CN107228885A - 一种色素纳米囊泡仿生气体传感器的制备方法 - Google Patents

一种色素纳米囊泡仿生气体传感器的制备方法 Download PDF

Info

Publication number
CN107228885A
CN107228885A CN201710511776.3A CN201710511776A CN107228885A CN 107228885 A CN107228885 A CN 107228885A CN 201710511776 A CN201710511776 A CN 201710511776A CN 107228885 A CN107228885 A CN 107228885A
Authority
CN
China
Prior art keywords
pigment
nano vesicle
preparation
gas sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710511776.3A
Other languages
English (en)
Other versions
CN107228885B (zh
Inventor
邹小波
张文
石吉勇
黄晓玮
李志华
胡雪桃
徐艺伟
翟晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710511776.3A priority Critical patent/CN107228885B/zh
Publication of CN107228885A publication Critical patent/CN107228885A/zh
Application granted granted Critical
Publication of CN107228885B publication Critical patent/CN107228885B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种色素纳米囊泡仿生气体传感器的制备方法,包括:步骤1:色素研制的步骤:首先通过气味分子与色素反应的结合能、偶极矩、中心金属离子偏离色素分子平面的距离变化情况,以及反应过程中轨道能级差、电荷分布变化信息,从理论上设计特异性和稳定性好的色素;步骤2:色素囊泡研制的步骤:通过色素与磷脂自组装成纳米囊泡脂质体;步骤3:传感器研制的步骤:利用碳纳米管作为介质将色素纳米囊泡固定在金叉指电极上,从而制成传感器。与传统型传感器相比,纳米囊泡仿生程度高;与细胞、蛋白等生物传感器相比,此类传感器为有机‑无机复合体,稳定性高。因此本发明用囊泡来模拟人嗅觉受体细胞研制新型仿生气体传感器。

Description

一种色素纳米囊泡仿生气体传感器的制备方法
技术领域
本发明涉及一种气体传感器的发明,特指一种色素纳米囊泡仿生气体传感器的制备方法。
背景技术
目前,气体传感器分为传统型和生物型两类。传统型的气体传感器主要有金属氧化物型半导体传感器、有机导电聚合物传感器、质量传感器(包括石英晶体谐振传感器和声表面波传感器)、场效应管传感器、红外线光电传感器和金属栅MOS气体传感器等。生物型气体传感器主要是将细胞、蛋白、生物肽等固定在纳米导电基底(如石墨烯、碳纳米管、石英晶振片等)上来获得。
传统型气体传感器大都是基于物理吸附等分子间弱作用力,存在灵敏度一般低于人类相应感官的灵敏度、得到气味的整体信息与人类感官之间差距较大等缺点,有些传感器还存在工作温度高、反应时间长、设备体积大、温湿度干扰严重等缺点。而生物型主要存在容易失活、失性,稳定性低等缺点。另外,由于其研究门槛相对较高,生物材料生产费用高且不容易与基底材料结合,导致此类装置大多仍处于实验研究阶段。
囊泡是由两亲性分子自组装形成的一种超分子聚集体,其结构为密闭双分子层包裹形成的球形单腔室或多腔室结构,已在药物载体和靶向施药方面取得成功。但在气体传感器研制方面未见报道。
发明内容
本发明的色素纳米囊泡仿生气体传感器包括色素研制、色素囊泡研制及传感器研制三个部分。实现本发明的技术方案如下:
(1)色素研制。首先通过气味分子与色素反应的结合能、偶极矩、中心金属离子偏离色素分子平面的距离变化情况,以及反应过程中轨道能级差、电荷分布变化等信息,从理论上设计特异性和稳定性好的色素。并通过化学合成等方法制备相关色素,同时通过紫外-可见光谱反应与动力参数计算相结合的方式对色素与气味分子反应进行表征,确定所得的色素具有很好的分子识别性能。
(2)色素囊泡研制。通过色素与磷脂自组装成纳米囊泡脂质体,该纳米囊泡直径为几个纳米到几百个纳米,色素结合在囊泡的表面,具有极高的色素密度(>80000每颗粒)。
(3)传感器研制。利用碳纳米管作为介质将色素纳米囊泡固定在金叉指电极上制成传感器。
本发明的有益效果是:
囊泡特有的双层膜包裹亲水核的结构,与细胞的结构十分类似,使得其在模拟生物细胞方面发挥了较为重要的作用。与传统型传感器相比,纳米囊泡仿生程度高;与细胞、蛋白等生物传感器相比,此类传感器为有机-无机复合体,稳定性高。因此本发明用囊泡来模拟人嗅觉受体细胞研制新型仿生气体传感器。
附图说明
图1:色素纳米囊泡的结构图;
图2:传感器研制示意图;
图3:传感器与三甲胺反应情况示意图;
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
首先通过气味分子与色素反应的结合能、偶极矩、中心金属离子偏离色素分子平面的距离变化情况,以及反应过程中轨道能级差、电荷分布变化等信息,从理论上设计特异性和稳定性好的色素。并通过化学合成等方法制备相关色素。最后通过紫外-可见光谱反应与动力参数计算相结合的方式对色素与气味分子反应进行表征,确定所得的色素具有很好的分子识别性能。
其次通过色素与磷脂自组装成纳米囊泡脂质体,该纳米囊泡直径为几个纳米到几百个纳米,色素结合在囊泡的表面,具有极高的色素密度(>80000每颗粒)。
利用碳纳米管作为介质将色素纳米囊泡固定在金叉指电极上制成传感器。
卟啉类色素纳米囊泡传感器实例:
卟啉类色素是一组比较特殊的色素化合物,以原卟啉为模板,以三甲胺为检测对象,本发明的实施实例如下。
通过改变原卟啉中心离子和外围碳链,计算其与三甲胺接触时的结合能、偶极矩、中心金属离子偏离色素分子平面的距离变化情况,以及反应过程中轨道能级差、电荷分布变化等信息,锌卟啉的变化最大,并通过化学合成制备锌卟啉,同时通过紫外-可见光谱反应与动力参数计算相结合的方式确定锌卟啉有很好的三甲胺分子识别能力。
然后让锌卟啉,与磷脂自组装成锌卟啉纳米囊泡脂质体如图1所示。经电镜表征,该囊泡直径为100纳米左右。
最后用碳纳米管作为介质将卟啉色素纳米囊泡固定在金叉指电极上制成传感器如图2所示。
研制的传感器与三甲胺反应曲线如图3所示,该传感器具有很好的重复性和稳定性。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (8)

1.一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,包括:
步骤1:色素研制的步骤:首先通过气味分子与色素反应的结合能、偶极矩、中心金属离子偏离色素分子平面的距离变化情况,以及反应过程中轨道能级差、电荷分布变化信息,从理论上设计特异性和稳定性好的色素;
步骤2:色素囊泡研制的步骤:通过色素与磷脂自组装成纳米囊泡脂质体;
步骤3:传感器研制的步骤:利用碳纳米管作为介质将色素纳米囊泡固定在金叉指电极上,从而制成传感器。
2.根据权利要求1所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,步骤1还包括:通过化学合成方法制备相关色素,同时通过紫外-可见光谱反应与动力参数计算相结合的方式对色素与气味分子反应进行表征,确定所得的色素具有很好的分子识别性能。
3.根据权利要求1所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,步骤2中的纳米囊泡直径为几个纳米到几百个纳米。
4.根据权利要求1所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,步骤2中的纳米囊泡的色素结合在囊泡的表面。
5.根据权利要求1所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,步骤2中的纳米囊泡具有极高的色素密度。
6.根据权利要求5所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,所述色素密度为>80000每颗粒。
7.根据权利要求1-6所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,所述方法应用于卟啉类色素纳米囊泡传感器的制备时,色素包含锌卟啉,铜卟啉,钴卟啉。
8.根据权利要求1-6所述的一种色素纳米囊泡仿生气体传感器的制备方法,其特征在于,所述方法应用于卟啉类色素纳米囊泡传感器的制备时,囊泡直径为100纳米左右。
CN201710511776.3A 2017-06-29 2017-06-29 一种色素纳米囊泡仿生气体传感器的制备方法 Expired - Fee Related CN107228885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710511776.3A CN107228885B (zh) 2017-06-29 2017-06-29 一种色素纳米囊泡仿生气体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710511776.3A CN107228885B (zh) 2017-06-29 2017-06-29 一种色素纳米囊泡仿生气体传感器的制备方法

Publications (2)

Publication Number Publication Date
CN107228885A true CN107228885A (zh) 2017-10-03
CN107228885B CN107228885B (zh) 2020-06-26

Family

ID=59935242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710511776.3A Expired - Fee Related CN107228885B (zh) 2017-06-29 2017-06-29 一种色素纳米囊泡仿生气体传感器的制备方法

Country Status (1)

