CN107230232B - 聚焦型光场相机的f数匹配方法 - Google Patents

聚焦型光场相机的f数匹配方法 Download PDF

Info

Publication number
CN107230232B
CN107230232B CN201710286519.4A CN201710286519A CN107230232B CN 107230232 B CN107230232 B CN 107230232B CN 201710286519 A CN201710286519 A CN 201710286519A CN 107230232 B CN107230232 B CN 107230232B
Authority
CN
China
Prior art keywords
plane
microlens
light field
distance
field camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710286519.4A
Other languages
English (en)
Other versions
CN107230232A (zh
Inventor
张彪
刘煜东
曹丽霞
许传龙
王式民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710286519.4A priority Critical patent/CN107230232B/zh
Publication of CN107230232A publication Critical patent/CN107230232A/zh
Application granted granted Critical
Publication of CN107230232B publication Critical patent/CN107230232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10052Images from lightfield camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种聚焦型光场相机的F数匹配方法,涉及一种计算光学成像的基础技术方法,它抛弃现有聚焦型光场相机主透镜光阑直径通过传统光场相机F数匹配法则计算再乘以经验系数的方法,确定了聚焦型光场相机主透镜光阑直径与相机其它几何参数之间的直接关系。本发明根据聚焦型光场相机结构特点,通过几何光学的方法分析出聚焦型光场相机的几个重要几何参数之间所满足的匹配的关系,导出满足F数匹配时主镜头光阑直径与相机其它几何参数的直接关系。本发明所提供的方法可为聚焦型光场相机的计算重聚焦、目标深度信息提取、采样特性数值模拟及光场相机组装调试提供技术基础。

