CN107229018A - A kind of unmanned vehicle electric leakage of battery pack stream detection method - Google Patents

A kind of unmanned vehicle electric leakage of battery pack stream detection method Download PDF

Info

Publication number
CN107229018A
CN107229018A CN201710405264.9A CN201710405264A CN107229018A CN 107229018 A CN107229018 A CN 107229018A CN 201710405264 A CN201710405264 A CN 201710405264A CN 107229018 A CN107229018 A CN 107229018A
Authority
CN
China
Prior art keywords
msub
mrow
mfrac
msubsup
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710405264.9A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jing Zhou Technology Co Ltd
Original Assignee
Shenzhen Jing Zhou Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jing Zhou Technology Co Ltd filed Critical Shenzhen Jing Zhou Technology Co Ltd
Priority to CN201710405264.9A priority Critical patent/CN107229018A/en
Priority to PCT/CN2017/090680 priority patent/WO2018218721A1/en
Publication of CN107229018A publication Critical patent/CN107229018A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Abstract

The invention provides a kind of real electric leakage of battery pack flow measuring method of unmanned vehicle, comprise the following steps:(1) using electric chassis as reference point, S is worked asa、SbWhen incision, 2 points of a, b of setting voltage is respectively Va、Vb, obtain the corresponding relation between voltage and resistance;(2) S is closeda, by SaThe voltage V ' of A points is measured after corresponding resistance interventiona;(3) S is disconnecteda, close Sb, by SbThe voltage V ' of B points is measured after corresponding resistance interventionb;(4) simultaneous equations, try to achieve the most negative and most positive electric current I for locating direct short-circuit over the ground of battery packposAnd Ireg;(5) I is comparedposAnd IregSize, take wherein higher value as the maximum leakage current I of battery packL=max { Ipos,Ireg};(6) in the case that maximum leakage current is less than certain threshold value, unmanned vehicle battery pack is insulation.

Description

A kind of unmanned vehicle electric leakage of battery pack stream detection method
Technical field
The present invention relates to unmanned vehicle technology, particularly a kind of electric leakage of battery pack stream detection method towards unmanned vehicle.
Background technology
Battery pack is a kind of power resources of unmanned vehicle, however, due to rugged environment on vehicle, and with battery Use, many reasons such as battery pack itself or the connecting line aging between them can cause between battery pack and vehicle electrical chassis Insulation go wrong, due to battery voltage generally in more than 300V, current leakage can cause the whole circuit of unmanned vehicle to go out Existing problem.
Multiple batteries are usually used in series by unmanned vehicle in order to reach certain power requirement, per batteries and chassis it Between be likely to the presence of leakage current, prior art typically uses single-point grounding or positive and negative to the research of straight-flow system leakage current The model of busbar grounding, but the model can not be determined for the maximum leakage electric current of unmanned vehicle battery pack, therefore can not be accurate Detect leakage problem.
The content of the invention
It is an object of the invention to provide a kind of real electric leakage of battery pack flow measuring method of unmanned vehicle, comprise the following steps:
(1) using electric chassis as reference point, S is worked asa、SbWhen incision, 2 points of a, b of setting voltage is respectively Va、 Vb, obtain the corresponding relation between voltage and resistance;
(2) S is closeda, by SaThe voltage V ' of a points is measured after corresponding resistance accessa
(3) S is disconnecteda, close Sb, by SbThe voltage V ' of b points is measured after corresponding resistance accessb
(4) simultaneous equations, try to achieve the most negative and most positive electric current I for locating direct short-circuit over the ground of battery packposAnd Ireg
(5) I is comparedposAnd IregSize, take wherein higher value as the maximum leakage current I of battery packL=max { Ipos, Ireg};
(6) in the case that maximum leakage current is less than certain threshold value, unmanned vehicle battery pack is insulation.
It is preferred that, set R0-RnFor grounding resistance, I0-InThe leakage current on electric chassis, V are respectively flowed into from battery0-Vn For the voltage between each earth point, it is assumed that someone contacts a points of battery, if the electric current for flowing through human body is Ip, so as to obtain:
I1+...Ip+...In=0 (1),
Define the direct and electric chassis of battery pack point it is short-circuit when battery pack and electric chassis between leakage current be the point now Maximum leakage electric current, when human body resistance is 0, Ip=0, it is now electric if the current potential in electric domain is that 0, a points current potential is also 0 Pond group each point is to the relational expression of the leakage current on electric chassis:
The electric current of human body is flowed through,
It is preferred that, when all electric currents are equidirectional, maximum is obtained by the electric current of human body, now a points are located at The most just or most negative place of battery pack, then
It is preferred that, the voltage and the relation of resistance that the step (1) obtains are:
It is preferred that, the step (2) obtains V 'aRelational expression be:
It is preferred that, the step (3) obtains V 'bRelational expression be:
It is preferred that, step (4) simultaneous equations include:
Formula (6) is substituted into formula (7), arranges and obtains:
Formula (5) is substituted into formula (8), arranges and obtains:
Formula (9) is arranged and obtained:
Formula (6) is substituted into formula (13) to obtain:
Arrangement formula (10) is obtained:
Formula (5) is substituted into formula (15) to obtain:
Simultaneous (11) and (14) are obtained:
Simultaneous (12) and (16) are obtained:
It is preferred that, the threshold value of the step (6) is 2mA.
According to the accompanying drawings to the detailed description of the specific embodiment of the invention, those skilled in the art will be brighter Above-mentioned and other purposes, the advantages and features of the present invention.
Brief description of the drawings
Some specific embodiments of the present invention are described in detail by way of example, and not by way of limitation with reference to the accompanying drawings hereinafter. Identical reference denotes same or similar part or part in accompanying drawing.It should be appreciated by those skilled in the art that these What accompanying drawing was not necessarily drawn to scale.The target and feature of the present invention is considered to will be apparent from below in conjunction with the description of accompanying drawing, In accompanying drawing:
Fig. 1 is the maximum leakage current detection principle diagram according to the embodiment of the present invention;
Fig. 2 method and step flow charts according to embodiments of the present invention.
Embodiment
Referring to Fig. 1, unmanned vehicle reality electric leakage of battery pack flow measuring method uses a kind of insulation model, sets R0-RnFor Grounding resistance, resistance is parallel connection, I0-InThe leakage current on electric chassis, V are respectively flowed into from battery0-VnFor between each earth point Voltage, each grounding resistance is connected respectively, it is assumed that someone contacts a points of battery, if flow through human body electric current be Ip, so that Obtain:
I1+...Ip+...In=0 (1),
Define the direct and electric chassis of battery pack point it is short-circuit when battery pack and electric chassis between leakage current be the point this When maximum leakage electric current, when human body resistance be 0 when, Ip=0, if the current potential in electric domain is that 0, a points current potential is also 0, this When battery pack each point be to the relational expression of the leakage current on electric chassis:
The electric current of human body is flowed through,
When all electric currents are equidirectional, maximum is obtained by the electric current of human body, now a points are located at battery pack Most just or most negative place, then
First, using electric chassis as reference point, S is worked asa、SbWhen incision, 2 points of a, b of setting voltage is respectively Va、 Vb, the corresponding relation between voltage and resistance is obtained,
Then, S is closeda, by SaThe voltage V ' of a points is measured after corresponding resistance accessa, V 'aRelational expression be:
Then, S is disconnecteda, close Sb, by SbThe voltage V ' of b points is measured after corresponding resistance accessb, V 'bRelational expression be:
Hereafter, by simultaneous equations, the most negative and most positive electric current I for locating direct short-circuit over the ground of battery pack is tried to achieveposAnd Ireg, bag Include:
Formula (6) is substituted into formula (7), arranges and obtains:
Formula (5) is substituted into formula (8), arranges and obtains:
Formula (9) is arranged and obtained:
Formula (6) is substituted into formula (13) to obtain:
Arrangement formula (10) is obtained:
Formula (5) is substituted into formula (15) to obtain:
Simultaneous (11) and (14) are obtained:
Simultaneous (12) and (16) are obtained:
Then, I is comparedposAnd IregSize, take wherein higher value as the maximum leakage current I of battery packL=max {Ipos,Ireg, in the case that maximum leakage current is less than 2mA, unmanned vehicle battery pack is insulation.
In order to verify the validity of this method, n=5 is taken to emulate in circuit using MATLAB/simulink, wherein respectively Policy parameter is respectively R0=300k Ω, R1=400k Ω, R2=500k Ω, R3=600k Ω, R4=700k Ω, R5=800k Ω,Rp=100k Ω, Rq=100k Ω, V1=V2=V3=V4=V5The result calculated after=100V, measurement is Ipos= 2.333mA, Ireg=3.746mA, the result of emulation is:Ipos=2.346mA, Ireg=3.74mA, so as to demonstrate this method Correctness and validity.
Although the present invention is described by reference to specific illustrative embodiment, will not be by these embodiments Restriction and only limited by accessory claim.It should be understood by those skilled in the art that can be without departing from the present invention's Embodiments of the invention can be modified and be changed in the case of protection domain and spirit.

Claims (8)

1. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle, it is characterised in that comprise the following steps:
(1) using electric chassis as reference point, S is worked asa、SbWhen incision, 2 points of a, b of setting voltage is respectively Va、Vb, obtain Corresponding relation between voltage and resistance;
(2) S is closeda, by SaThe voltage V ' of a points is measured after corresponding resistance accessa
(3) S is disconnecteda, close Sb, by SbThe voltage V ' of b points is measured after corresponding resistance accessb
(4) simultaneous equations, try to achieve the most negative and most positive electric current I for locating direct short-circuit over the ground of battery packposAnd Ireg
(5) I is comparedposAnd IregSize, take wherein higher value as the maximum leakage current I of battery packL=max { Ipos,Ireg};
(6) in the case that maximum leakage current is less than certain threshold value, unmanned vehicle battery pack is insulation.
2. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle according to claim 1, sets R0-RnFor grounding resistance, I0-InThe leakage current on electric chassis, V are respectively flowed into from battery0-VnFor the voltage between each earth point, it is assumed that someone contacts The a points of battery, if the electric current for flowing through human body is Ip, so as to obtain:
I1+...Ip+...In=0 (1),
Define the direct and electric chassis of battery pack point it is short-circuit when battery pack and electric chassis between leakage current be the point now Maximum leakage electric current, when human body resistance is 0, Ip=0, it is now electric if the current potential in electric domain is that 0, a points current potential is also 0 Pond group each point is to the relational expression of the leakage current on electric chassis:
<mrow> <mfrac> <mrow> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>&lt;</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>&gt;</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
The electric current of human body is flowed through,
<mrow> <msub> <mi>I</mi> <mi>p</mi> </msub> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>m</mi> <mo>=</mo> <mi>n</mi> </mrow> </munderover> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
3. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle according to claim 2, when all electric currents are equidirectional When, maximum is obtained by the electric current of human body, now a points are located at the most just or most negative place of battery pack, then
<mrow> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mn>...</mn> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>V</mi> <mn>1</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
4. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle according to claim 3, the electricity that the step (1) obtains Pressure and the relation of resistance are:
<mrow> <mfrac> <msub> <mi>V</mi> <mi>a</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>-</mo> <mo>...</mo> <mo>-</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <msub> <mi>V</mi> <mi>b</mi> </msub> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
5. a kind of real electric leakage of battery pack flow measuring method of unmanned vehicle according to claim 4, the step (2) obtains V 'a's Relational expression is:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>p</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>-</mo> <mo>...</mo> <mo>-</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> 1
6. a kind of real electric leakage of battery pack flow measuring method of unmanned vehicle according to claim 5, the step (3) obtains V 'b's Relational expression is:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>q</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
7. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle according to claim 6, step (4) simultaneous equations Including:
Formula (6) is substituted into formula (7), arranges and obtains:
<mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Formula (5) is substituted into formula (8), arranges and obtains:
<mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Formula (9) is arranged and obtained:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>p</mi> </msub> </mfrac> <mo>+</mo> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>V</mi> <mn>1</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> </mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Formula (6) is substituted into formula (13) to obtain:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>p</mi> </msub> </mfrac> <mo>+</mo> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Arrangement formula (10) is obtained:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>q</mi> </msub> </mfrac> <mo>+</mo> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Formula (5) is substituted into formula (15) to obtain:
<mrow> <mfrac> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>R</mi> <mi>q</mi> </msub> </mfrac> <mo>+</mo> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mo>...</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Simultaneous (11) and (14) are obtained:
<mrow> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>&amp;times;</mo> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>-</mo> <msubsup> <mi>V</mi> <mi>a</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Simultaneous (12) and (16) are obtained:
<mrow> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mo>&amp;times;</mo> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>b</mi> </msub> <mo>-</mo> <msubsup> <mi>V</mi> <mi>b</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow>
8. the real electric leakage of battery pack flow measuring method of a kind of unmanned vehicle according to any one above-mentioned claim, the step (6) threshold value is 2mA.
CN201710405264.9A 2017-05-31 2017-05-31 A kind of unmanned vehicle electric leakage of battery pack stream detection method Pending CN107229018A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710405264.9A CN107229018A (en) 2017-05-31 2017-05-31 A kind of unmanned vehicle electric leakage of battery pack stream detection method
PCT/CN2017/090680 WO2018218721A1 (en) 2017-05-31 2017-06-29 Method for detecting leakage current of battery pack of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710405264.9A CN107229018A (en) 2017-05-31 2017-05-31 A kind of unmanned vehicle electric leakage of battery pack stream detection method

Publications (1)

Publication Number Publication Date
CN107229018A true CN107229018A (en) 2017-10-03

Family

ID=59933577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710405264.9A Pending CN107229018A (en) 2017-05-31 2017-05-31 A kind of unmanned vehicle electric leakage of battery pack stream detection method

Country Status (2)

Country Link
CN (1) CN107229018A (en)
WO (1) WO2018218721A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404578A (en) * 2000-02-22 2003-03-19 三洋电机株式会社 Circuit for detecting leakage in power supply
CN101837736A (en) * 2010-04-16 2010-09-22 株洲高新技术产业开发区壹星科技有限公司 Leakage current detection way and device of electric locomotive power supply system
CN102119336A (en) * 2008-08-11 2011-07-06 株式会社Lg化学 Apparatus and method for sensing battery leakage current, and battery driving apparatus and battery pack comprising the apparatus
CN103158575A (en) * 2011-12-19 2013-06-19 福特全球技术公司 Battery pack distributed isolation detection circuitry
CN104730313A (en) * 2013-12-19 2015-06-24 大陆汽车系统公司 Method and apparatus to detect leakage current between power sources
CN105259458A (en) * 2015-11-26 2016-01-20 北京闪信鼎中技术有限公司 Device and method for verifying insulation monitoring accuracy and leakage protection of battery pack management system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326415B2 (en) * 2004-07-06 2009-09-09 三洋電機株式会社 Power supply for vehicle
KR100968350B1 (en) * 2007-08-08 2010-07-08 주식회사 엘지화학 Apparatus and Method for sensing leakage current of battery
CN102205800B (en) * 2011-02-25 2014-09-17 南京华博科技有限公司 Intelligent battery management system of electric car
JP2013024694A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp Detection device for electric leakage state and detection method
JP2014020914A (en) * 2012-07-18 2014-02-03 Keihin Corp Leak detection device
JP5642146B2 (en) * 2012-12-19 2014-12-17 オムロンオートモーティブエレクトロニクス株式会社 Earth leakage detector
CN106546801B (en) * 2015-09-23 2019-07-26 比亚迪股份有限公司 A kind of electricity leakage sensor, high-tension distribution box and electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404578A (en) * 2000-02-22 2003-03-19 三洋电机株式会社 Circuit for detecting leakage in power supply
CN102119336A (en) * 2008-08-11 2011-07-06 株式会社Lg化学 Apparatus and method for sensing battery leakage current, and battery driving apparatus and battery pack comprising the apparatus
CN101837736A (en) * 2010-04-16 2010-09-22 株洲高新技术产业开发区壹星科技有限公司 Leakage current detection way and device of electric locomotive power supply system
CN103158575A (en) * 2011-12-19 2013-06-19 福特全球技术公司 Battery pack distributed isolation detection circuitry
CN104730313A (en) * 2013-12-19 2015-06-24 大陆汽车系统公司 Method and apparatus to detect leakage current between power sources
CN105259458A (en) * 2015-11-26 2016-01-20 北京闪信鼎中技术有限公司 Device and method for verifying insulation monitoring accuracy and leakage protection of battery pack management system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黎林 等: "电动汽车电池组绝缘检测方法的研究", 《电子测量技术》 *

Also Published As

Publication number Publication date
WO2018218721A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CN103293442B (en) Residual voltage distribution character is utilized to realize line single-phase earth fault single-terminal location method
CN108107319A (en) A kind of multiterminal flexible direct current electric network fault localization method and system
Chaitanya et al. An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators
CN105683765A (en) Systems and methods for insulation impedance monitoring
CN105098738A (en) Pilot protection method of high-voltage direct current transmission line based on S transformation
CN102914726A (en) Fault positioning method for common-tower double-circuit line
CN107643449A (en) Detection circuit and detection method of the high pressure to the insulaion resistance of low pressure
CN106997007A (en) Electric automobile direct-current high-voltage system insulating resistance measurement apparatus and its measuring method
CN107677964A (en) A kind of New energy automobile motor battery simulating test device and method
CN107192956A (en) A kind of battery short circuit leakage on-line monitoring method and device
CN108896823A (en) A kind of method of charging resistor detection
CN107834630A (en) A kind of charging method and charging device
CN103412199A (en) Computing method of unbalancedness of multi-circuit power transmission lines on same tower
Sharma et al. Fault detection on series capacitor compensated transmission line using Walsh hadamard transform
CN104809346B (en) Mining high-voltage electric-network earth leakage protective synchronizing calculation method based on sparse matrix
CN104569772B (en) Driven high voltage direct current insulation detecting circuit and method
CN105092971A (en) Pure electric high-voltage insulated resistance real-time online detection method
CN105842582A (en) Flexible DC line fault range finding method based on EMTR
CN104142419B (en) Power grid short-circuit current acquiring method with influences of loads considered
CN107229018A (en) A kind of unmanned vehicle electric leakage of battery pack stream detection method
CN105738677A (en) Power network ground capacitance current detection method
CN104316841A (en) Method for identifying all line parameters by means of fault recording data
Chu et al. Coupling characteristic analysis and a fault pole detection scheme for single-circuit and double-circuit HVDC transmission lines
US20230076181A1 (en) Topology agnostic detection and location of fault in dc microgrid using local measurements
CN207336641U (en) A kind of electric car high-voltage isulation detecting system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171003