CN107233896A - 一种双金属银铜纳米颗粒及其应用 - Google Patents

一种双金属银铜纳米颗粒及其应用 Download PDF

Info

Publication number
CN107233896A
CN107233896A CN201710435456.4A CN201710435456A CN107233896A CN 107233896 A CN107233896 A CN 107233896A CN 201710435456 A CN201710435456 A CN 201710435456A CN 107233896 A CN107233896 A CN 107233896A
Authority
CN
China
Prior art keywords
silver
nano particle
solution
bimetal nano
nps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710435456.4A
Other languages
English (en)
Inventor
柴芳
李双
曲凤玉
王春刚
苏忠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Normal University
Original Assignee
Harbin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Normal University filed Critical Harbin Normal University
Priority to CN201710435456.4A priority Critical patent/CN107233896A/zh
Publication of CN107233896A publication Critical patent/CN107233896A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Hydrology & Water Resources (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Water Supply & Treatment (AREA)

Abstract

本发明公开了一种利用双金属银铜纳米颗粒比色检测重金属汞离子的方法,该方法通过水相氧化还原法利用硼氢化钠作为还原剂合成双金属银铜纳米颗粒,利用其溶液通过反应前后紫外吸收峰值的变化同时伴随着颜色变化的特性来检测重金属汞离子,结果表明,双金属银铜纳米颗粒组成的比色探针对汞离子具有较好的灵敏度和选择性,并且具有较好的环境适应性,双金属银铜纳米颗粒还具有高效的催化效果,利用硼氢化钠催化降解硝基酚类化合物和铁氰化钾,本方法具有节约贵金属、成本低、合成方法简单、易操作、可视化和便于推广等特点。

Description

一种双金属银铜纳米颗粒及其应用
技术领域
本发明属于化学技术领域,具体涉及一种双金属银铜纳米颗粒及其应用。
背景技术
现代工业的快速发展和人类对资源的掠夺性开采导致重金属引起的水体环境污染严重。因此,实现对污染水体中重金属离子的快速灵敏检测和硝基酚类化合物的快速催化降解具有重要的研究意义。
重金属污染已成为世界比较重要的环境污染之一,重金属,原定义是指比重在4.5g/cm3的金属,大致有54种位于重金属元素行列,具体如汞、铜、铅、镉、铬、锰、镍、钴和锌等。尽管某些重金属元素如铜、锰、锌等是人类生命活动所必需的微量元素,但同其他大部分非生命活动所必须的重金属元素一样,当其在体内含量超过一定浓度时会对身体造成巨大的危害。汞是环境中普遍存在的高毒性、对人类健康有极大影响的有害物质。汞在污染水体中主要以Hg2+形式存在,是各种形式的汞污染物质中的最普遍且最稳定的一种。在1953年出现在日本并震惊世界的“水俣病”正是由于汞污染引起的。当人体摄入过量的Hg2+时,神经系统会受到严重损伤,导致运动失调、头痛头晕,并且对肝脏和肾脏等造成严重损伤。对于人类活动造成的环境水体污染,主要为电池、氯碱、电子和塑料等工业废水的排放及某些废旧医疗器械处理不规范造成生态环境水体的污染。所以能够精确灵敏的检测重金属离子(Hg2+)对社会环境与国家安全来说是非常有意义的。
硝基酚类化合物是一类重要且常用的化工原料,作为原材料或中间体被广泛应用于炸药、医药、杀虫剂、染料、木材防腐剂和橡胶等生产中。硝基酚类化合物在生产和使用过程中,会随工业废水的排放对环境造成污染。铁氰化钾(K3Fe(CN)6)能分解出毒性很强的氢氰酸,会对环境造成污染。因此找到高效的催化剂催化降解硝基酚类化合物和铁氰化钾至关重要。
双金属纳米粒子由于具有较高的光学、催化、磁性以及电学性能已被广泛应用在各种领域,如比色传感器、催化剂、燃料电池的制造和抑菌作用。双金属纳米颗粒结构的优势与其形态(大小、形状等),微观结构(合金化、核壳等)和电子结构(电荷转移、轨道杂化等)有一定的联系,从而产生促进和可调谐性的物理和化学性质。双金属纳米颗粒可以同时或连续加入合成的前驱体形成合金或金属核壳结构,而且双金属纳米颗粒在一般情况下能够提高催化性能相比于单金属纳米颗粒,此方法是采用水相氧化还原法以硼氢化钠作为还原剂合成双金属银铜纳米颗粒。
发明内容
本发明的目的是提供一种双金属银铜纳米颗粒制备方法及其比色探针的检测应用。
一种双金属银铜纳米颗粒Ag-Cu NPs溶液,它是由下述方法制备的:
在磁力搅拌下,向装有10-30 mL超纯水的烧瓶中加入0.1 M的硫酸铜50 μL和0.1 M的柠檬酸钠50 μL的混合溶液,之后迅速加入新配制的0.5-1.5 mL的硼氢化钠溶液;15 min后, 加入0.1 M的硝酸银溶液50 μL,继续磁力搅拌10-30 min;
所述的硼氢化钠溶液为:3.8 mg硼氢化钠加入4 mL超纯水;
所述的硼氢化钠溶液添加量为1mL;
所述的磁力搅拌时间为20 min。
一种双金属银铜纳米颗粒Ag-Cu NPs溶液在检测Hg2+方面的应用。
一种检测Hg2+的方法,将一种双金属银铜纳米颗粒Ag-Cu NPs溶液与待测样品等体积混合,紫外分光光度计读取吸光值。
一种双金属银铜纳米颗粒Ag-Cu NPs溶液在催化降解硝基酚类化合物和铁氰化钾方面的应用;
所述的硝基酚类化合物为邻硝基苯酚(2-NP)、间硝基苯酚(3-NP)、对硝基苯酚(4-NP)和\或对硝基苯硫酚(4-NTP)。
一种硝基酚类化合物和铁氰化钾的催化降解剂,它包括:一种双金属银铜纳米颗粒Ag-Cu NPs溶液和硼氢化钠溶液。
本发明提供了一种双金属银铜纳米颗粒,是硫酸铜和柠檬酸钠通过水相氧化还原,利用硼氢化钠作为还原剂,合成双金属银铜纳米颗粒,利用其溶液通过反应前后紫外吸收峰值的变化同时伴随着颜色变化的特性来检测重金属汞离子,结果表明,双金属银铜纳米颗粒组成的比色探针对汞离子具有较好的灵敏度和选择性,并且具有较好的环境适应性,双金属银铜纳米颗粒还具有高效的催化效果,利用硼氢化钠催化降解硝基酚类化合物和铁氰化钾,本方法具有节约贵金属、成本低、合成方法简单、易操作、可视化和便于推广等特点。
附图说明
图1 Ag-Cu NPs和相同浓度的不同金属离子混合的紫外吸收光谱图;b、Ag-Cu NPs和相同浓度的不同金属离子比色图像;
图2 a、Ag-Cu NPs TEM;b、Ag-Cu NPs加入Hg2+之后TEM;c、Ag-Cu NPs粒子尺寸分布柱状图;d、Ag-Cu NPs加入Hg2+之后粒子尺寸分布柱状图;
图3 a、Ag-Cu NPs加入不同浓度的Hg2+的紫外吸收光谱图;b、Ag-Cu NPs加入不同浓度的Hg2+ 的比色图片;
图4 Ag-Cu NPs加入含有各种金属离子的湖水样品后紫外吸收光谱图,所有金属离子浓度为50 μM;b、Ag-Cu NPs与含有各种金属离子的湖水样品混合比色图;
图5 Ag-Cu NPs加入湖水配制的不同浓度Hg2+紫外吸收光谱图;b、不同浓度的Hg2+与A482/A406线性关系图;c、比色图片;
图6 在Ag-Cu NPs存在下硼氢化钠还原4-NP的紫外吸收光谱图;b、ln[C(t)/C(0)]与反应时间线性关系图;
图7 在Ag-Cu NPs存在下硼氢化钠还原K3Fe(CN)6紫外吸收光谱图;b、ln[A(t)/A(0)]与反应时间线性关系图。
具体实施方式
实施例1 双金属银铜纳米颗粒(Ag-Cu NPs)溶液的制备
向烧瓶内加入20mL超纯水,然后在磁力搅拌下加入50 μL 0.1 M的硫酸铜和50 μL 0.1M的柠檬酸钠的混合溶液,并迅速加入新配制的1 mL硼氢化钠 (3.8 mg加入4 mL H2O)到搅拌溶液中。这时形成的溶液为铜纳米颗粒溶液,大约15 min后,加入50 μL 0.1M的硝酸银溶液,继续磁力搅拌20 min,溶液的颜色由浅黄色变成了黄色,即可得到双金属银铜纳米颗粒溶液。
实施例2 双金属银铜纳米颗粒(Ag-Cu NPs)的检测应用
1、选择性测试
双金属银铜纳米颗粒(Ag-Cu NPs)比色探针具有很强的光学性质及检测性能,并且此探针的制备简单,节约贵金属成本,所以合成的Ag-Cu NPs作为纳米比色探针。Ag-Cu NPs比色探针检测Hg2+的过程中,待测的样品与Ag-Cu NPs溶液按体积比为1:1进行混合,即200 µL的Hg2+溶液样品加入到200 µL的Ag-Cu NPs溶液中,所有的选择性实验和灵敏度实验都按以上的比例进行,具体实验过程如下:
200 µL Ag-Cu NPs溶液中分别加入200 µL的相同浓度(50 μM)不同的重金属离子(Fe2 +, Mn2+, Cr3+, Cu2+, Ba2+, Ca2+, Cd2+, Co2+, Ni2+, Pb2+, Zn2+, Mg2+和 Hg2+),通过肉眼观察,加入Hg2+的混合溶液颜色由原来的黄色变为浅橙色。而其他混合溶液的颜色与空白试样溶液颜色相同为黄色,这可以清晰地区别出Hg2+的样品。之后,将混合溶液加入到比色皿中放到紫外分光光度计中进行测试,通过紫外吸收光谱图可以看出加入Hg2+的混合溶液吸收峰发生蓝移,在370 nm处有特征吸收峰,并且在482 nm处出现第二个吸收峰,而其他混合溶液的紫外吸收峰对比空白试样没有发生变化(如图1),此外,使用透射电子显微镜(TEM)测试加入Hg2+前后的混合溶液,可以观察到前后溶液颗粒大小发生变化(如图2a,2b)并通过计算可知制备的Ag-Cu NPs颗粒尺寸大约是9 nm左右,加入50 μM的Hg2+后发现尺寸明显变大,大约是19 nm左右(如图2c,2d)。从以上结果可知双金属银铜纳米颗粒能够检测出水溶液样品中含有的微量的重金属离子Hg2+
2、灵敏度测试
(1)200 µL Ag-Cu NPs中分别加入不同浓度200 µL的Hg2+溶液(0-50 μM),从紫外光谱(图3a)中可以看出,向其中加入不同浓度的Hg2+,发现随着Hg2+浓度的升高,Ag-Cu NPs混合溶液的吸收强度逐渐降低,溶液颜色也发生了明显变化。当Hg2+浓度为50 μM时,Ag-Cu NPs的吸收强度降低最多,颜色也由原来的黄色变为浅橙色(如图3)。进行灵敏度的检测时,Ag-Cu NPs作为探针的吸收强度比值A482/A406与1-5 nM浓度的Hg2+有良好的线性关系。计算可知最低检测浓度为2.5 nM。因此,Ag-Cu NPs可以作为检测Hg2+的比色探针快速并定量地检测水溶液中Hg2+的存在。
(2)取自校园湖水的水样配制浓度为50 μM不同的重金属离子使其与探针以体积比1:1进行混合用紫外光谱测试实际混合样品的特征吸收峰,测试实际样品的选择性(如图4)。从图中可知,此探针还是对Hg2+有响应。之后,我们用湖水配制不同浓度的Hg2+(0.001-50 μM),使其与探针以体积比1:1进行混合测试实际样品的灵敏度(如图5)。从图中可知,混合溶液吸收强度比值A482/A406与1-5 nM浓度的Hg2+有良好的线性关系且该探针在实际水样中的最低检测浓度为0.25 nM。
实施例3 双金属银铜纳米颗粒(Ag-Cu NPs)的催化应用
1、硝基酚类化合物的催化
硝基酚类化合物包括邻硝基苯酚(2-NP)、间硝基苯酚(3-NP)、对硝基苯酚(4-NP)和对硝基苯硫酚(4-NTP)。催化还原反应如下:
2-NP的催化还原:将90uL的0.01 M 2-NP溶液和新制备600 μL的0.5 M硼氢化钠溶液混合,将混合溶液加入到1.0-3.0 mL超纯水的比色皿中,然后,将30 µL Ag-Cu NPs作为催化剂加入到上述混合溶液中,没有任何搅拌操作,通过紫外吸收光谱监测反应情况。2-NP通过30 μL的Ag-Cu NPs被100 %催化还原转化为2-AP。该催化反应时间是490 s,而且ln[A(t)/A(0)]和反应时间(t)呈线性关系,速率常数是K=5.96×10-3 s-1,相关系数R2=0.9741。
3-NP的催化还原:将150 uL的0.01 M 3-NP溶液和新制备1.0 mL的0.5 M硼氢化钠溶液混合,将混合溶液加入到有1.0-3.0 mL超纯水的比色皿中,然后,将30 uL Ag-Cu NPs作为催化剂加入到上述混合溶液中,没有任何搅拌操作,通过紫外吸收光谱监测反应情况。Ag-Cu NPs作为还原剂还原转化为3-AP。该催化反应在140 s就已经完全反应且速率常数是K=18.8×10-3 s-1,相关系数R2=0.9716。
4-NP的催化还原:将25 uL的0.01 M 4-NP溶液和新制备200 μL的0.4-0.7M硼氢化钠溶液混合加入到1.0-3.0 mL超纯水于比色皿中,然后,将30 µL Ag-Cu NPs作为催化剂加入到上述混合溶液,没有任何搅拌操作,通过紫外吸收光谱监测反应情况。结果见图6。在没有催化剂存在下,随着时间的推移,BH4 -是无法还原相应的氨基化合物和减少4-NP在400 nm的峰值强度,这验证还原反应不会发生。然而,加入30 μL的Ag-Cu NPs作为催化剂后,可以看出随着反应的进行在400 nm处峰值逐渐降低,同时,氨基酚类逐渐生成,新的吸收峰在315 nm逐渐形成并升高,反应时间是595 s。通过ln[C(t)/C(0)]和反应时间的线形关系图可知反应的速率常数(k)是7.74×10-3·s-1
4-NTP的催化还原:将25 uL的0.01 M 4-NTP溶液和新制备200 μL的0.5 M硼氢化钠溶液混合加入到1.0-3.0 mL超纯水于比色皿中,然后,将30 µL Ag-Cu NPs作为催化剂加入到上述混合溶液,没有任何搅拌操作,通过紫外吸收光谱监测反应情况。
2、K3Fe(CN)6的催化还原
将0.3-0.5 mL 8×10-3 M K3Fe(CN)6加入到20-40 µL Ag-Cu NPs催化剂,随后,快速加入适量冰冷的新制备的硼氢化钠溶液。利用紫外分光光度计快速测试上述混合溶液,通过紫外吸收光谱监测反应情况。结果见图7。K3[Fe(CN)6] 溶液的吸收波长在λ=420 nm,加入新配制的硼氢化钠溶液后,随着 K4[Fe(CN)6]的形成,吸收强度逐渐降低。在给定的条件下,30μL的Ag-Cu NPs溶液催化还原K3(Fe(CN)6)溶液在210 s内(图7a),图7b所示,催化反应的速率常数(k)为18.2×10-3·s–1。然而该实验如果没有催化剂存在下要持续反应12 h才可以结束。这个结果展示了Ag-Cu NPs的高效催化效果。
表 1 银铜纳米颗粒作为催化剂催化还原硝基酚类化合物和铁氰化钾反应物和催 化剂用量
反应物 反应物用量 NaBH4用量 催化剂用量
邻硝基苯酚 (2-NP) 0.01M, 90 uL 0.5 M, 600 μL 30 uL
间硝基苯酚 (3-NP) 0.01M, 150 uL 0.5 M, 1 mL 30 uL
对硝基苯酚 (4-NP) 0.01M, 25 uL 0.5 M, 200 μL 30 uL
对硝基苯硫酚 (4-NTP) 0.01M, 25 uL 0.5 M, 200 μL 30 uL
铁氰化钾 (K3Fe(CN)6 8×10-3 M, 400 uL 0.04 M, 800 μL 30 uL

Claims (9)

1.一种双金属银铜纳米颗粒Ag-Cu NPs溶液,其特征在于,它是由下述方法制备的:在磁力搅拌下,向装有10-30 mL超纯水的烧瓶中加入0.1 M的硫酸铜50 μL和0.1 M的柠檬酸钠50 μL的混合溶液,之后迅速加入新配制的0.5-1.5 mL硼氢化钠溶液;15 min后, 加入0.1 M的硝酸银溶液50 μL,继续磁力搅拌10-30 min。
2.根据权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液,其特征在于:硼氢化钠溶液为3.8 mg硼氢化钠加入4 mL超纯水。
3.根据权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液,其特征在于:所述的硼氢化钠溶液添加量为1 mL。
4.根据权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液,其特征在于:所述的磁力搅拌时间为20 min。
5.权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液在检测Hg2+方面的应用。
6.一种检测Hg2+的方法,它包括:将权利要求1所述的一种双金属银铜纳米颗粒Ag-CuNPs溶液与待测样品等体积混合,紫外分光光度计读取吸光值。
7.权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液在催化降解硝基酚类化合物和铁氰化钾方面的应用。
8.根据权利要求7所述的应用,其特征在于:所述的硝基酚类化合物为邻硝基苯酚(2-NP)、间硝基苯酚(3-NP)、对硝基苯酚(4-NP)和\或对硝基苯硫酚(4-NTP)。
9. 一种硝基酚类化合物和铁氰化钾的催化降解剂,它包括:权利要求1所述的一种双金属银铜纳米颗粒Ag-Cu NPs溶液和硼氢化钠溶液。
CN201710435456.4A 2017-06-11 2017-06-11 一种双金属银铜纳米颗粒及其应用 Pending CN107233896A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710435456.4A CN107233896A (zh) 2017-06-11 2017-06-11 一种双金属银铜纳米颗粒及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710435456.4A CN107233896A (zh) 2017-06-11 2017-06-11 一种双金属银铜纳米颗粒及其应用

Publications (1)

Publication Number Publication Date
CN107233896A true CN107233896A (zh) 2017-10-10

Family

ID=59986167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710435456.4A Pending CN107233896A (zh) 2017-06-11 2017-06-11 一种双金属银铜纳米颗粒及其应用

Country Status (1)

Country Link
CN (1) CN107233896A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560083A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种双金属多孔银铜网络结构氮还原催化剂及其制备方法
CN110902799A (zh) * 2019-10-28 2020-03-24 西南交通大学 降解六价铬离子的Fe/Cu/Ag三金属降解剂及其制备方法和应用
CN111529756A (zh) * 2020-06-23 2020-08-14 北京大学 一种骨科植入器械表面涂层的制备方法
CN115568480A (zh) * 2022-09-27 2023-01-06 长江大学 一种油田用植物基复合抑菌剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808717A (zh) * 2014-02-14 2014-05-21 哈尔滨师范大学 一种采用比色法检测汞离子的方法
CN105294459A (zh) * 2015-11-30 2016-02-03 辽宁石油化工大学 一种Ag-Cu/CuFe2O4磁性复合催化剂的制备及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808717A (zh) * 2014-02-14 2014-05-21 哈尔滨师范大学 一种采用比色法检测汞离子的方法
CN105294459A (zh) * 2015-11-30 2016-02-03 辽宁石油化工大学 一种Ag-Cu/CuFe2O4磁性复合催化剂的制备及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. E. KOLYAGO ET AL.: "Raman study of oxidation-reduction dispersion of silver", 《JOURNAL OF APPLIED SPECTROSCOPY》 *
JIA ZHANG ET AL.: "Colorimetric Iodide Recognition and Sensing by Citrate-Stabilized Core/Shell Cu@Au Nanoparticles", 《ANALYTICAL CHEMISTRY》 *
PURIM JARUJAMRUS ET AL.: "Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560083A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种双金属多孔银铜网络结构氮还原催化剂及其制备方法
CN110902799A (zh) * 2019-10-28 2020-03-24 西南交通大学 降解六价铬离子的Fe/Cu/Ag三金属降解剂及其制备方法和应用
CN111529756A (zh) * 2020-06-23 2020-08-14 北京大学 一种骨科植入器械表面涂层的制备方法
CN115568480A (zh) * 2022-09-27 2023-01-06 长江大学 一种油田用植物基复合抑菌剂及其制备方法和应用
CN115568480B (zh) * 2022-09-27 2024-01-16 长江大学 一种油田用植物基复合抑菌剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107233896A (zh) 一种双金属银铜纳米颗粒及其应用
Cao et al. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging
Zhang et al. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@ HgS core–shell structures
Bhat et al. Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite
Shi et al. Cu-Based metal–organic framework nanoparticles for sensing Cr (VI) ions
Wang et al. Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes
Lin et al. Visual and colorimetric detection of p-aminophenol in environmental water and human urine samples based on anisotropic growth of Ag nanoshells on Au nanorods
Pomal et al. Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: an overview
Sun et al. Multi-enzyme activity of three layers FeOx@ ZnMnFeOy@ Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone
Li et al. Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid
Chai et al. Oxidase-like mimic of Ag@ Ag 3 PO 4 microcubes as a smart probe for ultrasensitive and selective Hg 2+ detection
Desai et al. Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging
Sahoo et al. A magnetically separable and recyclable gC 3 N 4/Fe 3 O 4/porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo dyes
Yang et al. Bimetallic gold–silver nanocluster fluorescent probes for Cr (III) and Cr (VI)
Kaewanan et al. A fluorescence switching sensor based on graphene quantum dots decorated with Hg 2+ and hydrolyzed thioacetamide for highly Ag+-sensitive and selective detection
Zhang et al. Colorimetric determination of copper (II) using a polyamine-functionalized gold nanoparticle probe
Li et al. A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water
Zeng et al. Transition metal-doped germanium oxide nanozyme with enhanced enzyme-like activity for rapid detection of pesticide residues in water samples
Santonocito et al. Fluorescence sensing by carbon nanoparticles
Bian et al. A recyclable colorimetric probe: in situ fabrication of highly stable HPEI–AuNPs for selective Ag+ detection
Qu et al. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia
Xu et al. Colorimetric/fluorescent/SERS triple-readout sensing of Mercury (Ⅱ) via in-situ growth of AgNPs in phenanthroline-functionalized covalent organic framework
Chaiendoo et al. Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples
Pu et al. Ce4+-based self-validated portable platform for highly selective and anti-interference visual sensing of phosphate
Zhang et al. Capsulation of red emission chromophore into the CoZn ZIF as nanozymes for on-site visual cascade detection of phosphate ions, o-phenylenediamine, and benzaldehyde

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010