Description

聚焦型光场相机的F数匹配方法
技术领域
本发明属于计算光学成像技术领域,具体涉及一种聚焦型光场相机的F数匹配方法。
背景技术
传统光场相机由Ren与2005年最早提出,它是在主镜头和探测器之间放置了一个微透镜阵列,其中探测器刚好处在微透镜阵列的焦平面上,但这种相机的空间分辨率较低。目前关于光场相机的研究正在繁荣开展,在图像数字重聚焦、合成孔径成像、光场显微成像、物体三维外形重建、目标深度估计、火焰三维温度场测量、三维流场PIV测量等领域开始有些应用。Lumsdaine在传统光场相机的基础上提出了聚焦型光场相机的设计,探测器平面不再处于微透镜阵列的焦平面上,降低了传统光场相机的方向分辨率,而提高了其空间分辨率,目前关于聚焦型光场相机的研究还不多见。
由于微透镜阵列的存在,会导致主透镜光瞳的分割,在探测器平面上形成若干子孔径图像,这些图像对应了方向信息。每个微透镜后覆盖的像素数与主透镜光阑直径存在一个匹配关系,若主透镜光阑直径过大则导致微透镜后覆盖的像素重叠,从而丧失光场相机的方向分辨特征;若主透镜光阑直径过小则导致微透镜后覆盖的像素数太少,很多像素接收不到光线,造成探测器像素的大量浪费。为了最大限度的利用探测器像素,让每个微透镜覆盖像素范围刚好相切,即F数匹配。
关于传统光场相机的F数匹配问题,由于光学结构相对简单,F数匹配问题已经得到很好的解决。聚焦型光场相机的光场分布复杂,其F数匹配的研究没有达成共识,很多学者任然采用传统光场相机的F数匹配方法,然后通过在所计算得到的主透镜光阑直径上乘以一个经验系数来确定。本发明提出一种聚焦型光场相机的F数匹配方法,摒弃目前采用的经验方法,根据聚焦型光场相机结构特点,通过几何光学的方法分析出聚焦型光场相机的几个重要几何参数之间所满足的匹配的关系,导出满足F数匹配时主镜头光阑直径与相机其它几何参数的直接关系。
发明内容
本发明摒弃目前聚焦型光场相机F数匹配的经验方法,根据聚焦型光场相机的结构特点,通过几何光学的方法分析出聚焦型光场相机的几个重要几何参数之间所满足的匹配的关系,导出满足F数匹配时主镜头光阑直径与相机其它几何参数的直接关系。
为实现上述的技术目的,本发明将采取如下的技术方案:
一种聚焦型光场相机的F数匹配方法,根据聚焦型光场相机的结构特点,通过几何光学的方法,分析出聚焦型光场相机的各重要几何参数之间所满足的匹配的关系,导出满足F数匹配时,主镜头光阑直径D与聚焦型光场相机其它几何参数的直接关系;其中,在进行聚焦型光场相机的几何光学分析时,所涉及的重要几何参数包括:工作距离L、主透镜的焦距F、微透镜的焦距f、微透镜直径d、微透镜的个数Nm×Nn、探测器像素数Ni×Nj、探测器的像素大小Δ、微透镜平面和探测器平面的距离Lmc;对于给定的聚焦型光场相机,上述的重要几何参数为已知参数。
作为本发明的进一步改进,通过判断微透镜平面和探测器平面的距离Lmc与微透镜的焦距f之间的关系,得到虚拟像平面相对于主透镜、微透镜平面的位置,进而得到虚拟像平面处于不同位置时,主镜头光阑直径D与聚焦型光场相机其它几何参数的直接关系,具体是:
当Lmc>f时:
Figure BDA0001280825320000021
LmM=Lmi+LMi
当Lmc<f时:
Figure BDA0001280825320000022
LmM=LMi-Lmi
式中:LmM为主透镜平面和微透镜平面之间的距离;Lmi为微透镜平面和虚拟像平面之间的距离,
Figure BDA0001280825320000023
LMi为主透镜平面和虚拟像平面之间的距离,
Figure BDA0001280825320000024
li为每个微透镜对应虚拟像平面的边长、d为微透镜直径。
本发明的另一技术目的是提供另一种聚焦型光场相机的F数匹配方法,该方法的具体步骤为:
步骤一:根据聚焦型光场相机的工作距离L和主透镜的焦距F,利用高斯成像公式可以求得主透镜平面和虚拟像平面之间的距离LMi
Figure BDA0001280825320000025
步骤二:根据微透镜平面和探测器平面的距离Lmc和微透镜的焦距f,利用高斯成像公式可以求得微透镜平面和虚拟像平面之间的距离Lmi
Figure BDA0001280825320000031
步骤三:根据微透镜的个数Nm×Nn和探测器像素数Ni×Nj,确定每个微透镜后覆盖的像素数N×N:
Figure BDA0001280825320000032
步骤四:根据每个微透镜后覆盖的像素数N×N和探测器的像素大小Δ,确定每个微透镜后覆盖的像素面积lm×lm
lm×lm=NΔ×NΔ (4)
步骤五:根据微透镜平面和虚拟像平面之间的距离Lmi、微透镜平面和探测器平面的距离Lmc和每个微透镜后覆盖的像素面积lm×lm,确定每个微透镜对应的虚拟像平面的面积li×li
Figure BDA0001280825320000033
步骤六:判断微透镜平面和探测器平面的距离Lmc与微透镜焦距之间的关系,若Lmc>f,则虚拟像平面应处于主透镜和微透镜平面之间;若Lmc<f,则虚拟像平面应处于探测器平面后方;
步骤七:当Lmc>f时,主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=Lmi+LMi (6)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足以下关系:
Figure BDA0001280825320000034
进一步得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure BDA0001280825320000035
当Lmc<f时,主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=LMi-Lmi (9)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足以下关系:
Figure BDA0001280825320000041
进一步得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure BDA0001280825320000042
有益效果:它抛弃现有聚焦型光场相机主透镜光阑直径通过传统光场相机F数匹配法则计算再乘以经验系数的方法,从理论推导上得出聚焦型光场相机主透镜光阑直径与相机其它几何参数之间的直接关系,相比较传统方法本发明所提供方法得到的结果稳定、可靠,它可为聚焦型光场相机的计算重聚焦、目标深度信息提取、采样特性数值模拟及光场相机组装调试提供技术基础。
附图说明
图1是微透镜和探测器距离大于微透镜焦距时聚焦型光场相机F数匹配示意图。
图2是微透镜和探测器距离小于微透镜焦距时聚焦型光场相机F数匹配示意图。
图3是F数匹配时聚焦型光场相机所得白图像。
具体实施方式
下面结合附图和具体实施例,进一步阐述本发明。应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读本发明之后,本领域技术人员对本发明的各种等价形式的修改落于本申请所附权利要求所限定的范围。
对于给定对象的聚焦型光场相机,一般工作距离L、主透镜的焦距F、微透镜的焦距f、微透镜直径d、微透镜的个数Nm×Nn、探测器像素数Ni×Nj、探测器的像素大小Δ、微透镜平面和探测器平面的距离Lmc为已知参数。
实施例1
假设某聚焦型光场相机的几何参数和光学参数如下:工作距离L=1m、主透镜的焦距F=50mm、微透镜的焦距f=400μm、微透镜直径d=114μm、微透镜的个数Nm×Nn=8×8、探测器像素数Ni×Nj=128×128、探测器的像素大小Δ=7.4μm、微透镜平面和探测器平面的距离Lmc为440μm。
一种聚焦型光场相机的F数匹配方法,该方法的具体步骤为:
步骤一:根据聚焦型光场相机的工作距离L和主透镜的焦距F,利用高斯成像公式可以求得主透镜平面和虚拟像平面之间的距离LMi
Figure BDA0001280825320000051
步骤二:根据微透镜平面和探测器平面的距离Lmc和微透镜的焦距f,利用高斯成像公式可以求得微透镜平面和虚拟像平面之间的距离Lmi
Figure BDA0001280825320000052
步骤三:根据微透镜的个数Nm×Nn和探测器像素数Ni×Nj,确定每个微透镜后覆盖的像素数N×N。
Figure BDA0001280825320000053
步骤四:根据每个微透镜后覆盖的像素数N×N和探测器的像素大小Δ,确定每个微透镜后覆盖的像素面积lm×lm
lm×lm=NΔ×NΔ=118.4μm×118.4μm (4)
步骤五:根据微透镜平面和虚拟像平面之间的距离Lmi、微透镜平面和探测器平面的距离Lmc和每个微透镜后覆盖的像素面积lm×lm,确定每个微透镜对应的虚拟像平面的面积li×li
Figure BDA0001280825320000054
步骤六:判断微透镜平面和探测器平面的距离Lmc与微透镜焦距之间的关系,Lmc>f,则虚拟像平面应处于主透镜和微透镜平面之间,如附图1所示,执行步骤七。
步骤七:主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=Lmi+LMi=57mm (6)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足一下关系:
Figure BDA0001280825320000055
进一步可以得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure BDA0001280825320000056
该光场相机在以上光学参数和几何参数下的白图像如附图3所示。
实施例2
本实施例与实施例1的不同之处仅在于,改变了微透镜平面和探测器平面的距离Lmc,使得微透镜平面和探测器平面的距离Lmc=360μm。则在匹配该聚焦型光场相机的F数时,步骤一至五均与实施例1相同,不同之处在于,在进行步骤六中,判断微透镜平面和探测器平面的距离Lmc与微透镜焦距之间的关系时,本实施例中,Lmc<f,则主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=LMi-Lmi=48.2mm (9)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足一下关系:
Figure BDA0001280825320000061
进一步可以得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure BDA0001280825320000062

Claims (2)

1.一种聚焦型光场相机的F数匹配方法,其特征在于,根据聚焦型光场相机的结构特点,通过几何光学的方法,分析出聚焦型光场相机的各重要几何参数之间所满足的匹配的关系,导出满足F数匹配时,主镜头光阑直径D与聚焦型光场相机其它几何参数的直接关系;其中,在进行聚焦型光场相机的几何光学分析时,所涉及的重要几何参数包括:工作距离L、主透镜的焦距F、微透镜的焦距f、微透镜直径d、微透镜的个数Nm×Nn、探测器像素数Ni×Nj、探测器的像素大小Δ、微透镜平面和探测器平面的距离Lmc;对于给定的聚焦型光场相机,上述的重要几何参数为已知参数;
在进行几何光学的方法时,通过判断微透镜平面和探测器平面的距离Lmc与微透镜的焦与微透镜的焦距f之间的关系,得到虚拟像平面相对于主透镜、微透镜平面的位置,进而得到虚拟像平面处于不同位置时,主镜头光阑直径D与聚焦型光场相机其它几何参数的直接关系,具体是:
当Lmc>f时:
Figure FDA0002491308600000011
LmM=Lmi+LMi
当Lmc<f时:
Figure FDA0002491308600000012
LmM=LMi-Lmi
式中:LmM为主透镜平面和微透镜平面之间的距离;Lmi为微透镜平面和虚拟像平面之间的距离,
Figure FDA0002491308600000013
LMi为主透镜平面和虚拟像平面之间的距离,
Figure FDA0002491308600000014
li为每个微透镜对应虚拟像平面的边长、d为微透镜直径。
2.一种聚焦型光场相机的F数匹配方法,其特征在于,包括以下步骤:
步骤一:根据聚焦型光场相机的工作距离L和主透镜的焦距F,利用高斯成像公式求得主透镜平面和虚拟像平面之间的距离LMi
Figure FDA0002491308600000015
步骤二:根据微透镜平面和探测器平面的距离Lmc和微透镜的焦距f,利用高斯成像公式可以求得微透镜平面和虚拟像平面之间的距离Lmi
Figure FDA0002491308600000016
步骤三:根据微透镜的个数Nm×Nn和探测器像素数Ni×Nj,确定每个微透镜后覆盖的像素数N×N:
Figure FDA0002491308600000017
步骤四:根据每个微透镜后覆盖的像素数N×N和探测器的像素大小Δ,确定每个微透镜后覆盖的像素面积lm×lm
lm×lm=NΔ×NΔ (4)
步骤五:根据微透镜平面和虚拟像平面之间的距离Lmi、微透镜平面和探测器平面的距离Lmc和每个微透镜后覆盖的像素面积lm×lm,确定每个微透镜对应的虚拟像平面的面积li×li
Figure FDA0002491308600000021
步骤六:判断微透镜平面和探测器平面的距离Lmc与微透镜焦距之间的关系,若Lmc>f,则虚拟像平面应处于主透镜和微透镜平面之间;若Lmc<f,则虚拟像平面应处于探测器平面后方;
步骤七:当Lmc>f时,主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=Lmi+LMi (6)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足以下关系:
Figure FDA0002491308600000022
进一步得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure FDA0002491308600000023
当Lmc<f时,主透镜平面和微透镜平面之间的距离LmM可由下式求得:
LmM=LMi-Lmi (9)
根据几何光学的原理,主透镜光阑直径D、每个微透镜对应虚拟像平面的边长li、微透镜直径d、微透镜平面和虚拟像平面之间的距离Lmi和主透镜平面和微透镜平面之间的距离LmM应满足以下关系:
Figure FDA0002491308600000024
进一步得到主透镜光阑直径D与聚焦型光场相机其他参数之间的关系:
Figure FDA0002491308600000025
CN201710286519.4A 2017-04-27 2017-04-27 聚焦型光场相机的f数匹配方法 Active CN107230232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710286519.4A CN107230232B (zh) 2017-04-27 2017-04-27 聚焦型光场相机的f数匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710286519.4A CN107230232B (zh) 2017-04-27 2017-04-27 聚焦型光场相机的f数匹配方法

Publications (2)