Country Link
CN (1) CN107228885B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076830A1 (en) * 2000-12-18 2002-06-20 Mauze Ganapati R. Fluorescence immunoassays using organo-metallic complexes for energy transfer
CN1504746A (zh) * 2002-12-03 2004-06-16 北京博奥生物芯片有限责任公司 亲和反应的化学放大电化学检测方法及其试剂盒
CN1618014A (zh) * 2001-11-26 2005-05-18 索尼国际(欧洲)股份有限公司 使用一维半导体材料作为化学敏感材料及其在接近室温下生产和操作
CN102687001A (zh) * 2010-08-05 2012-09-19 松下电器产业株式会社 气体分子检测元件、气体分子检测装置及气体分子检测方法
CN203216929U (zh) * 2013-02-26 2013-09-25 裴振华 基于导电聚合物的牙周细菌检测生物芯片
CN103575771A (zh) * 2013-11-20 2014-02-12 江苏大学 一种气体传感器及其制作方法
CN106415255A (zh) * 2014-03-02 2017-02-15 麻省理工学院 基于金属碳配合物的气体感测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076830A1 (en) * 2000-12-18 2002-06-20 Mauze Ganapati R. Fluorescence immunoassays using organo-metallic complexes for energy transfer
CN1618014A (zh) * 2001-11-26 2005-05-18 索尼国际(欧洲)股份有限公司 使用一维半导体材料作为化学敏感材料及其在接近室温下生产和操作
CN1504746A (zh) * 2002-12-03 2004-06-16 北京博奥生物芯片有限责任公司 亲和反应的化学放大电化学检测方法及其试剂盒
CN102687001A (zh) * 2010-08-05 2012-09-19 松下电器产业株式会社 气体分子检测元件、气体分子检测装置及气体分子检测方法
CN203216929U (zh) * 2013-02-26 2013-09-25 裴振华 基于导电聚合物的牙周细菌检测生物芯片
CN103575771A (zh) * 2013-11-20 2014-02-12 江苏大学 一种气体传感器及其制作方法
CN106415255A (zh) * 2014-03-02 2017-02-15 麻省理工学院 基于金属碳配合物的气体感测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
侯长军 等: "卟啉传感器检测挥发性有机化合物的研究进展", 《传感器与微系统》 *
管彬彬: "色敏传感器技术对醋酸发酵主要挥发性有机物的检测及其机制研究", 《中国博士学位论文全文数据库(电子期刊) 工程科技Ⅰ辑》 *
马生华 等: "基于卵磷脂膜中铁卟啉直接电化学的过氧化氢传感器", 《化学分析研究报告》 *

Also Published As

Publication number Publication date
CN107228885B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
Zhou et al. Triboelectric nanogenerator‐based sensor systems for chemical or biological detection
Liu et al. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis
Alizadeh et al. Breath acetone sensors as non-invasive health monitoring systems: A review
Bain et al. Core-size dependent fluorescent gold nanoclusters and ultrasensitive detection of Pb2+ ion
Chen et al. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing
Choi et al. Black phosphorus and its biomedical applications
Shi et al. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells
Fan et al. Popcorn‐Shaped Magnetic Core–Plasmonic Shell Multifunctional Nanoparticles for the Targeted Magnetic Separation and Enrichment, Label‐Free SERS Imaging, and Photothermal Destruction of Multidrug‐Resistant Bacteria
Djalali et al. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates
Lu et al. Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe2O4/CoFe2O4/NCDs nanospheres: Fabrication, application and DFT theoretical study
Zhu et al. Ni (OH) 2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@ MnO2 composites
Li et al. Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum
He et al. A novel graphene oxide-based fluorescent nanosensor for selective detection of Fe3+ with a wide linear concentration and its application in logic gate
Chang et al. Polyaniline-reduced graphene oxide nanosheets for room temperature NH3 detection
Khatoon et al. Doped SnO2 nanomaterials for e-nose based electrochemical sensing of biomarkers of lung cancer
Liu et al. Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection
Mahapatra et al. Electrostatic selectivity of volatile organic compounds using electrostatically formed nanowire sensor
Wang et al. A wearable respiration sensor for real-time monitoring of chronic kidney disease
Satnami et al. Spectrofluorometric determination of mercury and lead by colloidal CdS nanomaterial
Wen et al. Quantum confined stark effect in Au8 and Au25 nanoclusters
Farzin et al. A sandwich-type electrochemical aptasensor for determination of MUC 1 tumor marker based on PSMA-capped PFBT dots platform and high conductive rGO-N′ 1, N′ 3-dihydroxymalonimidamide/thionine nanocomposite as a signal tag
Dery et al. Size-selective detection of nanoparticles in solution and air by imprinting
Mu et al. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication
Vinh et al. Dual-functional sensing properties of ZnFe2O4 nanoparticles for detection of the chloramphenicol antibiotic and sulphur dioxide gas
Haghani et al. A sensitive and selective optical sensor based on molecularly imprinting technique using green synthesized carbon dots for determination of trace amount of metronidazole

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200626