CN107220400A - 一种基于响应面法的高温空气燃烧组织优化方法 - Google Patents

一种基于响应面法的高温空气燃烧组织优化方法 Download PDF

Info

Publication number
CN107220400A
CN107220400A CN201710218575.4A CN201710218575A CN107220400A CN 107220400 A CN107220400 A CN 107220400A CN 201710218575 A CN201710218575 A CN 201710218575A CN 107220400 A CN107220400 A CN 107220400A
Authority
CN
China
Prior art keywords
burning
factor
temperature air
phase method
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710218575.4A
Other languages
English (en)
Inventor
郑炜博
陈健飞
王晓东
张伟
王洪涛
张英
王贵生
杨秀丽
胡晓峰
宋泓霖
马坤
齐光峰
孙东
李炜
周亮
范路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Technology Inspection Center of Sinopec Shengli Oilfield Co
Original Assignee
China Petroleum and Chemical Corp
Technology Inspection Center of Sinopec Shengli Oilfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Technology Inspection Center of Sinopec Shengli Oilfield Co filed Critical China Petroleum and Chemical Corp
Priority to CN201710218575.4A priority Critical patent/CN107220400A/zh
Publication of CN107220400A publication Critical patent/CN107220400A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于响应面法的高温空气燃烧组织优化方法,包括步骤一,确定燃烧炉进行高温空气燃烧的若干燃烧组织因素;步骤二,根据步骤一确定的燃烧组织因素,通过响应面法确定高温空气燃烧组织优化的燃烧组织因素参数组合;步骤三,根据步骤二中的燃烧组织因素参数组合对燃烧炉相应的因素进行调整。本发明的有益效果是:本发明以U型辐射管为研究对象,应用高温空气燃烧技术,采用数值模拟方法得到NO排放量,并通过响应面法优化了助燃空气预热温度、过剩空气系数和一二次风分级比三因素对NO排放量的影响,为实际工业生产中燃烧组织的确定提供了科学依据。

Description

一种基于响应面法的高温空气燃烧组织优化方法
技术领域
本发明涉及燃烧组织优化技术领域,特别涉及一种基于响应面法的高温空气燃烧组织优化方法。
背景技术
蓄热式高温空气燃烧技术(HTAC)是80年代初国际上兴起的一项新型燃烧技术,该燃烧是一种动态反应,不具有静态火焰,不存在传统燃烧过程中出现的局部高温高氧区。从而具有节约燃料,提高热利用率,减少CO2和NOX排放以及降低燃烧噪音等优势,被誉为21世纪关键技术之一。
低氮燃烧一直以来都是炼化企业以及加热炉厂家追求的目标。目前,国内厂家对燃烧器的结构进行了一定的改造,通过采用空气分级、应用先进的燃烧技术和传热技术等方法来实现对燃烧过程中氮氧化物的控制。虽然这些方法一定程度上降低了NOX的排放,但对燃烧组织方面的优化鲜有研究。如何在现有燃烧器结构的基础上采用合理燃烧组织来进一步降低NOX排放,是一个值得考虑的问题。
发明内容
本发明提供了一种基于响应面法的高温空气燃烧组织优化方法,可以用于确定蓄热式高温空气燃烧组织优化参数。
为了实现上述目的,本发明提供了一种基于响应面法的高温空气燃烧组织优化方法,
步骤一,确定燃烧炉进行高温空气燃烧的若干燃烧组织因素;
步骤二,根据步骤一确定的燃烧组织因素,通过响应面法确定高温空气燃烧组织优化的燃烧组织因素参数组合;
步骤三,根据步骤二中的燃烧组织因素参数组合对燃烧炉相应的因素进行调整。
优选为,所述步骤二的响应面法包括:
S1,根据所述步骤一确定的燃烧组织因素,采用CCD中心复合设计确定试验方案;
S2,根据CCD试验编码对各所述燃烧组织因素对应的各水平进行编码变换;
S3,按照CCD试验方案完成试验;
S4,建立响应面模型,对试验结果进行分析。
优选为,所述步骤一中确定的燃烧组织因素为:助燃空气预热温度、过剩空气系数和一二次风分级比三种因素。
优选为,所述S1的CCD中心复合设计确定的试验方案为,根据所述步骤一选择的燃烧组织因素,确定各因素的水平,并制定这些因素及因素水平的CCD实验方案。
优选为,所述的因素水平为5水平。
优选为,所述S2中编码变换为,将设计参数的取值作编码变换,建立因素水平值与编码的一一对应关系,包括确定因素水平的零点值,根据CCD设计编码确定区间步长,完成水平值与编码值之间的变换。
优选为,所述的确定因素水平零点值和区间步长为,确定因素的变化范围为(Tmin,Tmax),则零点值为区间步长为
优选为,所述S3中的按照CCD试验方案完成试验为,根据CCD试验方案,采用热态试验或者CFD(计算流体力学)软件完成所有设计点的设计试验,通过烟气分析仪或者CFD(计算流体力学)软件后处理获得试验点的指标值。
优选为,所述S4中的建立响应面模型,分析试验结果的方法为,将试验指标值输入响应面软件,根据软件分析结果,提取多项式系数,得到燃烧组织各因素与响应值之间的多项式关系,继而输出响应面三维图并判断燃烧组织各因素对目标函数的影响情况,并根据典型值分析表,判断是否需要进行岭嵴分析。
优选为,经过所述S4分析,如果不需要岭嵴分析,则确定优化组织参数组合;如果需要岭嵴分析,则进行岭嵴分析,所述的岭嵴分析为,以原始设计中心点为球心,对每个坐标从球心开始不断扩大,在R为半径的超球面与响应面的交点形成的轨迹范围内找出最佳响应值,其中,半径R不能超过试验范围。
优选为,所述助燃空气预热温度为777℃,所述过剩空气系数为1.13,所述一二次分级比为25%:75%。
本发明的有益效果是:响应面法是一种优化工艺条件的有效方法,可用于确定各因素及其交互作用在工艺过程中对指标(响应值)的影响,精确地表述因素和响应值之间的关系。本发明以U型辐射管为研究对象,应用高温空气燃烧技术,采用数值模拟方法得到NO排放量,并通过响应面法优化了助燃空气预热温度、过剩空气系数和一二次风分级比三因素对NO排放量的影响,为实际工业生产中燃烧组织的确定提供了科学依据。
附图说明
图1为本发明实施例的助燃空气温度与过剩空气系数对响应值的影响。
图2为本发明实施例的助燃空气温度与一二次风分级比对响应值的影响。
图3为本发明实施例的过剩空气系数与一二次风分级比对响应值的影响。
图4为本发明实施例的各组织参数U型辐射管中心轴线NO曲线对比。
图5为本发明实施例的各组织参数NO云图对比。
图6为本发明实施例U型辐射管模型图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,对本方案进行阐述。
实施例1
本发明提供了一种基于响应面法的高温空气燃烧组织优化方法,包括:
(1)确定需要考虑的燃烧组织因素
本实例主要优化助燃空气预热温度、过剩空气系数和一二次风分级比三因素。助燃空气预热温度决定了燃烧温度分布的均匀性,过剩空气系数决定了燃烧的热损失,一二次风分级比决定了一次燃烧的强度。因此需合理的考虑它们的大小。
(2)采用CCD中心复合设计确定试验方案及对各因素各水平进行编码变换
采用STATISTICA软件设计三因素五水平CCD设计方案,五水平编码值分别为:-1.67332、-1、0、1和1.67332。设定助燃空气预热温度零点值为800℃,区间步长为50℃;过剩空气系数零点值为1.1,区间步长为0.05;一二次风分级比零点值为20%:80%,区间步长为10%。根据三因素五水平CCD中心复合设计表,各因素各水平的编码变换见表1。
表1各因素编码变换结果
(3)按照CCD试验方案完成试验
目前,CCD是用得最为广泛的试验设计。本实施例采用CCD中心复合设计,试验顺序是随机的。完成CCD中心复合设计之后,根据设计表格,利用CFD软件Fluent完成全部模拟试验。CCD中心复合设计及试验结果如表2所示。
表2CCD中心复合设计及试验结果
(4)建立响应面模型,分析试验结果
采用STATISTICA软件对试验数据进行回归拟合分析,为了叙述方便,使用字母a表示助燃空气温度,b表示过剩空气系数,c表示一二次风分级比,得到以NO排放量为响应值的回归方程为:
Y=38.54+4.01a+0.99a2-1.27b-0.10b2-6.57c+5.56c2+1.14ab-2.04ac-4.94bc
回归方程的拟合分析结果见表3,由该表可知,以NO排放量为响应值时,模型P<0.001,表明该二次方程模型显著,拟合效果良好,可靠性高。当P<0.05时,即表示该项指标显著,P<0.01时,即表明该项指标极为显著。可见一二次风分级比线性项及平方项的P值小于0.05,为显著的模型项。对比P值,各因素对NO排放浓度的影响由大到小依次为一二风分级比>助燃空气温度>过剩空气系数。模型拟合系数R2=0.8365,表明模型中83.65%以上的数据与实际试验结果拟合良好,说明该模型能够较为准确地预测NO的生成,该回归模型是可靠的。
表3响应面法分析结果
响应面分析法的图形是特定的响应值对应的各因素构成的一个三维空间,可以直观地反映各因素对响应值的影响,从试验所得的响应面分析图上可以分析出各因素之间的相互作用。由于响应面图为三维图,只能表达含两个影响因素的函数,故每一个响应面三维图都需要固定其中两个影响因素位于编码为0的位置。各因素间交互作用的响应面三维图见附图1。
(5)进行岭嵴分析,确定优化组织参数组合
从典型值分析表4可以看出,四个因素的特征值有正有负,表明此二次响应面是鞍面,没有唯一最佳值,因此需要作岭嵴分析,进一步确定最佳响应值。
表4典型值分析表
岭嵴分析是以原始设计中心点球心(本试验去球心为<0,0,0>),在R为半径的超球面与响应面的交点(即嵴点)形成的轨迹范围内找出最佳响应值。岭嵴分析的结果是对每个坐标从球心开始不断扩大,半径R不能超过试验范围,本文选取R在0.1、0.2、…、1.0范围内计算嵴点。本实施例采用SAS软件进行岭嵴分析,分析结果见表5。
表5岭嵴分析
由表5可知,随着编码半径R的增加,响应值NO逐渐减小。当R=0.6时,标准误差最小,因此选择该数据作为本次试验最优值,此时助燃空气温度为777℃,过剩空气系数为1.13,一二次分级比为25%:75%。按照上述最佳结构参数做验证模拟计算,NO排放量实际模拟结果为31.7ppm,与预测值基本一致。图2为优化组织参数与CCD设计表中第5组参数和第15组参数U型辐射管中心轴线NO曲线对比,图3为其NO云图对比。可以发现优化组织参数的NO数值显著降低,实现了NO减排效果,达到了项目预期。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于响应面法的高温空气燃烧组织优化方法,其特征在于:
步骤一,确定燃烧炉进行高温空气燃烧的若干燃烧组织因素;
步骤二,根据步骤一确定的燃烧组织因素,通过响应面法确定高温空气燃烧组织优化的燃烧组织因素参数组合;
步骤三,根据步骤二中的燃烧组织因素参数组合对燃烧炉相应的因素进行调整。
2.根据权利要求1所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述步骤二的响应面法包括:
S1,根据所述步骤一确定的燃烧组织因素,采用CCD中心复合设计确定试验方案;
S2,根据CCD试验编码对各所述燃烧组织因素对应的各水平进行编码变换;
S3,按照CCD试验方案完成试验;
S4,建立响应面模型,对试验结果进行分析。
3.根据权利要求1所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述步骤一中确定的燃烧组织因素为:助燃空气预热温度、过剩空气系数和一二次风分级比三种因素。
4.根据权利要求2所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述S1的CCD中心复合设计确定的试验方案为,根据所述步骤一选择的燃烧组织因素,确定各因素的水平,并制定这些因素及因素水平的CCD实验方案。
5.根据权利要求4所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述的因素水平为5水平。
6.根据权利要求2所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述S2中编码变换为,将设计参数的取值作编码变换,建立因素水平值与编码的一一对应关系,包括确定因素水平的零点值,根据CCD设计编码确定区间步长,完成水平值与编码值之间的变换。
7.根据权利要求6所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述的确定因素水平零点值和区间步长为,确定因素的变化范围为(Tmin,Tmax),则零点值为区间步长为
8.根据权利要求1-7所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述S3中的按照CCD试验方案完成试验为,根据CCD试验方案,采用热态试验完成所有设计点的设计试验,通过烟气分析仪后处理获得试验点的指标值。
9.根据权利要求1-8所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,所述S4中的建立响应面模型,分析试验结果的方法为,将试验指标值输入响应面软件,根据软件分析结果,提取多项式系数,得到燃烧组织各因素与响应值之间的多项式关系,继而输出响应面三维图并判断燃烧组织各因素对目标函数的影响情况,并根据典型值分析表,判断是否需要进行岭嵴分析。
10.根据权利要求1-9所述的基于响应面法的高温空气燃烧组织优化方法,其特征在于,经过所述S4分析,如果不需要岭嵴分析,则确定优化组织参数组合;如果需要岭嵴分析,则进行岭嵴分析,所述的岭嵴分析为,以原始设计中心点为球心,对每个坐标从球心开始不断扩大,在R为半径的超球面与响应面的交点形成的轨迹范围内找出最佳响应值,其中,半径R不能超过试验范围。
CN201710218575.4A 2017-04-05 2017-04-05 一种基于响应面法的高温空气燃烧组织优化方法 Pending CN107220400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710218575.4A CN107220400A (zh) 2017-04-05 2017-04-05 一种基于响应面法的高温空气燃烧组织优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710218575.4A CN107220400A (zh) 2017-04-05 2017-04-05 一种基于响应面法的高温空气燃烧组织优化方法

Publications (1)

Publication Number Publication Date
CN107220400A true CN107220400A (zh) 2017-09-29

Family

ID=59927544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710218575.4A Pending CN107220400A (zh) 2017-04-05 2017-04-05 一种基于响应面法的高温空气燃烧组织优化方法

Country Status (1)

Country Link
CN (1) CN107220400A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111105503A (zh) * 2019-12-19 2020-05-05 中国人民解放军国防科技大学 一种固体火箭发动机装药燃面确定方法
CN111737842A (zh) * 2019-03-19 2020-10-02 新奥数能科技有限公司 一种优化燃烧器氮氧化物排放量的方法和装置
CN111968220A (zh) * 2020-07-30 2020-11-20 广东工业大学 一种基于响应曲面法的真空烧结炉结构参数优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104540A1 (en) * 2003-05-16 2004-12-02 Corning Incorporated Filters for engine exhaust particulates
CN104036075A (zh) * 2014-06-05 2014-09-10 华东理工大学 一种基于响应面法的燃烧器结构优化方法
CN104361156A (zh) * 2014-10-29 2015-02-18 中国石油化工股份有限公司 一种基于加热炉燃烧模型的优化燃烧卡边条件确定方法
CN104573247A (zh) * 2015-01-11 2015-04-29 吉林大学 一种过渡段简化模型冷却结构优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104540A1 (en) * 2003-05-16 2004-12-02 Corning Incorporated Filters for engine exhaust particulates
CN104036075A (zh) * 2014-06-05 2014-09-10 华东理工大学 一种基于响应面法的燃烧器结构优化方法
CN104361156A (zh) * 2014-10-29 2015-02-18 中国石油化工股份有限公司 一种基于加热炉燃烧模型的优化燃烧卡边条件确定方法
CN104573247A (zh) * 2015-01-11 2015-04-29 吉林大学 一种过渡段简化模型冷却结构优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴晓磊: "新型低氮燃气分级燃烧器CFD模拟和热态试验研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
董璐: "低NOx天然气燃烧器数值模拟及优化", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111737842A (zh) * 2019-03-19 2020-10-02 新奥数能科技有限公司 一种优化燃烧器氮氧化物排放量的方法和装置
CN111105503A (zh) * 2019-12-19 2020-05-05 中国人民解放军国防科技大学 一种固体火箭发动机装药燃面确定方法
CN111968220A (zh) * 2020-07-30 2020-11-20 广东工业大学 一种基于响应曲面法的真空烧结炉结构参数优化方法
CN111968220B (zh) * 2020-07-30 2023-06-23 广东工业大学 一种基于响应曲面法的真空烧结炉结构参数优化方法

Similar Documents

Publication Publication Date Title
Mariani et al. Separation efficiency and heat exchange optimization in a cyclone
CN107220400A (zh) 一种基于响应面法的高温空气燃烧组织优化方法
CN104807039B (zh) 一种锅炉燃烧优化的变量降维建模方法
CN105674326B (zh) 一种工业燃气锅炉多目标多约束燃烧优化方法
Karalus et al. A skeletal mechanism for the reactive flow simulation of methane combustion
CN103364212A (zh) 煤粉锅炉改烧烟煤变负荷燃烧特性测量方法与系统
Buchmayr et al. Performance analysis of a steady flamelet model for the use in small-scale biomass combustion under extreme air-staged conditions
Mehregan et al. A numerical investigation of preheated diluted oxidizer influence on NOx emission of biogas flameless combustion using Taguchi approach
CN103679549A (zh) 火电机组节能潜力分析方法
CN113074459A (zh) 锅炉控制优化方法及系统
CN104461688A (zh) 一种详细燃烧化学反应机理骨架简化的方法
Decker et al. A mixed computational and experimental approach to improved biogas burner flame port design
CN103234219A (zh) 煤粉锅炉改变燃煤种类后的周界风量调整方法及系统
Lukáč et al. Defining the Mathematical Dependencies of NO and CO Emission Generation after Biomass Combustion in Low-Power Boiler
Maio et al. Capturing multi-regime combustion in turbulent flames with a virtual chemistry approach
Das et al. Performance improvement of a domestic liquefied petroleum gas cook stove using an extended spill-tray and an annular metal insert
CN103244953B (zh) 煤粉锅炉改变燃煤种类后的燃烧器出力调整方法及系统
CN103216846B (zh) 煤粉锅炉改变燃煤种类后的烟气浓度调整方法及系统
CN104036075B (zh) 一种基于响应面法的燃烧器结构优化方法
CN106383944A (zh) 一种电站锅炉煤粉在变燃尽风量下的燃烧特性生成数值的模拟方法及装置
CN104806995B (zh) 一种用于煤质多变情况下优化锅炉运行的方法
Guo et al. A numerical investigation of NOx concentration at the outlet of a coal-fired chain grate boiler
WO2015009659A1 (en) Estimation of nox generation in a commercial pulverized coal burner using a dynamic chemical reactor network model
KR20160036163A (ko) 석탄 연소 시뮬레이션 장치, 석탄 연소 최적화 장치 및 석탄 연소 최적화 방법
Sayah et al. Computational fluid dynamics modeling of a self-recuperative burner and development of a simplified equivalent radiative model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170929

RJ01 Rejection of invention patent application after publication