Publication Number Publication Date
CN107230232A CN107230232A (zh) 2017-10-03
CN107230232B true CN107230232B (zh) 2020-06-30

Family

ID=59933715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710286519.4A Active CN107230232B (zh) 2017-04-27 2017-04-27 聚焦型光场相机的f数匹配方法

Country Status (1)

Country Link
CN (1) CN107230232B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120392B (zh) * 2017-11-30 2020-03-31 东南大学 气液两相流中气泡三维测量系统及方法
CN111340888B (zh) * 2019-12-23 2020-10-23 首都师范大学 一种无需白图像的光场相机检校方法及系统
CN111537765B (zh) * 2020-04-21 2022-02-01 东南大学 一种改进的光场显微成像装置及构建方法
CN115150607A (zh) * 2022-06-21 2022-10-04 北京理工大学 基于多焦距微透镜阵列的聚焦型全光相机参数设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981253A (zh) * 2011-09-02 2013-03-20 三星电子株式会社 单焦点镜头系统和包括该单焦点镜头的拍摄设备
CN105488810A (zh) * 2016-01-20 2016-04-13 东南大学 一种聚焦光场相机内外参数标定方法
CN106373152A (zh) * 2016-09-18 2017-02-01 清华大学深圳研究生院 一种基于手持式光场相机的距离估计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156828B2 (ja) * 2001-11-27 2008-09-24 オリンパス株式会社 マクロレンズ及びそれを備えたカメラ
JP4290935B2 (ja) * 2002-07-18 2009-07-08 オリンパス株式会社 電子撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981253A (zh) * 2011-09-02 2013-03-20 三星电子株式会社 单焦点镜头系统和包括该单焦点镜头的拍摄设备
CN105488810A (zh) * 2016-01-20 2016-04-13 东南大学 一种聚焦光场相机内外参数标定方法
CN106373152A (zh) * 2016-09-18 2017-02-01 清华大学深圳研究生院 一种基于手持式光场相机的距离估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
变F数红外光学系统的进展和关键技术;谭淞年等;《红外技术》;20160530;第38卷(第5期);全文 *

Also Published As

Publication number Publication date
CN107230232A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CA3040006C (en) Device and method for obtaining distance information from views
CN107230232B (zh) 聚焦型光场相机的f数匹配方法
JP4673202B2 (ja) 画像入力装置
JP2013042443A5 (zh)
CN105578019A (zh) 一种可获得深度信息的影像提取系统与对焦方法
CN108459417B (zh) 一种单目窄带多光谱立体视觉系统及其使用方法
CN106651959B (zh) 一种光场相机微透镜阵列几何参数的标定方法
CN109632092A (zh) 一种基于空间光场的亮度测试系统及方法
EP3182372B1 (en) Method and system for estimating the position of a projection of a chief ray on a sensor of a light-field acquisition device
Mignard-Debise et al. A vignetting model for light field cameras with an application to light field microscopy
CN108805921B (zh) 图像获取系统及方法
CN103033166B (zh) 一种基于合成孔径聚焦图像的目标测距方法
CN103412461B (zh) 基于分光片的3d成像系统
KR20160120533A (ko) 라이트 필드 영상에서 객체 분할방법
CN115393555A (zh) 一种三维图像获取方法、终端设备及存储介质
JP7170401B2 (ja) 光源角度測定装置、光源位置検出装置、並びに人工衛星
EP3104593A1 (en) Light field imaging device
Muhammad et al. Calculating accurate window size for shape-from-focus
CN115150607A (zh) 基于多焦距微透镜阵列的聚焦型全光相机参数设计方法
KR20160120534A (ko) 전자 제어식 가림 마스크 어레이를 이용한 라이트 필드 카메라
CN116941351B (zh) 一种测算液体变焦系统变焦比和最大视场角的计算方法
US9442296B2 (en) Device and method for determining object distances
Xia et al. A Target Depth Measurement Method Based on Light Field Imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant