CN107238485A - 一种测试双包层增益光纤泵浦吸收系数的方法 - Google Patents

一种测试双包层增益光纤泵浦吸收系数的方法 Download PDF

Info

Publication number
CN107238485A
CN107238485A CN201710523874.9A CN201710523874A CN107238485A CN 107238485 A CN107238485 A CN 107238485A CN 201710523874 A CN201710523874 A CN 201710523874A CN 107238485 A CN107238485 A CN 107238485A
Authority
CN
China
Prior art keywords
absorption coefficient
fiber
double clad
gain fibre
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710523874.9A
Other languages
English (en)
Other versions
CN107238485B (zh
Inventor
李进延
张芳芳
廖雷
贺兴龙
陈益沙
李海清
彭景刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Ezhou Institute of Industrial Technology Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Ezhou Institute of Industrial Technology Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Ezhou Institute of Industrial Technology Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710523874.9A priority Critical patent/CN107238485B/zh
Publication of CN107238485A publication Critical patent/CN107238485A/zh
Application granted granted Critical
Publication of CN107238485B publication Critical patent/CN107238485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

一种测试双包层增益光纤泵浦吸收系数的方法,包括:S1、采用百瓦量级待测波长的LD泵浦光源,将LD泵浦光源尾纤与光纤合束器泵浦尾纤熔接,泵浦光通过光纤合束器耦合到高反光栅中,从高反光栅尾纤输出,记该输出功率值为泵浦耦合功率;S2、选取初始长度L0≤40m的待测双包层增益光纤,搭建百瓦量级的振荡结构光纤激光器;S3、通过截断法,记录待测光纤长度分别为L0、L1 ... ... LN时光纤输出端的功率值以及在输出端插入一面45°双色镜后的功率值,得到各光纤长度下对应的剩余泵浦光功率;S4、计算统计得出待测双包层增益光纤对待测波长的泵浦吸收系数。本发明可以忽略ASE对测试结果的影响,测试平台稳定安全,实现了双包层增益光纤吸收系数的准确测量。

Description

一种测试双包层增益光纤泵浦吸收系数的方法
技术领域
本发明涉及光纤激光器技术领域,特别涉及一种测试双包层增益光纤泵浦吸收系数的方法。
背景技术
现有测试方法多是采用小功率泵浦光源直接耦合注入双包层增益光纤中,利用"增益光纤吸收泵浦光后会产生自发辐射,未被吸收完全的泵浦光输出"的物理机制,获得剩余泵浦光,计算吸收系数,并通过多次截短、重复测试的方式选择一个比较合理的值作为待测光纤的有效泵浦吸收系数。
现有技术1(CN105222998B.国防科技大学2015)该方法通过空间耦合将宽带光源满数值孔径地注入至待测光纤,多次截短待测光纤,实时获取不同长度下对应的光谱,最后通过线性拟合法做曲线,将斜率记为待测光纤的泵浦吸收系数。该方法存在的缺点是:调满数值孔径注入的步骤过于繁琐,且空间光路使得测试结构不够稳定。
现有技术2([2]傅永军等."稀土掺杂双包层光纤的抽运吸收的测试."中国激光37.1(2010):166-170.)该方法取10m长待测光纤,采用截断法,每次截短1m,用PK NET TEST2210谱损耗分析仪进行测试,它的光源为白光源,通过单色仪后输出。双包层增益光纤的吸收系数为:
该方案通过PK NET TEST 2210直接测得吸收系数谱图,读图得数据。这种方法简单快捷,无需考虑ASE影响,但测试仪器昂贵且不常见,因此方法不通用。
现有技术3是目前使用最多的方法。如图3所示,该方法要求先选取一段10-20米长的双包层增益光纤,将小功率泵浦光通过泵浦合束器耦合到待测双包层增益光纤中,在待测光纤的末端放置双色镜和小量程精密激光功率计,其中双色镜镀有对泵浦光高反对激光高透的膜层。分别测试双色镜前后的光功率值P2和P3,将差值作为未吸收的泵浦光功率。采用截断法对不同长度的增益光纤进行测试,分别测试不同泵浦功率的P2和P3值。P1为耦合进掺杂光纤中的泵浦光功率,约在掺杂光纤熔点后1厘米处测量。根据光纤长度计算出掺杂光纤的吸收系数。该方法的缺点是:1,ASE光谱很宽并且有一定强度,双色片并不能保证对ASE光100%高透,因此测得的吸收系数很有可能偏小。2,将掺杂光纤后1厘米处的输出作为耦合入光纤的总泵浦光有失偏颇,因为在泵浦端面很短的距离内光纤吸收很大,此举将可能导致吸收系数测量值偏大。3,在不断截短的过程中,有产生自激的可能性,该方案利用双色片排出了自激振荡光对剩余泵浦光测量数值的影响,但为平台带来了安全隐患。
总的来说,现有技术或多或少都存在一些设计上的缺陷,首先,小功率泵浦本身就对功率计或光谱仪提出了极高的要求;再者,由于无法完全滤除ASE光的影响,很有可能造成吸收系数测试值偏大;又例如,当光纤长度选取过短,光纤内模式未稳定可能导致吸收系数测试值偏大;而若光纤长度选取过长时,测试值可能偏小,光纤内极易产生自激振荡,对测试平台造成威胁。
发明内容
有鉴于此,本发明提出一种能够克服现有技术的不足,消除ASE对测试结果的影响,提供一种结构稳定、无自激振荡隐患、测试结果精度高的用于测试双包层增益光纤泵浦吸收系数的方法。
一种测试双包层增益光纤泵浦吸收系数的方法,其包括如下步骤:
S1、采用百瓦量级待测波长的LD泵浦光源,将LD泵浦光源尾纤与光纤合束器泵浦尾纤熔接,泵浦光通过光纤合束器耦合到高反光栅中,从高反光栅尾纤输出;将光功率计置于高反光栅输出尾纤端,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P1
S2、选取长度为L0的待测双包层增益光纤,一端与高反光栅输出尾纤相熔接,另一端切平角,构成光学谐振腔;
S3、调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P2-0
S4、在待测光纤末端放置一块对泵浦光高透对激光高反的45°双色镜,将功率计置于与光纤垂直方向,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P3-0
S5、保持熔点状态不变,自待测光纤另一端向高反光栅方向进行切割,每次切断长度1m,切割总次数为N,N≥6次,每次截短后的光纤长度分别为L1、L2......LN,每次截短后重复步骤S3、S4,分别记为输出功率组P2-1、P2-2......P2-N,和P3-1、P3-2……P3-N
S6、计算统计P-0=P3-0-P2-0,P-1=P3-1-P2-1……P-N=P3-N-P2-N分别对应光纤长度为L0、L1......LN时的剩余泵浦光功率;
S7、计算统计泵浦吸收系数α(L0)、α(L1)......α(LN)与对应待测双包层增益光纤长度L0、L1......LN的变化规律,选择在长度范围内波动小的吸收系数值作为最终该待测光纤的泵浦吸收系数。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
L0≤40m。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,更优选
10m≤L0≤30m。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
泵浦吸收系数由下式计算获得:
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
所述泵浦光源为半导体激光器,所述半导体激光器的中心波长为所述待测双包层增益光纤的待测吸收波长。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
高反光栅尾纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径与所述待测双包层增益光纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径对应相等。
实施本发明提供的测试双包层增益光纤泵浦吸收系数的方法与现有技术相比具有以下有益效果:与现有技术不同,本方案基于振荡结构的百瓦量级光纤激光器,ASE光可以忽略不计;而输出的激光谱窄,可以被双色镜有效滤除,因此本方案的剩余泵浦光值受影响较小,即吸收系数测试值与吸收系数实际值接近,测试结果可信度高。
现有方案当泵浦功率与光纤长度的匹配不合适时,将会产生自激振荡危及泵浦光源和其他器件,而本方案中几乎所有的激光被高反光栅反射,因此对器件威胁小。
激光平台为百瓦量级,采用同样百瓦量程的光功率计,与现有技术的几瓦甚至更低泵浦功率相比,读数误差对结果的影响更小。
在长度的选择上,很客观的由长光纤开始截短,统计吸收系数与对应长度之间的关系,趋势明显,更有利于分析增益光纤的吸收特性,其次本方案选取与长度不相关的吸收系数测试值作为光纤实际吸收系数,该做法进一步提高了测试结果的准确度。
全光纤结构受外界环境影响小,更稳定可靠。
附图说明
图1是现有技术1中测试方法图;
图2是现有技术2中测试方法图;
图3是现有技术3中测试方法图;
图4是本发明实施例的测试双包层增益光纤泵浦吸收系数的方法示意图。
具体实施方式
如图4所示,本发明实施例提供种测试双包层增益光纤泵浦吸收系数的方法,其包括如下步骤:
S1、采用百瓦量级待测波长的LD泵浦光源,将LD泵浦光源尾纤与光纤合束器泵浦尾纤熔接,泵浦光通过光纤合束器耦合到高反光栅中,从高反光栅尾纤输出;将光功率计置于高反光栅输出尾纤端,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P1
S2、选取长度为L0的待测双包层增益光纤,一端与高反光栅输出尾纤相熔接,另一端切平角,构成光学谐振腔;
S3、调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P2-0
S4、在待测光纤末端放置一块对泵浦光高透对激光高反的45°双色镜,将功率计置于与光纤垂直方向,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P3-0
S5、保持熔点状态不变,自待测光纤另一端向高反光栅方向进行切割,每次切断长度1m,切割总次数为N,N≥6次,每次截短后的光纤长度分别为L1、L2......LN,每次截短后重复步骤S3、S4,分别记为输出功率组P2-1、P2-2......P2-N,和P3-1、P3-2......p3-N
S6、计算统计P-0=P3-0-P2-0,P-1=P3-1-P2-1......p-N=p3-N-P2-N分别对应光纤长度为L0、L1......LN时的剩余泵浦光功率;
S7、统计泵浦吸收系数α(L0)、α(L1)......α(LN)与对应待测双包层增益光纤长度L0、L1......LN的变化规律,选择在长度范围内波动小的吸收系数值作为最终该待测光纤的泵浦吸收系数。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,L0≤40m。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,更优选10m≤L0≤30m。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
泵浦吸收系数由下式计算获得:
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
所述泵浦光源为半导体激光器,所述半导体激光器的中心波长为所述待测双包层增益光纤的待测吸收波长。
在本发明所述的测试双包层增益光纤泵浦吸收系数的方法中,
高反光栅尾纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径与所述待测双包层增益光纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径对应相等。
实施本发明提供的测试双包层增益光纤泵浦吸收系数的方法及装置与现有技术相比具有以下有益效果:与现有技术不同,本方案基于振荡结构的光纤激光器,ASE光可以忽略不计;而输出的激光谱窄,可以被双色镜有效滤除,因此本方案的剩余泵浦光值受影响较小,即吸收系数测试值与吸收系数实际值接近,测试结果可信度高。
现有方案当泵浦功率与光纤长度的匹配不合适时,将会产生自激振荡危及泵浦光源和其他器件,而本方案中几乎所有的激光被高反光栅反射,因此对器件威胁小。
激光平台为百瓦量级,采用同样百瓦量程的光功率计,与现有技术的几瓦甚至更低泵浦功率相比,读数误差对结果的影响更小。
在长度的选择上,很客观的由长光纤开始截短,统计吸收系数与对应长度之间的关系,趋势明显,更有利于分析增益光纤的吸收特性,其次本方案选取与长度不相关的吸收系数测试值作为光纤实际吸收系数,该做法进一步提高了测试结果的准确度。
全光纤结构受外界环境影响小,更稳定可靠。
可以理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (6)

1.一种测试双包层增益光纤泵浦吸收系数的方法,其特征在于,其包括如下步骤:
S1、采用百瓦量级待测波长的LD泵浦光源,将LD泵浦光源尾纤与光纤合束器泵浦尾纤熔接,泵浦光通过光纤合束器耦合到高反光栅中,从高反光栅尾纤输出;将光功率计置于高反光栅输出尾纤端,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P1
S2、选取长度为L0的待测双包层增益光纤,一端与高反光栅输出尾纤相熔接,另一端切平角,构成光学谐振腔;
S3、调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P2-0
S4、在待测光纤末端放置一块对泵浦光高透对激光高反的45°双色镜,将功率计置于与光纤垂直方向,调节泵浦光源输出功率逐渐增加,读取功率计示数并记录一组功率值,记为P3-0
S5、保持熔点状态不变,自待测光纤另一端向高反光栅方向进行切割,每次切断长度1m,切割总次数为N,N≥6次,每次截短后的光纤长度分别为L1、L2......LN,每次截短后重复步骤S3、S4,分别记为输出功率组P2-1、P2-2......P2-N,和P3-1、P3-2......P3-N
S6、计算统计P-0=P3-0-P2-0,P-1=P3-1-P2-1......P-N=P3-N-P2-N分别对应光纤长度为L0、L1......LN时的剩余泵浦光功率;
S7、计算统计泵浦吸收系数α(L0)、α(L1)......α(LN)与对应待测双包层增益光纤长度L0、L1......LN的变化规律,选择在长度范围内波动小的吸收系数值作为最终该待测光纤的泵浦吸收系数。
2.如权利要求1所述的测试双包层增益光纤泵浦吸收系数的方法,其特征在于,
L0≤40m。
3.如权利要求2所述的测试双包层增益光纤泵浦吸收系数的方法,其特征在于,
10m≤L0≤30m。
4.如权利要求1所述的测试双包层增益光纤泵浦吸收系数的方法,其特征在于,
泵浦吸收系数由下式计算获得:
<mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mn>10</mn> <msub> <mi>L</mi> <mi>N</mi> </msub> </mfrac> <mi>log</mi> <mfrac> <msub> <mi>P</mi> <mrow> <mo>-</mo> <mi>N</mi> </mrow> </msub> <msub> <mi>P</mi> <mn>1</mn> </msub> </mfrac> <mo>.</mo> </mrow>
5.如权利要求1所述的测试双包层增益光纤泵浦吸收系数的方法,其特征在于,
所述泵浦光源为半导体激光器,所述半导体激光器的中心波长为所述待测双包层增益光纤的待测吸收波长。
6.如权利要求1所述的测试双包层增益光纤泵浦吸收系数的方法,其特征在于,
高反光栅尾纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径与所述待测双包层增益光纤的纤芯直径、纤芯数值孔径、内包层外径、内包层数值孔径对应相等。
CN201710523874.9A 2017-06-30 2017-06-30 一种测试双包层增益光纤泵浦吸收系数的方法 Active CN107238485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710523874.9A CN107238485B (zh) 2017-06-30 2017-06-30 一种测试双包层增益光纤泵浦吸收系数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710523874.9A CN107238485B (zh) 2017-06-30 2017-06-30 一种测试双包层增益光纤泵浦吸收系数的方法

Publications (2)

Publication Number Publication Date
CN107238485A true CN107238485A (zh) 2017-10-10
CN107238485B CN107238485B (zh) 2019-05-17

Family

ID=59990174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710523874.9A Active CN107238485B (zh) 2017-06-30 2017-06-30 一种测试双包层增益光纤泵浦吸收系数的方法

Country Status (1)

Country Link
CN (1) CN107238485B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976302A (zh) * 2017-12-06 2018-05-01 中国工程物理研究院激光聚变研究中心 一种基于全光纤结构的光纤包层吸收谱检测装置和方法
CN108225745A (zh) * 2018-02-09 2018-06-29 长飞光纤光缆股份有限公司 一种双包层掺镱光纤激光斜率效率测试系统及测试方法
CN109342027A (zh) * 2018-10-16 2019-02-15 华中科技大学 一种光纤的损耗吸收测量系统及方法
CN112763184A (zh) * 2020-12-23 2021-05-07 中国人民解放军国防科技大学 基于侧面散射光探测的增益光纤吸收系数测量装置和方法
CN113567091A (zh) * 2021-09-23 2021-10-29 武汉锐科光纤激光技术股份有限公司 光纤激光器用双包层无源光纤自动测试设备及方法
CN114486175A (zh) * 2022-01-10 2022-05-13 武汉思创精密激光科技有限公司 一种掺镱光纤泵浦吸收系数测试装置及方法
CN115655657A (zh) * 2022-12-27 2023-01-31 北京凯普林光电科技股份有限公司 一种光纤合束器测试系统及方法
CN116539279A (zh) * 2023-03-13 2023-08-04 中国工程物理研究院激光聚变研究中心 一种包层泵浦光吸收系数的测量系统及测量方法
CN117554034A (zh) * 2024-01-12 2024-02-13 中国工程物理研究院激光聚变研究中心 分布式侧面泵浦光纤耦合系数测量方法、系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627396B2 (ja) * 1996-08-23 2005-03-09 株式会社ニコン 合成石英ガラスの内部吸収係数測定方法および測定装置
CN101886974B (zh) * 2010-07-15 2011-12-14 华中科技大学 一种测量掺稀土双包层光纤包层泵浦吸收系数的方法
CN105222998A (zh) * 2015-10-30 2016-01-06 中国人民解放军国防科学技术大学 用于测试双包层增益光纤泵浦吸收系数的方法
CN105572066A (zh) * 2016-02-24 2016-05-11 烽火通信科技股份有限公司 一种掺稀土光纤预制棒吸收系数的测试装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627396B2 (ja) * 1996-08-23 2005-03-09 株式会社ニコン 合成石英ガラスの内部吸収係数測定方法および測定装置
CN101886974B (zh) * 2010-07-15 2011-12-14 华中科技大学 一种测量掺稀土双包层光纤包层泵浦吸收系数的方法
CN105222998A (zh) * 2015-10-30 2016-01-06 中国人民解放军国防科学技术大学 用于测试双包层增益光纤泵浦吸收系数的方法
CN105572066A (zh) * 2016-02-24 2016-05-11 烽火通信科技股份有限公司 一种掺稀土光纤预制棒吸收系数的测试装置及方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976302B (zh) * 2017-12-06 2024-04-16 中国工程物理研究院激光聚变研究中心 一种基于全光纤结构的光纤包层吸收谱检测装置和方法
CN107976302A (zh) * 2017-12-06 2018-05-01 中国工程物理研究院激光聚变研究中心 一种基于全光纤结构的光纤包层吸收谱检测装置和方法
CN108225745A (zh) * 2018-02-09 2018-06-29 长飞光纤光缆股份有限公司 一种双包层掺镱光纤激光斜率效率测试系统及测试方法
CN109342027A (zh) * 2018-10-16 2019-02-15 华中科技大学 一种光纤的损耗吸收测量系统及方法
CN109342027B (zh) * 2018-10-16 2020-06-30 华中科技大学 一种光纤的损耗吸收测量系统及方法
CN112763184B (zh) * 2020-12-23 2023-08-29 中国人民解放军国防科技大学 基于侧面散射光探测的增益光纤吸收系数测量装置和方法
CN112763184A (zh) * 2020-12-23 2021-05-07 中国人民解放军国防科技大学 基于侧面散射光探测的增益光纤吸收系数测量装置和方法
CN113567091B (zh) * 2021-09-23 2022-01-11 武汉锐科光纤激光技术股份有限公司 光纤激光器用双包层无源光纤自动测试设备及方法
CN113567091A (zh) * 2021-09-23 2021-10-29 武汉锐科光纤激光技术股份有限公司 光纤激光器用双包层无源光纤自动测试设备及方法
CN114486175A (zh) * 2022-01-10 2022-05-13 武汉思创精密激光科技有限公司 一种掺镱光纤泵浦吸收系数测试装置及方法
CN115655657A (zh) * 2022-12-27 2023-01-31 北京凯普林光电科技股份有限公司 一种光纤合束器测试系统及方法
CN116539279A (zh) * 2023-03-13 2023-08-04 中国工程物理研究院激光聚变研究中心 一种包层泵浦光吸收系数的测量系统及测量方法
CN116539279B (zh) * 2023-03-13 2023-10-20 中国工程物理研究院激光聚变研究中心 一种包层泵浦光吸收系数的测量系统及测量方法
CN117554034A (zh) * 2024-01-12 2024-02-13 中国工程物理研究院激光聚变研究中心 分布式侧面泵浦光纤耦合系数测量方法、系统及装置
CN117554034B (zh) * 2024-01-12 2024-05-28 中国工程物理研究院激光聚变研究中心 分布式侧面泵浦光纤耦合系数测量方法、系统及装置

Also Published As

Publication number Publication date
CN107238485B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
CN107238485A (zh) 一种测试双包层增益光纤泵浦吸收系数的方法
CN107356407B (zh) 同步测量高功率光纤激光器功率、光谱和光束质量的装置
CN103730822B (zh) 超短脉冲光纤激光系统
CN109031516A (zh) 一种大模场双包层掺镱光纤
US20150331182A1 (en) Method of manufacturing a radiation-resistant optical fiber, radiation-resistant optical fiber and device including such a fiber
Dawson et al. Large flattened-mode optical fiber for reduction of nonlinear effects in optical fiber lasers
CN105222998B (zh) 用于测试双包层增益光纤泵浦吸收系数的方法
CN106226035A (zh) 一种掺镱光纤光子暗化测试系统
CN107976302B (zh) 一种基于全光纤结构的光纤包层吸收谱检测装置和方法
CN107764514A (zh) 一种高功率光纤激光器用低反光栅反射率精确测量装置
CN105572066B (zh) 一种掺稀土光纤预制棒吸收系数的测试装置及方法
CN107946893A (zh) 基于单模‑内置微腔的渐变多模‑单模结构的可饱和吸收体器件
US5701318A (en) Polarized superfluorescent fiber sources
CN101303457A (zh) 一种波前重组的光束准直均匀方法及其光源系统
Baykal et al. Effect of beam types on the scintillations: a review
TW574777B (en) Laser device, excitation method thereof, and laser processing machine
CN107631796B (zh) 一种光纤辐照监测装置及监测方法
CN203690694U (zh) 超短脉冲光纤激光系统
CN102853996A (zh) 有源稀土掺杂光纤光子暗化测试装置
CN206192500U (zh) 光束取样系统
CN101374025A (zh) 光放大器增益平坦滤波器的谱形确定方法
CN114280771A (zh) 用于光纤激光器的激光光斑匀化系统搭建方法及该系统
CN110954296A (zh) 一种液芯光纤的光信号放大性能检测方法及其检测装置
CN207662604U (zh) 一种基于全光纤结构的光纤包层吸收谱检测装置
Liu et al. The absorption characteristics of rare earth doped circular double-clad fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant