包括导管的投影位置作为用于检测导管的输入。导管的形状是预先已知的,并且一旦导管被插入在病人体内,通过用于加快检测导管的过程的离线机器检测训练,可增强检测过程。离线训练的导管检测器可将训练的结果存储在图1中描绘的系统的存储器16中,因此处理器14可访问所述结果,同时尝试在来自对给定病人的扫描的数据中检测导管。所述数据可包括多个荧光图像。在一些实施例中,所述多个荧光图像对应于病人的实时图像流。所述图像可被格式化为显示值(例如,RGB或灰度),或者可以是在显示映射和显示之前的强度值。
针对一序列图像中的给定图像(诸如,第一图像)执行检测。所述检测依赖于导管的空间指示。对于所述序列中的其它时间或图像,重复所述检测。替代地,使用跟踪。跟踪识别的导管,而非重新应用所述检测。在其它实施例中,重复所述检测以更新跟踪(例如,针对每个心搏周期重复检测),或者替代于跟踪,提供检测。
在动作26中,可跟踪导管的移动。处理器跟踪导管。所述跟踪可包括使用存储器中存储的导管的图像补充所述跟踪。通过在每个图像中重新检测导管来遍及一序列图像检测导管。当病人被成像时,基于预期形状跟踪(诸如,使用模板匹配或机器训练的分类器进行检测)插入导管的移动。在其它实施例中,在数据的一个图像或帧中检测导管。然后通过确定与最大相似性关联的平移、旋转和/或缩放来跟踪导管。例如,来自一个图像的表示导管的强度被平移、旋转和/或缩放并且使用绝对差之和或与随后的图像的其它相关性被比较。具有最大相似性的平移、旋转和/或缩放指示随后的图像中的导管位置。
通过跟踪导管的移动,公开的实施例不需要手动地在数据中指示用于潜在物体检测和跟踪的标记。与病人被成像的帧速相比,在由病人体内的呼吸和心脏运动引起的快速移动速度情况下,这种方法尤其有用。
在动作28中,处理器可检测在来自扫描的数据中表示的物体或结构。所述物体可以是支撑区域。所述物体可以是解剖结构。在一些情况下,解剖结构在扫描之前没有已知特征或结构。在其它情况下,解剖结构是预先已知的,并且所述结构可能在数据中看起来如何的模板可被用于帮助检测所述结构。在一些实施例中,检测的物体可以是与导管分开的插入物体,诸如小管或支架。
所述物体可作为导管移动的函数被检测。支撑区域被定义为与已知解剖结构(诸如,主动脉根)具有线性运动相关性。图像区域可能更容易检测和跟踪,因为图像区域允许使用合适的非局部外观模型,所述非局部外观模型对图像噪声、光流故障更加鲁棒。已被插入在已知解剖结构附近的导管将会与已知解剖结构(诸如,例如心脏、主动脉根或肺)的移动同步地移动。如此,与插入导管同步移动的任何其它结构必然与主动脉根、心脏或肺同步移动。作为示例,所述结构可以是在对病人进行一过程之前没有已知形状的解剖结构,诸如钙沉着或肿瘤。跟踪的肿瘤可以是肺荧光图像中的肿瘤区域。
在一些实施例中,通过使用局部支撑点来创建支撑区域。标准特征采样技术(诸如,图像分割、图像配准、基于图像的生理建模或统计分析)被用于在构成来自扫描的数据的初始帧或图像中发现局部支撑点。局部支撑点被假设位于同一局部运动空间中。处理器可使用自回归模型在给定时间段中对插入导管和潜在物体之间的点对点线性运动相关性进行建模。所述相关性可被表示为相关性得分。群集算法可被用于基于潜在支撑区域中的空间和运动线索对点轨迹进行分组。使用捕获空间位置和运动的相似性的度量。通常,如果两个轨迹彼此接近并且类似地移动,则所述轨迹可能属于同一区域。轨迹被表示为跨越集合A(例如,从病人扫描的数据)中的帧的一序列点。在任何时刻,在当前帧中,轨迹Ta和Tb之间的距离是空间距离和运动距离,其中
(方程1)
并且
(方程2)
是每个轴线中的运动的标准差,用于对两个距离中的运动的权重进行正则化。是空间距离的正则化参数,能够被调谐以平衡运动和空间距离。Δ是运动平滑参数。通过下面方程来计算荧光数据中的跨附近t个帧的距离:
(方程3)
(方程4)
其中是时间t之前的交叠帧的集合。由于与最大和平均距离相比帧距离的中值对轨迹噪声更加鲁棒,所以采用帧距离的中值。通过下面的方程从距离构造当前帧中的所有轨迹的仿射矩阵(affinity matrix):
(方程5)。
通过分析点轨迹空间的低维度嵌入来自动地确定群集的数量。这个自动运动补偿方案与例如主动脉根具有强运动相关性,以及通过钙跟踪来提高运动估计的性能。以上叙述的技术可使得不需要造影剂来检测人类解剖结构,诸如病人的主动脉根。
通过使用局部支撑区域的轨迹,所述系统能够通过所述结构随插入导管的关联移动来检测所述结构。当所述结构与导管同步地移动时,所述轨迹被用于检测所述结构。这种检测针对给定帧或图像中的结构,但基于一序列的轨迹。在一些实施例中,基于相关性得分,仅一些结构被选择用于跟踪。具有最高相关性得分的结构可被选择用于跟踪。
在动作30中,数据中所表示的结构可被跟踪。图1中描绘的系统的处理器14可跟踪所述结构。通过基于所述结构的前一位置在图像中对位置进行采样并且使用那些位置预测所述结构在未来图像中的位置,可跟踪所述结构。在一些实施例中,对病人的成像产生多个荧光图像。通过跟踪所述结构的特征,可跟踪所述结构。在一些实施例中,通过使用离散结构森林,可跟踪所述结构。跟踪所述结构可包括:跟踪所述结构的密度、跟踪数据中所述结构和周围区域之间的对比度、对所述结构中以及所述结构外部的点进行随机采样或者上述各项的组合。在一些实施例中,所述跟踪包括:在检测到的结构周围构造边框。边框可由图1中描绘的系统的处理器12自动构造。在其它实施例中,边框由所述系统的操作人员手动构造。边框可被用于描绘用于采样的图像内的开始点的轮廓。
用于跟踪病人的图像中的结构的一个示例性方法是使用离散结构森林。离散结构森林是随机森林分类器。随机森林包括决策树,其中树中的每个节点对应于所述系统做出的决策。在一些实施例中,用作树中的决策点的特征遵循如下几何图案:所述几何图案对正在跟踪的目标的基础结构进行编码。离散结构森林的使用是一种类型的数据挖掘或机器学习,所述数据挖掘或机器学习允许系统在病人的图像中跟踪目标时学习目标的结构。例如,对与插入导管同步地移动的潜在物体的特征进行采样,并且执行特征点比较以捕获图像中的物体的基础结构。采样技术可以是随机采样、数据驱动采样、手动设计模式采样或其它采样。
通过首先建立有向随机特征链来构造离散结构森林。处理器14可单独地或结合扫描器12或存储器16建立离散结构森林以及有向随机特征链。在一个实施例中,采样开始于其中已检测到物体(例如,感兴趣的解剖结构)的图像区域内部的点X0。在一个实施例中,如果使用边框,则点X0可以是边框的中心。另外的特征点X1在X0的附近区域内被采样。所述两个点被用作方向以用于对处于检测到的物体内的点的连续采样。当对Xn进行采样时,点Xn-1和Xn-2被用于避免沿用于连续采样的方向上的任何交叉或交叠。所述方向可以是检测到的物体中的链,表示为: 。通过满足下面的约束可对所述链中的下一个点进行采样:
(方程6)
(方程7)
其中并且。处理器12可单独地或结合存储器16执行对于这些方程的计算。
另一方案可使用数据驱动成对特征。数据驱动成对特征尝试对检测到的物体内的梯度变化(诸如,边缘)进行编码。图像与三个或其它数量的像素的标准差的高斯核组合,以抑制图像中的噪声。可使用像素的其它标准差。然后对物体周围的边框执行边缘检测。边框内的点的数量近似为从0到K。所述近似将所述点限制于检测到的物体的附近区域内的点。沿着边缘的点被采样,并且针对每个边缘点Xmax,Xmax周围的一对点被采样,使得所述一对点与Xmax共线,等距并且位于Xmax的相对侧。如果Xj和Xk是在Xmax周围采样的两个点,则可使用下面的公式:
(方程8)
这个公式允许识别边框中物体的边缘。
在另一实施例中,可使用数据驱动特征链。数据驱动特征链通过对物体内的最大或最小点进行采样来识别和跟踪物体。物体内的极值点被采样,并且下一个最近的极值点被采样。采样点形成链。另外的点被采样,直至针对采样点的链达到某个预定义长度。在图像被获得时所述链可被用作已知位置并且用作用于在病人的未来图像中跟踪所述结构的位置的输入。数据驱动特征链对图像数据中的强度波动示出显著的鲁棒性,因为所述波动不影响极值之间的次序关系。
可采用手动绘制的特征跟踪器。特定领域知识(例如,钙沉着的典型密度或形状)是预先已知的,可被用于构造手动绘制的特征跟踪器(诸如,几何形状)。手动绘制的特征跟踪器随后被以类似于边框的方式使用。跟踪器被应用于图像,并且然后所述位置被用于投影检测到的结构将会在随后的图像中的位置。在一些实施例中,三角形金字塔形状可被用于对与三角形金字塔的位置对应的物体内部的点进行采样。这个方案可被用于密集钙沉着,所述密集钙沉着未必是像钙沉着一样的细长管。
上述采样方案(随机采样、数据驱动采样和手动设计模式采样)可由处理器12单独地或结合存储器16实现。可结合物体检测过程使用所述采样方案,物体检测过程使用插入导管经由物体与插入导管的同步移动来检测物体。
在动作32中,处理器可输出所述结构的图像。图像可被输出到显示器,所述显示器是图1中描绘的系统的一部分。输出图像可具有所述结构,因为所述结构与导管或导管被固定到的解剖结构一起移动。在其它实施例中,处理器可输出所述结构的静态图像。在再其它实施例中,在对病人的手术期间连续地输出图像。图像可被输出到图1中描绘的系统中所包括的显示器。
使用所述检测和跟踪,感兴趣的解剖结构可被突出显示。在一个实施例中,解剖结构被分割。单独示出的经分割的结构突出显示感兴趣的解剖结构。在其它实施例中,颜色、图形或强度变化被用于相对于图像中的其它解剖结构或背景突出显示所述解剖结构。
图3示出用于使用图1的系统检测和跟踪插入导管(诸如,猪尾形导管)的采样流程图以及这里公开的实施例。猪尾形导管被插入到病人体内。检测猪尾形导管。所述检测可将离线训练的检测器用于猪尾形导管检测。跟踪猪尾形导管,并且发生支撑结构的自动发现。被发现的支撑结构可被用于预测主动脉根的位置。导管运动被用于识别作为感兴趣解剖结构的主动脉根。如果必要,猪尾形导管可被去除。
图4是替代工作流程,包括在病人的图像数据中的背景区域中检测物体。导管由外科医生插入到病人体内。检测和跟踪导管。所述工作流程可使用离线训练的猪尾形导管检测。与猪尾形导管相关的背景区域可被发现。关系是类似运动。跟踪背景区域,而非特定解剖结构。另外的区域可被发现和跟踪。如果必要,则导管可被外科医生抽出。图4中的工作流程是重复的,并且可在过程的持续时间期间始终重复。
图5示出这里公开的检测和跟踪的示例。在50,示出已根据这里公开的方法检测到和跟踪的猪尾形导管的结果。在52,示出钙沉着和检测到的猪尾形导管。钙沉着被检测为与插入导管一起移动。在54,检测到的猪尾形导管上方的钙沉着已根据这里公开的方法被检测到,并且将会被跟踪。
图6示出用于物体检测的已有跟踪方法与在本公开中提出的用于物体检测的跟踪方法的示例性比较。两个图像60和64示出将跟踪学习检测方案用于物体检测和跟踪。跟踪学习检测方案包括使用初始模板跟踪物体,并且然后收集随后图像中的物体的附加样本以更新随后图像中的物体位置。两个图像62和66示出使用离散结构森林和随机森林的物体检测和跟踪。在60中在68处示出的两个框和在62中在70处示出的两个框对应于针对两个不同方案的钙沉着的实际位置(较亮框)和跟踪结果(较暗框)。在图像62中,在框70处,清楚的是,实际位置和离散结构森林方案的跟踪结果非常接近。在图像60中,在框68处,在实际位置和跟踪学习检测方法的跟踪结果之间存在大的差异。类似地,在64中在72处示出的两个框和在66中在74处示出的两个框示出两个方案之间的差异。在72,在实际位置和跟踪学习检测方法的结果之间存在明显的差异。在74,在离散结构森林方案结果和实际位置之间存在较小的差异。
图1示出用于在病人的图像中跟踪结构的系统。所述系统包括扫描器12、存储器16和处理器14。在一些实施例中,显示器附接到所述系统。可提供另外的、不同的或更少的部件。例如,提供诸如用于从扫描器12联网到远程计算机或服务器的网络或网络连接。在另一示例中,提供用户接口。作为另一示例,不提供扫描器12。替代地,计算机或服务器从接收到的病人的图像数据检测和跟踪所述结构。
处理器14、存储器16和扫描器12是所述系统的一部分。替代地,处理器14、存储器16和扫描器12是与图1中描绘的系统分开的服务器、计算机和/或图像处理系统的一部分。在其它实施例中,处理器14、存储器16和显示器是个人计算机(诸如,桌上型计算机或膝上型计算机)、工作站、服务器、网络或上述各项的组合。可提供处理器14、显示器和存储器16,而没有用于检测和跟踪病人的图像数据中的物体的其它部件。
扫描器12可以是荧光图像扫描器。荧光图像扫描器使x射线透射穿过病人。x射线作为强度被检测,所述强度基于x射线穿过的病人体内的组织或结构的密度而变化。也可结合造影剂使用扫描器以帮助照射和识别人类器官。所获得的荧光图像描绘被检测和跟踪的解剖结构。
存储器16可以是图形处理存储器、视频随机存取存储器、随机存取存储器、系统存储器、高速缓存、硬盘驱动器、光学介质、磁介质、闪存、缓冲器、数据库、上述各项的组合或者用于存储数据的其它现在已知或以后开发的存储器装置。存储器16是图1中描绘的系统的一部分、与处理器14关联的计算机的一部分、数据库的一部分、另一系统的一部分或独立装置。
存储器16存储图像数据,诸如病人的荧光图像数据。荧光图像数据表示穿过病人的体积的投影。存储器16可替代地或者附加地存储处理期间的数据,诸如存储经过滤的数据、可能的物体位置、提取的特征值、实际物体位置、群集标记、成像数据和/或这里讨论的其它信息。
替代地或者附加地,存储器16或其它存储器是非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储表示指令的数据,所述指令可由编程的处理器14执行以跟踪病人的图像中的解剖结构。用于实现这里讨论的过程、方法和/或技术的指令被提供在非暂态计算机可读存储介质或存储器(诸如,高速缓存、缓冲器、RAM、可移动介质、硬盘驱动器或其它计算机可读存储介质)上。非暂态计算机可读存储介质包括各种类型的易失性和非易失性存储介质。响应于存储在计算机可读存储介质中或存储在计算机可读存储介质上的一个或多个指令集而执行附图中图示或这里描述的功能、动作或任务。所述功能、动作或任务独立于特定类型的指令集、存储介质、处理器或处理策略,并且可由单独或组合操作的软件、硬件、集成电路、固件、微代码等执行。同样地,处理策略可包括多处理、多任务、并行处理等。
在一个实施例中,指令被存储在供本地或远程系统读取的可移动介质装置上。在其它实施例中,指令被存储在远程位置以便通过计算机网络或经电话线传送。在再其它实施例中,指令被存储在给定计算机、CPU、GPU或系统内。
处理器14是通用处理器、中央处理单元、控制处理器、图形处理器、数字信号处理器、三维渲染处理器、图像处理器、专用集成电路、现场可编程门阵列、数字电路、模拟电路、上述各项的组合或者用于检测和跟踪导管和解剖或其它结构的其它现在已知或以后开发的装置。处理器14是单个装置或串联、并联或分开地操作的多个装置。处理器14可以是计算机(诸如,膝上型计算机或桌上型计算机)的主处理器,或者可以是用于在更大的系统中(诸如,在成像系统中)处理一些任务的处理器。处理器14由指令、设计、硬件和/或软件配置以执行这里讨论的动作。处理器14被配置为执行以上讨论的动作。处理器14可被配置为产生用户接口以用于接收物体的检测和跟踪的校正或核查。
图1中描绘的系统还可包括显示器。所述显示器可以是监视器、LCD、投影仪、等离子体显示器、CRT、打印机或用于输出视觉信息的其它现在已知或以后开发的设计。显示器从处理器14、存储器16或扫描器12接收图像、图形、文本、量或其它信息。一个或多个图像被显示。所述图像具有病人体内检测到的物体、插入导管以及病人的解剖结构的移动。所述图像可在过程期间被流传输,或者所述图像可以是静止图像。
尽管以上已通过参照各种实施例描述本发明,但应该理解,在不脱离本发明的范围的情况下能够做出许多变化和修改。因此,意图是,前面的详细描述被视为是说明性的而非限制性的,并且应该理解,下面的权利要求(包括所有等同物)意图定义本发明的精神和范围。

Claims (20)

1.一种用于结构检测的方法,所述方法包括:
随着时间扫描(22)具有插入导管的病人;
由处理器(14)检测(24)在来自扫描的数据中表示的导管;
由处理器(14)跟踪(26)导管的移动;
由处理器(14)检测(28)在来自扫描的数据中表示的结构,所述结构作为导管移动的函数被检测;
由处理器(14)跟踪(30)在来自扫描的数据中表示的结构,所述跟踪基于结构的前一位置使用采样;以及
由处理器(14)输出(32)所述结构的图像。
2.如权利要求1所述的方法,其中所述导管是猪尾形导管。
3.如权利要求1所述的方法,其中所述导管位于病人的主动脉根。
4.如权利要求1所述的方法,其中来自扫描(22)的所述数据包括多个荧光图像。
5.如权利要求1所述的方法,还包括:
去除所述插入导管。
6.如权利要求1所述的方法,还包括:
在检测到的结构周围构造边框;以及
其中跟踪所述结构包括在由边框定义的界限内进行采样。
7.如权利要求1所述的方法,其中对所述结构的跟踪(30)包括使用离散结构森林来跟踪所述结构的特征。
8.如权利要求7所述的方法,其中跟踪(30)所述结构包括:跟踪所述结构的密度、跟踪数据中的所述结构和周围区域之间的对比度、对所述结构中以及所述结构外部的点的随机采样或者上述各项的组合。
9.如权利要求1所述的方法,其中所述结构可以是与导管分开的插入物体。
10.一种用于在具有插入导管的病人体内随着时间进行物体检测的系统,所述系统包括:
扫描器(12),被配置为随着时间对具有插入导管的病人进行成像;
处理器(14),被配置为检测和跟踪在来自成像的数据中表示的导管;
所述处理器(14)被进一步配置为检测和跟踪在来自成像的数据中表示的物体,所述物体作为导管移动的函数被检测,其中基于物体的前一位置使用采样跟踪所述物体;以及
所述处理器(14)被配置为输出所述物体的图像。
11.如权利要求10所述的系统,其中所述导管是猪尾形导管。
12.如权利要求10所述的系统,其中所述来自图像的数据包括多个荧光图像。
13.如权利要求10所述的系统,其中所述处理器(14)被配置为在检测到的物体周围构造边框;并且其中所述采样包括在所述边框内采样。
14.如权利要求10所述的系统,其中所述处理器(14)被配置为跟踪物体,包括使用离散结构森林来跟踪物体的特征。
15.如权利要求14所述的系统,其中所述处理器(14)被配置为通过物体的密度、数据中的物体和周围区域之间的对比度、对数据中的点的随机采样或者上述各项的组合来跟踪物体。
16.一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质中已存储表示指令的数据,所述指令能够由编程的处理器(14)执行以促进检测病人体内的物体,所述存储介质包括用于执行下述操作的指令:
随着时间扫描(22)具有插入的猪尾形导管的病人;
检测(24)在来自扫描的数据中表示的猪尾形导管;
跟踪(26)猪尾形导管的移动;
检测(28)在来自扫描的数据中表示的结构,所述结构作为导管移动的函数被检测;
跟踪(30)在来自扫描的数据中表示的结构,所述跟踪基于结构的前一位置使用采样;以及
输出(32)所述结构的图像。
17.如权利要求16所述的非暂态计算机可读存储介质,其中所述来自扫描(22)的数据包括多个荧光图像。
18.如权利要求16所述的非暂态计算机可读存储介质,还包括:在检测到的结构周围构造边框;以及其中跟踪所述结构包括在由边框定义的界限内进行采样。
19.如权利要求16所述的非暂态计算机可读存储介质,其中跟踪(30)所述结构包括使用离散结构森林来跟踪结构特征。
20.如权利要求19所述的非暂态计算机可读存储介质,其中跟踪(30)所述结构包括:跟踪结构的密度、跟踪数据中的结构和周围区域之间的对比度、对数据中的点的随机采样或者上述各项的组合。
CN201680012285.8A 2015-02-27 2016-02-12 荧光成像中的鲁棒钙化跟踪 Active CN107249464B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562121538P 2015-02-27 2015-02-27
US201562121543P 2015-02-27 2015-02-27
US62/121538 2015-02-27
US62/121543 2015-02-27
PCT/EP2016/052988 WO2016134980A1 (en) 2015-02-27 2016-02-12 Robust calcification tracking in fluoroscopic imaging

Publications (2)

Publication Number Publication Date
CN107249464A true CN107249464A (zh) 2017-10-13
CN107249464B CN107249464B (zh) 2021-03-12

Family

ID=55446739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680012285.8A Active CN107249464B (zh) 2015-02-27 2016-02-12 荧光成像中的鲁棒钙化跟踪

Country Status (4)

Country Link
US (1) US10610181B2 (zh)
EP (1) EP3261545B1 (zh)
CN (1) CN107249464B (zh)
WO (1) WO2016134980A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349186A (zh) * 2019-07-16 2019-10-18 南昌航空大学 基于深度匹配的大位移运动光流计算方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104764A (ko) * 2016-02-12 2018-09-21 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 영상-안내 수술에서 정합되는 형광투시 영상을 사용하기 위한 시스템 및 방법
JP6849966B2 (ja) * 2016-11-21 2021-03-31 東芝エネルギーシステムズ株式会社 医用画像処理装置、医用画像処理方法、医用画像処理プログラム、動体追跡装置および放射線治療システム
US10529088B2 (en) * 2016-12-02 2020-01-07 Gabriel Fine Automatically determining orientation and position of medically invasive devices via image processing
WO2018129532A1 (en) * 2017-01-09 2018-07-12 Intuitive Surgical Operations, Inc. Systems and methods for registering elongate devices to three dimensional images in image-guided procedures
EP3658032A4 (en) * 2017-07-26 2021-03-03 Shenzhen Xpectvision Technology Co., Ltd. X-RAY IMAGING SYSTEM AND METHOD OF X-RAY TRACKING
US10341456B2 (en) * 2017-11-20 2019-07-02 Marc Berger Caching sticker profiles within a sticker communication system
EP3626173B1 (de) 2018-09-19 2021-05-05 Siemens Healthcare GmbH Verfahren zur bewegungskorrektur eines rekonstruierten drei-dimensionalen bilddatensatzes, biplan-röntgeneinrichtung, computerprogramm und elektronisch lesbarer datenträger
JP2022526527A (ja) * 2019-03-26 2022-05-25 コーニンクレッカ フィリップス エヌ ヴェ 永続的なガイドワイヤの識別
CN114126491B (zh) 2019-07-22 2023-04-04 西门子医疗有限公司 血管造影图像中的冠状动脉钙化的评估

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158477A1 (en) * 2001-11-09 2003-08-21 Dorin Panescu Systems and methods for guiding catheters using registered images
CN101530338A (zh) * 2008-03-12 2009-09-16 西门子公司 使用机器人x线装置进行心脏瓣膜介入手术的方法和设备
US20090264768A1 (en) * 2007-01-19 2009-10-22 Brian Courtney Scanning mechanisms for imaging probe
US20110164035A1 (en) * 2010-01-07 2011-07-07 Siemens Corporation Method of motion compensation for trans-catheter aortic valve implantation
US20130011030A1 (en) * 2011-07-07 2013-01-10 Siemens Aktiengesellschaft Method and System for Device Detection in 2D Medical Images
CN103110432A (zh) * 2011-11-16 2013-05-22 美国西门子医疗解决公司 诱导波超声成像中的自适应图像优化
CN103971403A (zh) * 2013-01-29 2014-08-06 西门子公司 3d管状结构的曲线重建的快速呈现

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938506A (en) * 1974-08-05 1976-02-17 Medtronic, Inc. Blood pressure monitoring system
FR2708166A1 (fr) * 1993-07-22 1995-01-27 Philips Laboratoire Electroniq Procédé de traitement d'images numérisées pour la détection automatique de sténoses.
JP3746115B2 (ja) * 1996-10-21 2006-02-15 株式会社東芝 超音波診断装置
WO2006020792A2 (en) * 2004-08-10 2006-02-23 The General Hospital Corporation Methods and apparatus for simulation of endovascular and endoluminal procedures
US7317825B2 (en) * 2004-12-22 2008-01-08 Siemens Medical Solutions Usa, Inc. Using temporal and spatial coherence to accelerate maximum/minimum intensity projection
CN104367300B (zh) * 2007-01-19 2017-05-31 桑尼布鲁克健康科学中心 具有组合的超声和光学成像装置的成像探头
US8068654B2 (en) * 2007-02-02 2011-11-29 Siemens Akteingesellschaft Method and system for detection and registration of 3D objects using incremental parameter learning
EP2139422B1 (en) * 2007-03-26 2016-10-26 Hansen Medical, Inc. Robotic catheter systems and methods
US8218845B2 (en) * 2007-12-12 2012-07-10 Siemens Aktiengesellschaft Dynamic pulmonary trunk modeling in computed tomography and magnetic resonance imaging based on the detection of bounding boxes, anatomical landmarks, and ribs of a pulmonary artery
US9241653B2 (en) * 2008-08-28 2016-01-26 St. Jude Medical Ab Method and device for estimating a myocardial performance parameter
US9999399B2 (en) * 2010-11-16 2018-06-19 Siemens Healthcare Gmbh Method and system for pigtail catheter motion prediction
US8712177B2 (en) * 2011-01-25 2014-04-29 Siemens Aktiengesellschaft Motion compensated overlay
US9014423B2 (en) * 2011-03-14 2015-04-21 Siemens Aktiengesellschaft Method and system for catheter tracking in fluoroscopic images using adaptive discriminant learning and measurement fusion
JP5793243B2 (ja) * 2011-06-28 2015-10-14 株式会社日立メディコ 画像処理方法および画像処理装置
US9002436B2 (en) * 2011-09-19 2015-04-07 Siemens Aktiengesellschaft Method and system for ablation catheter and circumferential mapping catheter tracking in fluoroscopic images
JP2016507304A (ja) 2013-02-11 2016-03-10 アンジオメトリックス コーポレーション 物体を検出及び追跡するとともに重ね合わせるシステム
KR20150071267A (ko) * 2013-12-18 2015-06-26 삼성전기주식회사 정현파 생성 장치 및 방법, 그를 이용한 피에조 액츄에이터 구동 시스템
CN106470605A (zh) * 2014-07-15 2017-03-01 株式会社日立制作所 磁共振成像装置及血流描画方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158477A1 (en) * 2001-11-09 2003-08-21 Dorin Panescu Systems and methods for guiding catheters using registered images
US20090264768A1 (en) * 2007-01-19 2009-10-22 Brian Courtney Scanning mechanisms for imaging probe
CN101530338A (zh) * 2008-03-12 2009-09-16 西门子公司 使用机器人x线装置进行心脏瓣膜介入手术的方法和设备
US20110164035A1 (en) * 2010-01-07 2011-07-07 Siemens Corporation Method of motion compensation for trans-catheter aortic valve implantation
US20130011030A1 (en) * 2011-07-07 2013-01-10 Siemens Aktiengesellschaft Method and System for Device Detection in 2D Medical Images
CN103110432A (zh) * 2011-11-16 2013-05-22 美国西门子医疗解决公司 诱导波超声成像中的自适应图像优化
CN103971403A (zh) * 2013-01-29 2014-08-06 西门子公司 3d管状结构的曲线重建的快速呈现

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349186A (zh) * 2019-07-16 2019-10-18 南昌航空大学 基于深度匹配的大位移运动光流计算方法
CN110349186B (zh) * 2019-07-16 2021-05-11 南昌航空大学 基于深度匹配的大位移运动光流计算方法

Also Published As

Publication number Publication date
CN107249464B (zh) 2021-03-12
US20180008222A1 (en) 2018-01-11
EP3261545B1 (en) 2019-12-11
EP3261545A1 (en) 2018-01-03
US10610181B2 (en) 2020-04-07
WO2016134980A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
CN107249464A (zh) 荧光成像中的鲁棒钙化跟踪
US11741605B2 (en) Method and system for image registration using an intelligent artificial agent
RU2739713C1 (ru) Обучение аннотированию объектов в изображении
CN104969260B (zh) 用于3d计算机断层扫描的多个骨骼分割
CN109589170B (zh) 医学成像中的左心耳闭合引导
Razeghi et al. CemrgApp: an interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research
CN110047056A (zh) 用深度图像到图像网络和对抗网络的跨域图像分析和合成
US20210182622A1 (en) Method and system for image segmentation and identification
JP2021521993A (ja) 敵対的生成ネットワークを使用した画像強調
CN108601552A (zh) 医学成像和医学成像信息的有效共享
Zhu et al. You only learn once: Universal anatomical landmark detection
US11915426B2 (en) Method, device and system for dynamic analysis from sequences of volumetric images
CN111340859B (zh) 用于图像配准的方法、学习装置和医学成像装置
US20210287454A1 (en) System and method for segmentation and visualization of medical image data
Tan et al. SGNet: Structure-aware graph-based network for airway semantic segmentation
US20220092786A1 (en) Method and arrangement for automatically localizing organ segments in a three-dimensional image
CN113574610A (zh) 用于成像的系统和方法
AU2020223750B2 (en) Method and System for Image Annotation
EP3651117B1 (en) Methods, systems and use for detecting irregularities in medical images by means of a machine learning model
Koziński et al. Learning to segment 3D linear structures using only 2D annotations
Gómez Betancur et al. Airway segmentation, skeletonization, and tree matching to improve registration of 3D CT images with large opacities in the lungs
CN110088806A (zh) 用于在解剖结构的图像中定位标记物的方法和装置
WO2023194877A2 (en) Device and method for guiding trans-catheter aortic valve replacement procedure
Tadeusiewicz et al. Medical pattern understanding based on cognitive linguistic formalisms and computational intelligence methods
Thomas et al. Graph Convolutional Neural Networks for Automated Echocardiography View Recognition: A Holistic Approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant