CN107238610A - 基于微波波段反射特性的复合绝缘子缺陷无损检测系统 - Google Patents

基于微波波段反射特性的复合绝缘子缺陷无损检测系统 Download PDF

Info

Publication number
CN107238610A
CN107238610A CN201710655231.XA CN201710655231A CN107238610A CN 107238610 A CN107238610 A CN 107238610A CN 201710655231 A CN201710655231 A CN 201710655231A CN 107238610 A CN107238610 A CN 107238610A
Authority
CN
China
Prior art keywords
signal
composite insulator
reflected signal
interface
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710655231.XA
Other languages
English (en)
Other versions
CN107238610B (zh
Inventor
伏祥运
梅红伟
黄河
陈洁
李红
高赫
刘明
赵晨龙
朱立位
王黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lianyungang Power Supply Co Of State Grid Jingsu Electric Power Company
State Grid Corp of China SGCC
Shenzhen Graduate School Tsinghua University
Original Assignee
Lianyungang Power Supply Co Of State Grid Jingsu Electric Power Company
State Grid Corp of China SGCC
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lianyungang Power Supply Co Of State Grid Jingsu Electric Power Company, State Grid Corp of China SGCC, Shenzhen Graduate School Tsinghua University filed Critical Lianyungang Power Supply Co Of State Grid Jingsu Electric Power Company
Priority to CN201710655231.XA priority Critical patent/CN107238610B/zh
Publication of CN107238610A publication Critical patent/CN107238610A/zh
Application granted granted Critical
Publication of CN107238610B publication Critical patent/CN107238610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws

Abstract

本发明涉及一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,系统包括飞秒激光源、导波装置、交换端口、录波器和数据分析模块;飞秒激光源用于产生检测信号;导波装置用于连接飞秒激光源与交换端口;交换端口包括对微波波段信号具有双向通透性的分波镜面,用于分离入射信号和反射信号,数据分析模块通过对入射信号及反射信号进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。本发明采用新的复合绝缘子缺陷检测方式,能有效检测复合绝缘子内部的缺陷。

Description

基于微波波段反射特性的复合绝缘子缺陷无损检测系统
技术领域
本发明涉及复合绝缘子缺陷无损检测技术,特别是一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统。
背景技术
复合绝缘子的物理性能极大地影响着其挂网使用时的电气性能。一旦其护套或芯棒产生裂痕、气隙、贯穿等内部或表皮缺陷,就极易导致电网线路出现泄漏电流增大甚至闪络等情况。目前,常见的复合绝缘子缺陷检测方法分为在线法和离线法。其中,在线法中的红外检测法与离线法中的连续波微波检测法是现有技术中常用的两种方法。
专利CN 103760480 B公开了一种采用红外测温技术的复合绝缘子故障判断方法。检测时在距离电力杆塔30~80米的距离使用红外热像仪进行拍照测温,如果发现复合绝缘子导线侧均压环位置温升大于2℃或导线侧均压环以外位置大于温升大于1℃,则判定绝缘子发生故障。然而,在炎热天气下,红外热像仪成像的背景空间图像噪点严重,红外检测无法对绝缘子温升情况进行正确判断。同时红外检测只能对绝缘子的表面温升数据进行采集,无法深入了解绝缘子内部的发热状况。这种特性会使红外检测难以对绝缘子内部的微小缺陷造成的弱温升进行识别,从而导致事故。
专利CN 104568991 A公开了一种采用连续波微波检测技术的复合绝缘子故障判断方法。检测时通过微波振荡源向复合绝缘子发射幅值一定的固定频率连续波,并通过测量发射波信号强度并判断其是否处于正常范围对复合绝缘子进行缺陷检测。连续波微波检测方法是基于连续波信号源的微波检测方法,其反射信号经过整流后只保留了强度信息,无法读取相位、波形畸变等其他信息。同时,由于连续波检测是对稳态反射信号进行收集并分析,所以该方法无法对微波在介质中的传播时间等暂态信息进行识别和检测。因为以上各种特性,连续波微波检测方法无法对缺陷类型、夹层厚度等信息进行准确判断。此外,连续波信号分析没有卷积及去噪等运算过程,会因为检测现场的各种微小因素产生巨大的误判。
发明内容
本发明的目的在于提供一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,能够精准的判断复合绝缘子的缺陷情况,同时由于该脉冲式检测方法基于反射波的峰值计算,所以受到检测角度变化、外界电磁干扰等因素的影响较小。
实现本发明目的的技术方案为:一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,包括飞秒激光源、导波装置、交换端口、录波器和数据分析模块;
所述飞秒激光源用于产生检测信号;
所述导波装置用于连接飞秒激光源与交换端口;
所述交换端口包括对微波波段信号具有双向通透性的分波镜面,从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
所述录波器用于捕捉反射信号β1并上传至数据分析模块;
所述数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
一种复合绝缘子缺陷无损检测方法,包括以下步骤:
飞秒激光源产生检测信号;
导波装置将检测信号无损传输到发射端;发射端是由定向耦合器及喇叭口微波天线构成的进行微波信号发射的端口;
从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
录波器捕捉反射信号β1并上传至数据分析模块;
数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
与现有技术相比,本发明的显著优点为:
(1)本发明采用新的复合绝缘子缺陷检测方式,能有效检测复合绝缘子内部的缺陷;
(2)本发明为主动激发式离线检测手段,不依赖电网等外部条件,直接由飞秒激光源产生激励信号并进行检测;
(3)本发明可集成度高,交换端口的结构使其能够将发射探头和接收探头集成到一个小体积的交换端,并避免了因信号散射造成的检测失败;
(4)本发明基于暂态波峰识别的数据分析技术,能够获得反射信号的相位、频谱等数据信息,有利于对复合绝缘子的真实状况进行分析。
附图说明
图1为基于微波波段反射特性的复合绝缘子缺陷无损检测系统的基本构成图。
图2为交换端口主要原理图。
具体实施方式
结合图1,一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,包括飞秒激光源、导波装置、交换端口、录波器和数据分析模块;
所述飞秒激光源用于产生检测信号;
所述导波装置用于连接飞秒激光源与交换端口;
如图2所示,所述交换端口包括对微波波段信号具有双向通透性的分波镜面,从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
所述录波器用于捕捉反射信号β1并上传至数据分析模块;
所述数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
进一步的,透射信号α1和反射信号α2的波形完全相同,强度各占入射信号α能量的50%;反射信号β1和透射信号β2的波形完全相同,强度各占反射信号β能量的50%。
进一步的,交换端口以硅玻璃材料为主要构成元素,采用高阻硅透镜,主要材料为HRFZ-Si。
进一步的,数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定;其中时域分析过程为:
(1)对时域返回信号的直方序列进行滑动平均处理;
(2)对滑动平均处理后的曲线进行识别,找到极大值与极小值序列;
(3)使用临界阈值法对极大值与极小值序列进行判定,找到峰值序列;
缺陷判定的过程为:
基于峰值识别的交界面识别方法,根据回波延迟计算出复合绝缘子内部各夹层的厚度,从而判定是否有缺陷;
(1)根据峰值序列的时域分布,结合微波传输速度进行计算,得到所有反射界面位置;
(2)对计算得出的反射界面位置进行信度检测,筛除误识别界面;
(3)将计算得出的界面位置与实际的理论界面位置进行比对,多出的界面即为缺陷界面,相应位置信息为缺陷深度。
本发明还提供一种基于上述检测系统的复合绝缘子缺陷无损检测方法,包括以下步骤:
飞秒激光源产生检测信号;
导波装置将检测信号无损传输到发射端;发射端是由定向耦合器及喇叭口微波天线构成的端口,用于微波信号发射;
从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
录波器捕捉反射信号β1并上传至数据分析模块;
数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
进一步的,透射信号α1和反射信号α2的波形完全相同,强度各占入射信号α能量的50%;反射信号β1和透射信号β2的波形完全相同,强度各占反射信号β能量的50%。
进一步的,数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定;其中时域分析过程为:
(1)对时域返回信号的直方序列进行滑动平均处理;
(2)对滑动平均处理后的曲线进行识别,找到极大值与极小值序列;
(3)使用临界阈值法对极大值与极小值序列进行判定,找到峰值序列;
缺陷判定的过程为:
基于峰值识别的交界面识别方法,根据回波延迟计算出复合绝缘子内部各夹层的厚度,从而判定是否有缺陷;
(1)根据峰值序列的时域分布,结合微波传输速度进行计算,得到所有反射界面位置;
(2)对计算得出的反射界面位置进行信度检测,筛除误识别界面;
(3)将计算得出的界面位置与实际的理论界面位置进行比对,多出的界面即为缺陷界面,相应位置信息为缺陷深度。
下面结合具体实施例对本发明进行详细说明。
实施例
结合图1、图2,一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,包括飞秒激光源、导波装置、交换端口、录波器和数据分析模块;
飞秒激光源为本检测方法所需的检测信号的产生器,其产生的激光脉冲信号宽度为飞秒级别,具有良好的穿透特性和反射特性。
导波装置为连接飞秒激光源与交换端口的物理结构,旨在保证原始脉冲信号能够无损传输到发射端。
交换端口是以硅玻璃材料为主要构成元素的对微波波段信号具有双向通透性的镜面为主体的部件。
从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2,两者波形完全相同,强度各占原始信号α能量的50%。透射信号α1入射复合绝缘子材料后,会在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β。反射信号β经过分波镜面后分解为反射信号β1和透射信号β2,两者波形完全相同,强度各占原始信号β能量的50%。该端口是信号传递过程中最重要也最具开创性的环节。常见的微波发射和接收端口尺寸都在10cm量级,而精确测量要求入射波和反射波均垂直于被测物体表面,这使发射和接收端口的安装出现困难,也容易造成入射信号和反射信号混叠的情况,极大的干扰了检测的结果和有效性。通过使用该结构,能清晰的分离入射信号和反射信号,同时解决了设备的体积问题。
录波器是具有极高动作灵敏性的飞秒级别信号捕捉装置,用于捕捉前文提到的反射信号β1并上传至数据分析模块进行处理。
数据分析模块通过对原始信号α及反射信号β2进行时域分析,能模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
每次检测时,对复合绝缘子的芯棒径向的每个圆周进行15个单点检测,即每个检测点间隔24°。联合此15个点的检测数据与标准圆周的检测数据进行分析比对,即可清晰的得出该径向位置是否有缺陷以及缺陷的圆周大小情况。

Claims (6)

1.一种基于微波波段反射特性的复合绝缘子缺陷无损检测系统,其特征在于,包括飞秒激光源、导波装置、交换端口、录波器和数据分析模块;
所述飞秒激光源用于产生检测信号;
所述导波装置用于连接飞秒激光源与交换端口;
所述交换端口包括对微波波段信号具有双向通透性的分波镜面,从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
所述录波器用于捕捉反射信号β1并上传至数据分析模块;
所述数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
2.根据权利要求1所述的基于微波波段反射特性的复合绝缘子缺陷无损检测系统,其特征在于,透射信号α1和反射信号α2的波形完全相同,强度各占入射信号α能量的50%;反射信号β1和透射信号β2的波形完全相同,强度各占反射信号β能量的50%。
3.根据权利要求1所述的基于微波波段反射特性的复合绝缘子缺陷无损检测系统,其特征在于,数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定;其中时域分析过程为:
(1)对时域返回信号的直方序列进行滑动平均处理;
(2)对滑动平均处理后的曲线进行识别,找到极大值与极小值序列;
(3)使用临界阈值法对极大值与极小值序列进行判定,找到峰值序列;
缺陷判定的过程为:
基于峰值识别的交界面识别方法,根据回波延迟计算出复合绝缘子内部各夹层的厚度,从而判定是否有缺陷;
(1)根据峰值序列的时域分布,结合微波传输速度进行计算,得到所有反射界面位置;
(2)对计算得出的反射界面位置进行信度检测,筛除误识别界面;
(3)将计算得出的界面位置与实际的理论界面位置进行比对,多出的界面即为缺陷界面,相应位置信息为缺陷深度。
4.一种基于权利要求1所述检测系统的复合绝缘子缺陷无损检测方法,其特征在于,包括以下步骤:
飞秒激光源产生检测信号;
导波装置将检测信号无损传输到发射端;发射端是由定向耦合器及喇叭口微波天线构成的进行微波信号发射的端口;
从导波装置传递过来的入射信号α经过分波镜面后,分解为透射信号α1和反射信号α2;透射信号α1入射复合绝缘子材料后,在其各个交界面上产生不同的反射回波波形,将所有反射回波总述为反射信号β;反射信号β经过分波镜面后分解为反射信号β1和透射信号β2;
录波器捕捉反射信号β1并上传至数据分析模块;
数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定。
5.根据权利要求4所述的复合绝缘子缺陷无损检测方法,其特征在于,透射信号α1和反射信号α2的波形完全相同,强度各占入射信号α能量的50%;反射信号β1和透射信号β2的波形完全相同,强度各占反射信号β能量的50%。
6.根据权利要求4所述的复合绝缘子缺陷无损检测方法,其特征在于,数据分析模块通过对入射信号α及反射信号β1进行时域分析,模拟计算出复合绝缘子在被测点的基本情况,从而进行缺陷判定;其中时域分析过程为:
(1)对时域返回信号的直方序列进行滑动平均处理;
(2)对滑动平均处理后的曲线进行识别,找到极大值与极小值序列;
(3)使用临界阈值法对极大值与极小值序列进行判定,找到峰值序列;
缺陷判定的过程为:
基于峰值识别的交界面识别方法,根据回波延迟计算出复合绝缘子内部各夹层的厚度,从而判定是否有缺陷;
(1)根据峰值序列的时域分布,结合微波传输速度进行计算,得到所有反射界面位置;
(2)对计算得出的反射界面位置进行信度检测,筛除误识别界面;
(3)将计算得出的界面位置与实际的理论界面位置进行比对,多出的界面即为缺陷界面,相应位置信息为缺陷深度。
CN201710655231.XA 2017-08-03 2017-08-03 基于微波波段反射特性的复合绝缘子缺陷无损检测系统 Active CN107238610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710655231.XA CN107238610B (zh) 2017-08-03 2017-08-03 基于微波波段反射特性的复合绝缘子缺陷无损检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710655231.XA CN107238610B (zh) 2017-08-03 2017-08-03 基于微波波段反射特性的复合绝缘子缺陷无损检测系统

Publications (2)

Publication Number Publication Date
CN107238610A true CN107238610A (zh) 2017-10-10
CN107238610B CN107238610B (zh) 2020-06-19

Family

ID=59989592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710655231.XA Active CN107238610B (zh) 2017-08-03 2017-08-03 基于微波波段反射特性的复合绝缘子缺陷无损检测系统

Country Status (1)

Country Link
CN (1) CN107238610B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807342A (zh) * 2017-10-31 2018-03-16 国网安徽省电力公司电力科学研究院 用于电流互感器的绝缘缺陷检测装置及方法
CN107807315A (zh) * 2017-10-31 2018-03-16 国网安徽省电力公司电力科学研究院 用于电气设备的绝缘缺陷检测装置及方法
CN108645993A (zh) * 2018-04-08 2018-10-12 中国矿业大学(北京) 岩土介质中水分湿润锋的识别方法及其验证系统
CN110082655A (zh) * 2019-05-13 2019-08-02 国网北京市电力公司 可视化设备检测方法及仪器及其在智能电网中的应用
CN110579483A (zh) * 2019-09-24 2019-12-17 清华大学深圳国际研究生院 基于太赫兹波的内部缺陷成像装置、方法及可读存储介质
CN112179297A (zh) * 2019-07-01 2021-01-05 云南电网有限责任公司玉溪供电局 基于微波反射技术的复合绝缘子护套偏芯度检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814287A (zh) * 2011-10-07 2014-05-21 英派尔科技开发有限公司 利用太赫兹时域光谱的汞气体感测法
CN204536226U (zh) * 2014-12-18 2015-08-05 中国南方电网有限责任公司超高压输电公司天生桥局 复合绝缘子的缺陷的检测设备和系统
CN106199543A (zh) * 2016-06-24 2016-12-07 华中科技大学 一种雷达散射截面的测量装置
CN106950227A (zh) * 2017-03-20 2017-07-14 国网江苏省电力公司连云港供电公司 一种复合绝缘子缺陷无损检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814287A (zh) * 2011-10-07 2014-05-21 英派尔科技开发有限公司 利用太赫兹时域光谱的汞气体感测法
CN204536226U (zh) * 2014-12-18 2015-08-05 中国南方电网有限责任公司超高压输电公司天生桥局 复合绝缘子的缺陷的检测设备和系统
CN106199543A (zh) * 2016-06-24 2016-12-07 华中科技大学 一种雷达散射截面的测量装置
CN106950227A (zh) * 2017-03-20 2017-07-14 国网江苏省电力公司连云港供电公司 一种复合绝缘子缺陷无损检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李岩: "《光电技术》", 28 February 2016 *
王黎明等: "《基于微波反射法的复合绝缘子无损检测方法》", 《高电压技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807342A (zh) * 2017-10-31 2018-03-16 国网安徽省电力公司电力科学研究院 用于电流互感器的绝缘缺陷检测装置及方法
CN107807315A (zh) * 2017-10-31 2018-03-16 国网安徽省电力公司电力科学研究院 用于电气设备的绝缘缺陷检测装置及方法
CN107807315B (zh) * 2017-10-31 2023-12-19 国网安徽省电力公司电力科学研究院 用于检测电气设备的绝缘缺陷的方法
CN108645993A (zh) * 2018-04-08 2018-10-12 中国矿业大学(北京) 岩土介质中水分湿润锋的识别方法及其验证系统
CN108645993B (zh) * 2018-04-08 2020-08-18 中国矿业大学(北京) 岩土介质中水分湿润锋的识别方法及其验证系统
CN110082655A (zh) * 2019-05-13 2019-08-02 国网北京市电力公司 可视化设备检测方法及仪器及其在智能电网中的应用
CN112179297A (zh) * 2019-07-01 2021-01-05 云南电网有限责任公司玉溪供电局 基于微波反射技术的复合绝缘子护套偏芯度检测方法
CN110579483A (zh) * 2019-09-24 2019-12-17 清华大学深圳国际研究生院 基于太赫兹波的内部缺陷成像装置、方法及可读存储介质
CN110579483B (zh) * 2019-09-24 2021-09-07 清华大学深圳国际研究生院 基于太赫兹波的内部缺陷成像装置、方法及可读存储介质

Also Published As

Publication number Publication date
CN107238610B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN107238610A (zh) 基于微波波段反射特性的复合绝缘子缺陷无损检测系统
Sheng et al. Partial discharge pulse propagation in power cable and partial discharge monitoring system
CN105334433A (zh) 电缆局部放电的检测方法及装置
CN108007896B (zh) 一种电力硅橡胶复合绝缘件的缺陷检测方法
US6810743B2 (en) Non-destructive evaluation of wire insulation and coatings
Cheng et al. Research of nondestructive methods to test defects hidden within composite insulators based on THz time-domain spectroscopy technology
CN108896872A (zh) 基于sstdr的手持式电缆故障检测系统及方法
Qaddoumi et al. Detecting defects in outdoor non-ceramic insulators using near-field microwave non-destructive testing
CN110320446A (zh) 基于回波损耗谱法的电力电缆缺陷定位及诊断方法
Akbari et al. Challenges in calibration of the measurement of partial discharges at ultrahigh frequencies in power transformers
CN106950227A (zh) 一种复合绝缘子缺陷无损检测方法
Auckland et al. Application of ultrasound to the inspection of insulation
CN108760814A (zh) 一种复合绝缘子红外与毫米波联合智能检测方法及其装置
CN106950228A (zh) 一种复合绝缘子缺陷无损检测设备
CN110261739B (zh) 一种电缆软故障定位装置及定位方法
CN110849962A (zh) 利用电磁超声原理评估金属裂痕纹走向与深度的装置及方法
KR101654630B1 (ko) 신경회로망을 이용한 케이블 고장 진단 시스템 및 방법
CN207232374U (zh) 一种基于横波法的局部放电超声检测传感器校准系统
Zheng et al. Research on partial discharge localization in XLPE cable accessories using multi-sensor joint detection technology
CN201273891Y (zh) 一种用于陶瓷绝缘子的超声无损检测装置
CN212622907U (zh) 一种变压器局部放电物联网监测装置
CN112179297A (zh) 基于微波反射技术的复合绝缘子护套偏芯度检测方法
CN113567992A (zh) 超声合成孔径聚焦的变压器套管内引线检测方法及系统
CN203216840U (zh) 一种输电线路高压绝缘瓷瓶裂纹超声远程检测装置
Cao et al. Research on eddy current testing technology for lead seal crack defects of high voltage cable

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant