CN107238826B - 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法 - Google Patents

利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法 Download PDF

Info

Publication number
CN107238826B
CN107238826B CN201710430669.8A CN201710430669A CN107238826B CN 107238826 B CN107238826 B CN 107238826B CN 201710430669 A CN201710430669 A CN 201710430669A CN 107238826 B CN107238826 B CN 107238826B
Authority
CN
China
Prior art keywords
charge
thunderstorm
dual
echo
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710430669.8A
Other languages
English (en)
Other versions
CN107238826A (zh
Inventor
杨波
韩月琪
孟鑫
贺宏兵
黄正宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710430669.8A priority Critical patent/CN107238826B/zh
Publication of CN107238826A publication Critical patent/CN107238826A/zh
Application granted granted Critical
Publication of CN107238826B publication Critical patent/CN107238826B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法;其通过建立双偏振多普勒天气雷达回波参量与水成物粒子荷电敏感因子之间的映射关系;然后根据映射关系将反射率因子、多普勒速度、谱宽、水成物粒子类型、高度等雷达回波参量信息逐点转换为水成物粒子荷电参数化方案所需的水成物粒子类型等相关参量,并将转换后结果带入水成物粒子荷电的参数化方案,逐点计算出各回波数据点的电荷量,实现雷暴电荷分布的反演。本发明将雷暴的起电理论、电荷结构模型和双偏振多普勒天气雷达探测技术相结合,从而实现由双偏振多普勒天气雷达对雷暴电荷分布的探测,能够增强双偏振多普勒天气雷达对雷暴的监测能力。

Description

利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法
技术领域
本发明涉及一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法。
背景技术
对闪电活动进行有效的监测和预报有利于降低闪电造成的灾害损失,为此,人们对闪电监测和预报手段的研究从未停止。雷电活动的特征与雷暴的电荷分布密切相关,研究雷暴云内的电荷分布是揭示雷暴发展规律的重要途径,也可为雷电监测预警、人工引雷提供理论基础,因此研究雷暴云的电荷分布具有十分重要的理论意义和应用价值。
雷暴电荷结构的探测主要是利用探空气球、火箭、飞机等运载工具搭载电场探空仪进行雷暴云穿云探测,其中又以探空气球为主,由探测的电场廓线推断云内的电荷分布。也有一些利用天气雷达、LMA(Lightning Mapping Array)等多种探测设备对雷暴进行探测,根据闪电辐射源在雷暴中的位置推断雷暴电荷结构的研究。利用探空气球进行电场探空对于研究雷暴电荷结构有着不可替代的作用,但现有的探测方式至少还存在以下尚需进一步改进或解决的问题:(1)探测的时效性问题,探空气球携带电场探空仪进行探空是最常用的手段,但探空气球由于升速的限制,探空仪从进入雷暴云底部至到达雷暴云顶部所需的时间约为20分钟,由于雷暴单体的发展速度较快,探空仪上升时段内雷暴云电荷结构会存在较大变化,探空仪探测结果并不能真正反映雷暴电荷分布;(2)探测的空间代表性问题,探空气球从云底到云顶上升过程中,受水平风的影响,无法控制其运动轨迹,测量结果并不一定是预定测量区域的值,且测量值也仅为探空气球运动轨迹内的值,并不能反映整个雷暴区域的电荷分布;(3)探测的时间地点选择问题,雷暴必须出现在具备探测条件的地点才能进行探空测量,“守株待兔”的探测方式仅能在有限的时间和区域内获取非常有限的信息;此外,利用探空气球进行电场探空的方式还存在效费比低的问题,需要大量的人力、物力进行保障,使得雷暴电场探空难以进行业务推广。另外,包含完整天气过程的数值天气预报模式的Spin-up时间一般需要3至6个小时,而一般雷暴云的生命史只有不到3个小时,因此采用数值模式来预报雷暴电荷结构也非常困难。
为解决以上问题,本发明提出一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法。
发明内容:
本发明的目的在于提供一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法,实现利用双偏振多普勒天气雷达完成实时高效的雷暴电荷分布探测。
为达成上述发明目的,本发明的技术方案如下:一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法,其特征在于:该方法利用双偏振多普勒天气雷达雷暴探测回波数据为参量反演雷暴电荷分布。
其包括如下步骤:
S1:通过双偏振多普勒天气雷达雷暴探测回波数据反演雷暴粒子类型;
S2:通过分析雷暴不同类型水成物粒子荷电敏感性,获取水成物粒子荷电敏感因子,并由该因子建立水成物粒子荷电的参数化方案;
S3:建立双偏振多普勒天气雷达雷暴探测回波数据与水成物粒子荷电敏感因子之间的映射关系,其中双偏振多普勒天气雷达雷暴探测回波数据包括反射率因子、多普勒速度、谱宽、水成物粒子类型、高度等参量信息;
S4:根据映射关系将双偏振多普勒天气雷达雷暴探测回波数据中反射率因子、多普勒速度、谱宽、水成物粒子类型、高度参量信息逐点转换为水成物粒子荷电参数化方案所需的水成物粒子类型、碰撞速度、环境温度、水汽含量及浓度相关参量,并将转换后结果带入水成物粒子荷电的参数化方案,逐点计算出各回波数据点的电荷量,实现雷暴电荷分布的反演至结束。
优选地,所述雷暴电荷分布的反演以双偏振多普勒天气雷达雷暴探测得到的雷达回波数据为基本数据,利用反射率因子ZH、多普勒速度V、谱宽W、双偏振回波信息(差分反射率因子ZDR、双程差分传播相位常数KDP、双程差分传播相位ΦDP、相关系数ρhv、线性退偏振比LDR)、数据点的空间位置信息以及数据点所在位置的温度信息等为基本参数进行雷暴电荷分布反演。
优选地,所述雷暴电荷分布反演过程依赖于雷达回波参量与水成物粒子荷电敏感因子的映射关系,如式(1)所示,将雷达回波参量转换为水成物粒子荷电敏感因子,再带入水成物粒子荷电的参数化方案,求出粒子的荷电量。
f(Wv,T,ρ,Vc,Tp)=f(ZH,V,W,Tp,H) (1)
优选地,所述水成物粒子荷电的参数化方案可根据实验和数值模拟方法得到,参数化方案的精度影响电荷反演精度。
优选地,所述利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法的具体反演算法步骤为:
确定反演区域,进行格点划分;
得到各格点的雷达坐标,提取雷达回波参量,参量包括:回波反射率因子ZH、多普勒速度V、谱宽W、双偏振回波信息(差分反射率因子ZDR、双程差分传播相位常数KDP、双程差分传播相位ΦDP、相关系数ρhv、线性退偏振比LDR),对于无数据格点,采用插值算法进行插值得到数据;
利用水成物粒子类型反演算法,如模糊逻辑法,通过双偏振雷达回波参量对雷暴粒子类型进行反演;
将回波反射率因子ZH、多普勒速度V、谱宽W、水成物粒子类型、格点的高度H为参数,换算为水成物粒子荷电的参数化方案水成物粒子类型Tp、碰撞速度Vc、环境温度T2、水汽含量Wv及浓度ρ;
将水成物粒子类型Tp、碰撞速度Vc、环境温度T、水汽含量Wv及浓度ρ带入水成物粒子荷电的参数化方案Q=f(Wv,T,ρ,Vc,Tp),求取各格点带电量,得到反演区域的电荷分布。
本发明的优点在于:(1)探测的实时性高,双偏振多普勒天气雷达完成一次体扫仅需几分钟,一次RHI扫描仅需几秒到十几秒,可对雷暴发展过程的电荷分布演变进行动态监测;(2)探测的空间范围广,雷达可对其周围上百公里半径区域内的雷暴进行实时监测,获取雷暴的总体结构特征,由雷达回波数据得到的电荷分布为整个雷暴范围内的分布,而不仅仅是探空气球运动轨迹内的电场曲线;(3)探测的效费比高,利用双偏振多普勒天气雷达探测雷暴电荷分布,实际上是增加了雷达数据的二次产品,所需的投入主要在理论研究、试验分析和工程开发阶段,一旦完成开发则无需更多的投入,使用中也无需投入额外的人力、物力,适合业务推广。
附图说明
图1是本发明的雷暴电荷分布反演方法基本步骤。
图2是本发明水成物粒子荷电的参数化方案设计流程图。
图3是本发明涉及的模糊逻辑法粒子类型识别流程图。
图4是本发明实现算法的具体流程。
具体实施方式:
下面结合附图对本发明做进一步详细说明。
由于双偏振多普勒天气雷达对雷暴进行探测时,回波参量中并不能直接获取雷暴的电学特征,双偏振多普勒天气雷达本身不具备直接探测雷暴电荷的能力;但如果将雷暴的起电理论和双偏振多普勒天气雷达探测技术相结合,建立雷暴起电机制和雷达回波参量之间的联系,利用回波参量对雷暴电荷分布进行反演,则可以间接得到雷暴的电荷分布,从而实现由双偏振多普勒天气雷达对雷暴电荷分布的探测。本发明方法即基于以上思路提出的,图1给出了实施本发明方法的基本步骤。由于本方法是基于水成物粒子荷电参数化方案,因此,如图1所示:
首先需要利用双偏振多普勒天气雷达回波反演雷暴粒子类型分布;
再根据模拟仿真或实验得到水成物粒子荷电参数化方案;
由于雷达回波参数并不能直接作为水成物粒子荷电参数化方案需要的参数,因此需要建立雷达回波参量与水成物粒子荷电敏感因子的映射关系:
f(Wv,T,ρ,Vc,Tp)=f(ZH,V,W,Tp,H)
再将逐点雷达回波参数转换为水成物粒子参数化方案所需的参数:
(ZH,Tp,V,H,W)=>(Wv,T,ρ,Vc,Tp)
将转换后的值带入水成物粒子荷电参数化方案,逐点计算数据点电荷量:
Q=f(Wv,T,ρ,Vc,Tp)
图1中所述的双偏振多普勒天气雷达回波反演雷暴粒子类型,可采用如图2所示的模糊逻辑法实现,首先对反演区域进行网格划分,逐网格点读取的双偏振雷达回波参数,通过参数模糊化、计算类型分值、获取最大分值类型等步骤,实现对各网格点粒子类型的反演。
图1中所述的水成物粒子荷电参数化方案为可调参数的方案,方案精度对雷暴电荷反演精度有很大影响,该参数化方案可通过数值模拟和实验验证的方式得出,图3给出了一种设计水成物粒子荷电参数化方案的基本思路,首先找出影响不同水成物粒子荷电及雷暴云电荷结构分布的敏感性参量,如水成物粒子类型及密度、温度、风速、水汽含量等参量;再根据这些敏感性参量与不同水成物粒子的荷电分布结构,采用函数拟合或机器学习方法(如BP神经网络、支持向量机等),构建由敏感性参量分析不同水成物粒子荷电分布结构的参数化方案,即得到水成物粒子荷电量的方程:
Q=f(Wv,T,ρ,Vc,Tp)
并采用函数拟合或机器学习方法形成的参数化方案计算的雷暴云电荷结构分布与雷电数值模式模拟结果进行比较分析,对参数化方案进行优选改进。
图4给出了利用该方法实现雷暴电荷分布反演的具体流程,首先对需要反演电荷分布的双偏振多普勒雷达雷暴探测区域进行网格划分,网格数为N;然后逐点读取雷达回波参数;再通过读取的雷达回波参数进行雷暴粒子类型反演并进行参数转换,得到水成物粒子参数化方案的输出参数;将粒子类型和转换后的参数带入水成物粒子参数化方案;最好计算出网格点的电荷量。通过逐点计算各网格点的电荷量,即得到整个反演区域的电荷分布。
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法,其特征在于其利用双偏振多普勒天气雷达雷暴探测回波数据为参量反演雷暴电荷分布,其中所述反演雷暴电荷分布包括以下步骤:
S1:通过双偏振多普勒天气雷达雷暴探测回波数据反演雷暴粒子类型;
S2:通过分析雷暴不同类型水成物粒子荷电敏感性,获取水成物粒子荷电敏感因子,并由该因子建立水成物粒子荷电的参数化方案;
S3:建立双偏振多普勒天气雷达雷暴探测回波数据与水成物粒子荷电敏感因子之间的映射关系;
S4:根据映射关系将双偏振多普勒天气雷达雷暴探测回波数据中反射率因子、多普勒速度、谱宽、水成物粒子类型、高度参量信息逐点转换为水成物粒子荷电参数化方案所需的水成物粒子类型、碰撞速度、环境温度、水汽含量及浓度相关参量,并将转换后结果带入水成物粒子荷电的参数化方案,逐点计算出各回波数据点的电荷量,实现雷暴电荷分布的反演至结束。
2.根据权利要求1所述的方法,其特征在于:所述雷暴电荷分布的反演以双偏振多普勒天气雷达雷暴探测得到的雷达回波数据为基本数据,利用反射率因子ZH、多普勒速度V、谱宽W、双偏振回波信息、数据点的空间位置信息以及数据点所在位置的水成物粒子种类、温度信息为基本参数进行雷暴电荷分布反演,所述双偏振回波信息包含差分反射率因子ZDR、双程差分传播相位常数KDP、双程差分传播相位ΦDP、相关系数ρhv、线性退偏振比LDR
3. 根据权利要求2所述的方法,其特征在于:雷暴电荷分布反演过程依赖于雷达回波参量与水成物粒子荷电敏感因子的映射关系,如式(1)所示,将雷达回波参量转换为水成物粒子荷电敏感因子,再带入水成物粒子荷电的参数化方案,求出粒子的荷电量:
f (Wv, T , ρ, Vc, Tp) = f (ZH, V, W, Tp, H) (1)
其中Wv为水汽含量,T为环境温度,ρ为浓度,Vc为碰撞速度,Tp为水成物粒子类型,ZH为回波反射率因子、V为多普勒速度、W为谱宽、H为格点的高度。
4.根据权利要求2所述的方法,其特征在于:所述水成物粒子荷电的参数化方案根据雷暴电荷结构探测实验和雷暴电荷结构数值模拟方法得到,该参数化方案的精度影响电荷反演精度。
5.根据权利要求2所述的方法,其特征在于:所述雷暴电荷反演的算法步骤为:
S41:确定反演区域,进行格点划分;
S42:得到各格点的雷达坐标,提取雷达回波参量,雷达回波参量包括:回波反射率因子ZH、多普勒速度V、谱宽W、双偏振回波信息,对于无数据格点,采用插值算法进行插值得到数据;
S43:利用水成物粒子类型反演算法,通过双偏振雷达回波参量对雷暴粒子类型进行反演;
S44:将回波反射率因子ZH、多普勒速度V、谱宽W、水成物粒子类型、格点的高度H为参数,换算为水成物粒子荷电的参数化方案水成物粒子类型Tp、碰撞速度Vc、环境温度T、水汽含量Wv及浓度 ρ;
S45:将水成物粒子类型Tp、碰撞速度Vc、环境温度T、水汽含量Wv及浓度 ρ带入水成物粒子荷电的参数化方案Q = f (Wv, T, ρ, Vc, Tp),求取各格点带电量,得到反演区域的电荷分布。
CN201710430669.8A 2017-06-09 2017-06-09 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法 Expired - Fee Related CN107238826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710430669.8A CN107238826B (zh) 2017-06-09 2017-06-09 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710430669.8A CN107238826B (zh) 2017-06-09 2017-06-09 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法

Publications (2)

Publication Number Publication Date
CN107238826A CN107238826A (zh) 2017-10-10
CN107238826B true CN107238826B (zh) 2019-12-24

Family

ID=59987809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710430669.8A Expired - Fee Related CN107238826B (zh) 2017-06-09 2017-06-09 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法

Country Status (1)

Country Link
CN (1) CN107238826B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445464B (zh) * 2018-03-12 2021-09-10 南京恩瑞特实业有限公司 基于机器学习的卫星雷达反演融合方法
CN108508442A (zh) * 2018-03-16 2018-09-07 哈尔滨工程大学 一种基于地基多通道微波辐射计的大气温湿廓线反演方法
CN110390117B (zh) * 2018-04-20 2024-05-07 中国电力科学研究院有限公司 一种雷暴起电过程的数值模拟方法和系统
CN108931774B (zh) * 2018-06-26 2022-06-21 重庆市气象台 基于闪电资料的对流性降水识别产品检验方法及系统
CN110346800B (zh) * 2019-04-02 2021-08-17 成都锦江电子系统工程有限公司 一种基于双偏振天气雷达体扫数据的雷暴识别方法
CN110095777A (zh) * 2019-04-23 2019-08-06 南京信息工程大学 基于混编技术的模糊逻辑法气象粒子识别方法
CN110704804B (zh) * 2019-04-30 2022-12-13 南京信息工程大学 一种自适应的水凝物反演方法
CN110376562B (zh) * 2019-07-30 2022-10-11 长威信息科技发展股份有限公司 一种双偏振雷达天气预测准确性的验证方法
CN110488297B (zh) * 2019-08-30 2023-03-24 成都信息工程大学 一种复杂地形区域雹暴的预警方法
CN110749871B (zh) * 2019-11-05 2023-02-28 南京大学 双偏振天气雷达的参量估算方法
CN111639747B (zh) * 2020-05-14 2023-10-20 中国科学院国家空间科学中心 一种基于bp神经网络的gnss-r海面风速反演方法及系统
CN111487477B (zh) * 2020-05-25 2022-04-08 南京信息工程大学 基于大气电场仪阵列群的雷暴云点电荷定位数据互补方法
CN113443175B (zh) * 2021-05-31 2022-08-12 上海卫星工程研究所 空间液滴辐射器的结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316930A (zh) * 2014-10-29 2015-01-28 安徽四创电子股份有限公司 一种基于双线偏振多普勒天气雷达探测的雨强估算方法
CN105785371A (zh) * 2016-03-21 2016-07-20 北京无线电测量研究所 全固态双频段双偏振多普勒天气雷达系统及雷达测量的方法
CN106501806A (zh) * 2016-10-31 2017-03-15 北京市人工影响天气办公室 一种降水粒子的类型识别方法及装置
WO2017056193A1 (ja) * 2015-09-29 2017-04-06 三菱電機株式会社 二重偏波レーダ装置及びレーダ信号処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439899B2 (en) * 2006-03-22 2008-10-21 Enterprise Electronics Corporation Encoded transmitted signals in a simultaneous dual polarization weather system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316930A (zh) * 2014-10-29 2015-01-28 安徽四创电子股份有限公司 一种基于双线偏振多普勒天气雷达探测的雨强估算方法
WO2017056193A1 (ja) * 2015-09-29 2017-04-06 三菱電機株式会社 二重偏波レーダ装置及びレーダ信号処理方法
CN105785371A (zh) * 2016-03-21 2016-07-20 北京无线电测量研究所 全固态双频段双偏振多普勒天气雷达系统及雷达测量的方法
CN106501806A (zh) * 2016-10-31 2017-03-15 北京市人工影响天气办公室 一种降水粒子的类型识别方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于X波段双线偏振天气雷达的雷暴云粒子识别;郭凤霞 等;《气象学报》;20141231(第6期);第1231-1244页 *

Also Published As

Publication number Publication date
CN107238826A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
CN107238826B (zh) 利用双偏振多普勒天气雷达回波反演雷暴电荷分布的方法
CN112905560B (zh) 一种多源时空大数据深度融合的空气污染预测方法
US11333796B2 (en) Spatial autocorrelation machine learning-based downscaling method and system of satellite precipitation data
CN105243435B (zh) 一种基于深度学习元胞自动机模型的土壤含水量预测方法
Mrówczyńska et al. Compression of results of geodetic displacement measurements using the PCA method and neural networks
CN114966685B (zh) 基于InSAR和深度学习的大坝形变监测及预测方法
CN111666656A (zh) 基于微波雨衰的降雨估算方法及降雨监测系统
CN111999733B (zh) 海岸带大坝稳定性监测与淹没脆弱性评估方法、系统
CN112711899B (zh) 一种蒸发波导高度的融合预测方法
CN105975763A (zh) 一种多源海面风场的融合方法和装置
CN110457829A (zh) 一种基于集成大气扩散模型的源项释放反演和扩散预测方法
CN106289691A (zh) 一种基于微波雷达装置的桥梁分块冲击振动检测方法及检测装置
CN111474529B (zh) 卫星反演雷达回波的方法、反演雷达回波系统及导航雷达
CN108805350A (zh) 基于多维蒙特卡洛理论的搜救范围预测方法
Song et al. A continuous space location model and a particle swarm optimization-based heuristic algorithm for maximizing the allocation of ocean-moored buoys
CN110986876A (zh) 一种基于无人机反演淤泥质潮沟水下地形的方法
Pereira et al. Method for solar resource assessment using numerical weather prediction and artificial neural network models based on typical meteorological data: Application to the south of Portugal
CN107480781A (zh) 神经网络自适应卡尔曼滤波的核事故源项反演方法
CN112100922A (zh) 一种基于wrf和cnn卷积神经网络的风资源预测方法
Chai et al. Retrieval of microscale flow structures from high-resolution Doppler lidar data using an adjoint model
CN114781576A (zh) 一种基于随机森林算法的声速剖面估计方法及装置
Alharbi et al. Short-term wind speed and temperature forecasting model based on gated recurrent unit neural networks
CN111898296A (zh) 一种核物质大气扩散及沉降多尺度模拟方法及系统
CN116609859A (zh) 一种气象灾害高分辨率区域模式预报系统及方法
Menut et al. Evidence of interaction between synoptic and local scales in the surface layer over the Paris area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191224

Termination date: 20210609

CF01 Termination of patent right due to non-payment of annual fee