CN107213898A - 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法 - Google Patents

一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法 Download PDF

Info

Publication number
CN107213898A
CN107213898A CN201710430092.0A CN201710430092A CN107213898A CN 107213898 A CN107213898 A CN 107213898A CN 201710430092 A CN201710430092 A CN 201710430092A CN 107213898 A CN107213898 A CN 107213898A
Authority
CN
China
Prior art keywords
catalyst
cobalt
acetic acid
oxide
acid self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710430092.0A
Other languages
English (en)
Inventor
黄利宏
李辉谷
周庆
杨季龙
王巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201710430092.0A priority Critical patent/CN107213898A/zh
Publication of CN107213898A publication Critical patent/CN107213898A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种乙酸自热重整制氢的碳酸根型水滑石结构的钴基催化剂及制备方法。本发明针对现有催化剂在乙酸自热重整过程中催化剂结构的变化和活性组分的氧化及烧结,并导致催化剂失活的问题,提供一种耐烧结、抗积炭、耐氧化、活性高的催化剂。本发明的催化剂的化学成分是(SrO)a(CoO)b(AlO1.5)c,其中a为0.65‑9.75,b为0.35‑4.82,c为0‑2.0。由于本发明采用了Sr‑Al碳酸根型水滑石结构为前驱体,方便将活性组分Co引入到层状结构中或层状结构之间;同时,碱性载体SrO中和了Al2O3的酸性,所获催化剂具有较高活性和稳定性,氢气收率得到了显著提高并保持稳定。

Description

一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备 方法
技术领域
本发明涉及一种乙酸自热重整制氢的碳酸根型类水滑石结构衍生的钴基催化剂及其制备方法,属于乙酸自热重整制取氢气的领域。
背景技术
随着社会经济快速发展,对能源的需求也在不断的增加,寻求化石能源的替代品成为当今世界紧迫的课题。氢气作为一种清洁高效的新能源,其单位质量能量密度高,燃烧热值高,适用范围广。不过,从天然气、煤炭等化石燃料中提取氢的传统方法往往带来环境污染。生物质中氢元素含量丰富,是一种清洁的可再生资源,且相对廉价,因此生物质制氢已成为当今世界备受关注的生物质利用技术之一。生物质能量密度低,可采用快速裂解方式将生物质转化为生物质油,其中生物质油的油相组分主要是木质素热解衍生物,经分离加工等可得酚类、芳烃以及醚类产品;而余下的水相产物,其主要成分为乙酸等,经催化重整转化乙酸过程而获得氢气。
乙酸制氢常用的方法是以催化剂通过水蒸气重整制氢,但水蒸气重整反应是一个吸热反应,需要持续供热,才能维持反应的进行。自热重整过程,将空气或者氧气引入重整反应体系,从而将水蒸气重整(吸热过程)与部分氧化反应(放热过程)相结合实现反应热平衡,从而不需要外界提供热量。
用于乙酸催化转化制氢的催化剂主要有贵金属催化剂和非贵金属催化剂。贵金属催化剂主要包括Pd、Ru、Rh、Pt等催化剂,有较高的催化活性和抗积炭能力,但是其价格昂贵,限制了其应用。过渡金属如Ni、Co、Fe、Cu等非贵金属催化剂的价格较低廉,其中,活性氧化铝负载的Co基催化剂在乙酸转化过程中,能有效促进乙酸分子中碳碳键、碳氢键的断裂,从而获得较高的乙酸转化率和H2产率。不过,由于乙酸易在氧化铝载体表面的酸性位发生酮化反应而形成丙酮,并进一步发生脱水反应生成异丙酮、乙烯酮等中间体,这些中间体在催化剂表面上聚合形成积炭从而堵塞活性位;同时,由于自热重整过程中引入了氧气,并主要消耗在催化剂床层的前端,床层前端高温氧化性气氛往往导致活性组分钴的烧结、氧化而失活;催化床层前端催化剂失活后,反应区不断后移,最终导致整个催化剂床层失活。因此,提高Co基催化剂的热稳定性、抗氧化性、抗积炭性,并降低对丙酮等副产物的选择性,是获得高活性、高稳定性催化剂的关键所在。
在Co基催化体系中,载体、助剂和催化剂结构的选择和组合是优化催化剂的重要因素。氧化铝载体比表面积大、孔隙度高,在催化领域有较广的应用,不过其较强的酸性往往带来积炭等问题。对此,碱土金属锶将是一种较好解决方案:氧化锶表面存在着强、弱两种碱中心,且强碱中心的数目极大;除此之外,其表面还存在着氧活性中心和单电子中心;与典型的碱土金属氧化物MgO相比较,SrO具有数目更多、强度更大的碱中心、氧活性中心和单电子中心。同时,碱性的SrO加入之后,中和了载体(Al2O3)的酸性,同时有助于H2O吸附在载体上,有利于表面积炭的汽化和减少。
对于催化剂结构,类水滑石结构也是一种较好选择。类水滑石属于阴离子黏土(水滑石类化合物),又称层状复合双氢氧化物(Layered double hydroxides,缩写为LDHs),其组成通式为[M2+ 1-xM3+ x(OH)2]x+[An-x/n·yH2O],式中M2+和M3+分别代表水滑石类化合物中的金属阳离子,An-表示水滑石层间的层间阴离子。当M2+为Sr2+,M3+为Al3+,An-为CO3 2-时,即可形成碳酸盐型Sr-Al水滑石结构[Sr1-xAlx(OH)2]x+[CO3 2-x/2·yH2O]化合物;这些水滑石类化合物具有酸碱可调性、较强的阴离子交换性、较高的吸附性、较好的热稳定性和记忆效应,是一种良好的无机载体材料。
本发明因此采用共沉淀法制备了类水滑石[(Sr/Co)1-xAlx(OH)2]x+[(CO3)x/2·yH2O]结构前驱体,通过Co对Sr的部分取代,活性组分Co进入类水滑石晶格位置,经焙烧后获得的Sr-Co-Al-O复合氧化物钴基催化剂,有利于催化活性组分的分散,并増强了活性组分与载体间的协同效应,并抑制Co的聚集长大,同时其发达、稳定的孔道结构也利于反应物和产物分子的传递和扩散,本发明所获得催化剂应用于乙酸自热重整反应中,体现出优异的活性、选择性和稳定性。
发明内容
本发明所要解决的技术问题是,针对现有催化剂在乙酸自热重整反应中催化剂结构的变化和活性组分的氧化及烧结,导致催化剂的失活的问题,提供一种结构稳定、耐烧结、抗积炭、耐氧化、活性稳定的新的催化剂。
本发明以Co为活性组分,以Sr-Al碳酸根型水滑石结构为前驱体,采用共沉淀法制备,获得了含钴尖晶石的Sr-Co-Al-O复合氧化物催化剂,用于乙酸自热重整制氢反应,在反应温度为650℃的情况下,催化剂性能稳定,乙酸转化率稳定在100%,氢气产率也稳定在2.5mol-H2/mol-AC左右。
本发明技术方案:
本发明针对乙酸自热重整的特点,以共沉淀法制备了Sr-Al碳酸根型类水滑石结构前驱体衍生的含钴尖晶石的Sr-Co-Al-O复合氧化物钴基催化剂。本发明的化学成分是(SrO)a(CoO)b(AlO1.5)c,其中a为0.65-9.75,b为0.35-4.82,c为0-2.0,重量百分比组成为:氧化锶34.0-84.9%,氧化钴14.6-15.1%,氧化铝0-51.4%;本发明优选的催化剂成分为(SrO)4.82(CoO)1.18(AlO1.5)1,其重量百分比为:氧化钴15.1%,氧化锶77.0%,氧化铝7.9%。
具体的制备方法步骤如下:
1)配制硝酸盐的混合溶液:根据化学摩尔组成为(SrO)a(CoO)b(AlO1.5)c,其中a为0.65-9.75,b为0.35-4.82,c为0-2.00,配制钴、铝以及锶的硝酸盐的混合溶液;
2)配制沉淀剂:按照摩尔比[OH-]/[Al3++Sr2+]=1/8、[OH-]/[CO3 2-]=1/16,配制碳酸钠和氢氧化钠混合溶液;
3)在65-80℃、pH=10.0±0.5条件下,将硝酸盐的混合溶液和沉淀剂进行共沉淀反应,并老化12-24小时;老化结束后,对混合物抽滤洗涤3次,所得沉淀转入真空干燥箱,在105℃烘干12小时,得到Sr-Al碳酸根型类水滑石结构前驱体,其典型类水滑石结构如X射线衍射图(附图1)所示;所得前驱体于650-800℃焙烧4小时,经破碎、压片、筛分得到20-40目的Sr-Co-Al-O复合氧化物颗粒,其主体成分为无定形SrO和含钴尖晶石结构(Co3O4/CoAl2O4),如X射线衍射图如附图2所示;
4)本发明的催化剂在乙酸自热重整反应前于600-800℃、20-40ml/min的H2中还原1小时,进行活化处理;随后通入经汽化器汽化后的摩尔比为乙酸/水/氧气/氮气=1.0/(2.5-5.0)/(0.2-0.5)/(2.5-4.5)的混合气体,在催化剂床层进行反应,反应温度为550-750℃。
本发明的有益效果:
1)本发明的催化剂采用共沉淀法制备出了Sr-Al碳酸根型类水滑石结构前驱体,通过Co对Sr的部分取代,活性组分Co进入类水滑石晶格位置,经焙烧后获得的Sr-Co-Al-O复合氧化物钴基催化剂,増强了活性组分与载体间的相互作用,Co活性组分高度分散于载体上,抑制了Co的聚集长大,同时其发达、稳定的孔道结构也利于反应物和产物分子的传递和扩散。
2)本发明催化剂引入的SrO具有较高的碱性以及供电子能力,有效促进了活性组分Co对乙酸的转化,同时也抑制了Co金属的氧化,从而有效提高了催化剂活性组分的分散度、热稳定性和耐氧化能力。
3)本发明催化剂引入的Al2O3比表面积大、孔隙度高,有效提高了催化剂的比表面积,促进了反应物分子的扩散,从而有效的提高了反应活性。
4)乙酸自热重整反应结果表明,本发明的催化剂具有耐烧结、抗积炭、耐氧化、活性稳定、氢气产率高等特点。
附图说明
图1本发明催化剂前驱体的X射线衍射谱图
图2本发明催化剂氧化物的X射线衍射谱图
具体实施方式
参照例一
称取21.197g Co(NO3)2·6H2O和69.359g SrNO3,加入400.0ml的去离子水,配制成溶液#1。称取23.306g NaOH和3.860g Na2CO3,加入619.0ml的去离子水,配制成溶液#2。在65℃、pH=10.0±0.5条件下,将溶液#1和#2进行共沉淀反应,继续搅拌老化12小时;老化结束后,对混合溶液抽滤洗涤3次,所得沉淀转入真空干燥箱中,在105℃下烘干12小时,然后750℃下焙烧4小时,得到CUT-SC催化剂。该催化剂摩尔组成为(SrO)4.5(CoO)1,重量百分比组成为:氧化钴15.1%,氧化锶84.9%。
自热重整反应活性评价在连续流动固定床反应器中进行。将催化剂研磨、压片、破碎、筛分为20-40目的颗粒,分别称取50-300mg的催化剂颗粒和等量石英砂均匀混合后装入反应管中,在600-800℃、20-40ml/min的H2氛中还原1h;将摩尔比为1:(2.5-5.0)的乙酸和水的混合溶液用高压恒流泵引入汽化器经汽化后,混合氧气,并以氮气为内标气体,形成摩尔组成为CH3COOH/H2O/O2/N2=1.0/(2.5-5.0)/(0.2-0.5)/(2.5-4.5)的反应原料气,并将此原料气通入反应床层进行自热重整反应,反应温度为550-750℃,反应产物采用气相色谱仪进行在线分析。
该CUT-SC催化剂进行乙酸自热重整反应活性考察,还原温度750℃,反应条件为温度650℃、CH3COOH/H2O/O2/N2=1/4/0.28/3.9、常压、空速11250ml·g-1·h-1,反应时间为10h;该催化剂的乙酸转化率为99%左右,氢气初产率为1.42mol-H2/mol-AC,随着反应的进行,氢气产率小幅下降到1.24mol-H2/mol-AC;同时一氧化碳和甲烷选择性分别达到48.4%、5.0%左右,丙酮等副产物的选择性达到15.8%左右。该CUT-SC催化剂前驱体的表征结果显示,催化剂前驱体没有形成典型的类水滑石结构;复合氧化物比表面积较小,孔道结构不稳定,导致催化剂热稳定差,不耐烧结、氧化,从而导致反应活性较低。
参照例二
称取20.544gCo(NO3)2·6H2O、27.742gSrNO3和151.309g Al(NO3)3·9H2O,加入605.0ml的去离子水,配制成溶液#1。称取151.660gNaOH和25.116gNa2CO3,加入4028.0ml的去离子水,配制成溶液#2。后续步骤同参照例1,获得了CUT-SCA催化剂。该催化剂摩尔组成为(SrO)0.65(CoO)0.35(AlO1.5)2,重量百分比组成为:氧化钴14.6%,氧化锶34.0%,氧化铝51.4%。
该CUT-SCA催化剂经乙酸自热重整活性考察,还原温度750℃,反应条件为温度650℃,CH3COOH/H2O/O2/N2=1/4/0.28/3.9,常压、空速11250ml·g-1·h-1,反应时间为10h。该催化剂乙酸转化率达到100%,氢气初产率为1.65mol-H2/mol-AC,随着反应的进行,氢气产率下降到1.30mol-H2/mol-AC;同时产物中一氧化碳选择性达到29.7%,甲烷选择性高达19.1%左右;丙酮选择性较高,达到14.5%左右,从而导致活性较低。对CUT-SCA催化剂的表征结果显示:该CUT-SCA催化剂前驱体的没有形成典型的类水滑石结构;获得的复合氧化物孔道结构不稳定,导致催化剂热稳定差,不耐烧结,从而导致反应活性较低。
实施例一
称取21.047g Co(NO3)2·6H2O、52.714g SrNO3和60.284g Al(NO3)3·9H2O,加入482.0ml的去离子水,配制成溶液#1。称取74.565g NaOH和12.349g Na2CO3,加入1980.0ml的去离子水,配制成溶液#2。后续步骤同参照例1,获得的类水滑石型前驱体如附图1所示,经焙烧后获得了Sr-Co-Al-O复合氧化物如附图2所示,即获得CUT-2SCA催化剂。该催化剂摩尔组成为(SrO)1.55(CoO)0.45(Al2O3)1,重量百分比组成为:氧化钴15.0%,氧化锶64.5%,氧化铝20.5%。
该CUT-2SCA催化剂经乙酸自热重整活性考察,还原温度750℃,反应条件为温度650℃,CH3COOH/H2O/O2/N2=1/4/0.28/3.9,常压、空速11250ml·g-1·h-1,反应时间为10h。该催化剂乙酸转化率稳定在100%,氢气产率稳定在约2.43mol-H2/mol-AC,同时甲烷的选择性明显降低,为0.5%左右。对CUT-2SCA催化剂进行了XRD、BET、XPS等表征,结果表明:该催化剂复合氧化物比表面积大,孔道结构较稳定,无明显积炭。
实施例二
称取20.747g Co(NO3)2·6H2O、60.343g SrNO3和33.426g Al(NO3)3·9H2O,加入445.0ml的去离子水,配制成溶液#1。称取51.325g NaOH和8.501g Na2CO3,加入1363.0ml的去离子水,配制成溶液#2。后续步骤同参照例1,获得的类水滑石型前驱体如附图1所示,经焙烧后获得了Sr-Co-Al-O复合氧化物如附图2所示,即获得CUT-4SCA催化剂。该催化剂摩尔组成为(SrO)3.2(CoO)0.8(AlO1.5)1,重量百分比为:氧化钴14.8%,氧化锶73.9%,氧化铝11.3%。
该CUT-4SCA催化剂经乙酸自热重整活性考察,还原温度750℃,反应条件为温度650℃,CH3COOH/H2O/O2/N2=1/4/0.28/3.9,常压、空速11250ml·g-1·h-1,反应时间为10h。乙酸转化率稳定在100%,氢气产率稳定在2.49mol-H2/mol-AC左右;同时甲烷的选择性为0.6%左右。对CUT-4SCA催化剂进行了XRD、BET、XPS等表征,结果表明:该催化剂比表面积大,孔道及晶型结构稳定,无明显积炭。
实施例三
称取21.191g Co(NO3)2·6H2O、62.939g SrNO3和23.146g Al(NO3)3·9H2O,加入431.0ml的去离子水,配制成溶液#1。称取43.043g NaOH和7.128g Na2CO3,加入1143.0ml的去离子水,配制成溶液#2。后续步骤同参照例1,获得的类水滑石型前驱体如附图1所示,经焙烧后获得了Sr-Co-Al-O复合氧化物如附图2所示,即获得CUT-6SCA催化剂。该催化剂摩尔组成为(SrO)4.82(CoO)1.18(AlO1.5)1,重量组成为:氧化钴15.1%,氧化锶77.0%,氧化铝7.9%。
该CUT-6SCA催化剂在10小时乙酸自热重整活性考察,还原温度750℃,反应条件为温度650℃,CH3COOH/H2O/O2/N2=1/4/0.28/3.9,常压、空速11250ml·g-1·h-1,反应时间为10h。。该催化剂的乙酸转化率稳定在100%,氢气产率稳定在2.55mol-H2/mol-AC;同时甲烷的选择性为0.6%左右。对CUT-6SCA催化剂进行了XRD、BET、XPS等表征,结果表明:该催化剂形成了典型的类水滑石结构前驱体,获得复合氧化物比表面积大,晶型结构稳定,反应过程活性稳定、无明显的积炭。
实施例四
称取20.991g Co(NO3)2·6H2O、66.141g SrNO3和12.025g Al(NO3)3·9H2O,加入416.0ml的去离子水,配制成溶液#1。称取33.337g NaOH和5.521g Na2CO3,加入885.0ml的去离子水,配制成溶液#2。后续步骤同参照例1,获得的类水滑石型前驱体如附图1所示,经焙烧后获得了Sr-Co-Al-O复合氧化物如附图2所示,即获得CUT-12SCA催化剂。该催化剂摩尔组成为(SrO)9.75(CoO)2.25(AlO1.5)1,重量百分比为:氧化钴15.0%,氧化锶81.0%,氧化铝4.1%。
该CUT-12SCA催化剂经乙酸自热重整活性考察,还原温度750℃,反应条件为温度650℃,CH3COOH/H2O/O2/N2=1/4/0.28/3.9,常压、空速11250ml·g-1·h-1,反应时间为10h。氢气初产率为2.52mol-H2/mol-AC,随着反应的进行,氢气产率小幅下降到2.37mol-H2/mol-AC;同时甲烷的选择性为1.1%左右。对CUT-12SCA催化剂进行了XRD、BET、XPS等表征,结果表明:该催化剂前驱体有明显的类水滑石特征峰,催化剂比表面积大,孔道结构较稳定,反应后未有明显变化。
由活性测试结果可见,本发明的催化剂在乙酸自热重整反应中,对乙酸转化率达到100%,氢气产率稳定在2.5mol-H2/mol-AC左右。通过XRD、BET、XPS等表征结果表明,本催化剂具有活性稳定、耐烧结、抗积炭、耐氧化等特点。

Claims (7)

1.用于乙酸自热重整制氢的碳酸根型类水滑石结构衍生的钴基催化剂,其特征在于:配制硝酸钴、硝酸铝以及硝酸锶的混合溶液#1,配制碳酸钠和氢氧化钠混合溶液#2,在65-80℃、pH=10.0±0.5条件下,将溶液#1和#2进行共沉淀反应,获得沉淀经搅拌老化12-24小时,并经过滤、洗涤、干燥后,获得碳酸根型类水滑石结构前驱体;然后于650-800℃下焙烧4小时,即得含钴尖晶石的Sr-Co-Al-O复合氧化物的钴基催化剂,其化学成分是(SrO)a(CoO)b(AlO1.5)c,其中a为0.65-9.75,b为0.35-4.82,c为0-2.0;该催化剂用于乙酸自热重整制氢过程。
2.根据权利要求1所述的乙酸自热重整制氢的钴基催化剂,其特征在于:所述催化剂以氧化物的重量百分比组成为:氧化锶34.0-84.9%,氧化钴14.6-15.1%,氧化铝0-51.4%。
3.根据权利要求2所述的乙酸自热重整制氢的钴基催化剂,其特征在于:所述催化剂以氧化物的重量百分比组成为:氧化钴15.0%,氧化锶64.5%,氧化铝20.5%。
4.根据权利要求2所述的乙酸自热重整制氢的钴基催化剂,其特征在于:所述催化剂以氧化物的重量百分比组成为:氧化钴14.8%,氧化锶73.9%,氧化铝11.3%。
5.根据权利要求2所述的乙酸自热重整制氢的钴基催化剂,其特征在于:所述催化剂以氧化物的重量百分比组成为:氧化钴15.1%,氧化锶77.0%,氧化铝7.9%。
6.根据权利要求2所述的乙酸自热重整制氢的钴基催化剂,其特征在于:所述催化剂以氧化物的重量百分比组成为:氧化钴15.0%,氧化锶81.0%,氧化铝4.1%。
7.权利要求1-6任一项所述的催化剂在乙酸自热重整制取氢气反应的用途,其特征在于:将50-300mg权利要求1-6任一项所述的催化剂于600-800℃、20-40ml/min的H2氛中还原1小时,进行活化处理;随后通入摩尔比为乙酸/水/氧气/氮气=1.0/(2.5-5.0)/(0.2-0.5)/(2.5-4.5)的混合气体,在催化剂床层进行反应,反应温度为550-750℃。
CN201710430092.0A 2017-06-09 2017-06-09 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法 Pending CN107213898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710430092.0A CN107213898A (zh) 2017-06-09 2017-06-09 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710430092.0A CN107213898A (zh) 2017-06-09 2017-06-09 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN107213898A true CN107213898A (zh) 2017-09-29

Family

ID=59947585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710430092.0A Pending CN107213898A (zh) 2017-06-09 2017-06-09 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN107213898A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043406A (zh) * 2017-12-13 2018-05-18 成都理工大学 一种乙酸自热重整制氢的助剂促进水滑石衍生钴基催化剂
CN109718785A (zh) * 2019-02-13 2019-05-07 成都理工大学 用于乙酸自热重整制氢的水铝钙石衍生钴基催化剂
CN109759070A (zh) * 2019-01-23 2019-05-17 成都理工大学 用于乙酸自热重整制氢的钙钛矿型钛锶钴催化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972656A (zh) * 2010-10-20 2011-02-16 成都理工大学 一种乙醇自热重整制取氢气的镍基催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972656A (zh) * 2010-10-20 2011-02-16 成都理工大学 一种乙醇自热重整制取氢气的镍基催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢伟等: "用于乙酸自热重整制氢的CaxSryCozAlO3.5类水滑石催化剂的研究", 《山东化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043406A (zh) * 2017-12-13 2018-05-18 成都理工大学 一种乙酸自热重整制氢的助剂促进水滑石衍生钴基催化剂
CN108043406B (zh) * 2017-12-13 2019-02-22 成都理工大学 一种乙酸自热重整制氢的助剂促进水滑石衍生钴基催化剂
CN109759070A (zh) * 2019-01-23 2019-05-17 成都理工大学 用于乙酸自热重整制氢的钙钛矿型钛锶钴催化剂
CN109718785A (zh) * 2019-02-13 2019-05-07 成都理工大学 用于乙酸自热重整制氢的水铝钙石衍生钴基催化剂

Similar Documents

Publication Publication Date Title
Greluk et al. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming
Chen et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming
CN101972659B (zh) 一种乙醇自热重整制氢的钙钛矿型催化剂及制备方法
Al-Mubaddel et al. Optimizing acido-basic profile of support in Ni supported La2O3+ Al2O3 catalyst for dry reforming of methane
Wang et al. Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: enhanced stability by PrOx promotion
CN108043406B (zh) 一种乙酸自热重整制氢的助剂促进水滑石衍生钴基催化剂
Liu et al. High purity H2 production from sorption enhanced bio-ethanol reforming via sol-gel-derived Ni–CaO–Al2O3 bi-functional materials
Kim et al. Reaction characteristics of dimethyl ether (DME) steam reforming catalysts for hydrogen production
CN101558137A (zh) 煤油脱硫剂、脱硫方法和使用该煤油脱硫剂的燃料电池系统
CN112844397B (zh) 一种用于乙酸自热重整制氢的铈钐固溶体镍基催化剂
CN101972656B (zh) 一种乙醇自热重整制取氢气的镍基催化剂及其制备方法
Dong et al. Effect of preparation conditions of CuO–CeO2–ZrO2 catalyst on CO removal from hydrogen-rich gas
Ding et al. Anti-coking of Yb-promoted Ni/Al2O3 catalyst in partial oxidation of methane
Zhao et al. Sorbent assisted catalyst of Ni-CaO-La2O3 for sorption enhanced steam reforming of bio-oil with acetic acid as the model compound
CN107213898A (zh) 一种乙酸自热重整制氢的类水滑石衍生钴基催化剂及制备方法
Heo et al. Efficient hydrogen production by low-temperature steam reforming of propane using catalysts with very small amounts of Pt loaded on NiMn2O4 particles
CN109718785B (zh) 用于乙酸自热重整制氢的水铝钙石衍生钴基催化剂
CN110433811B (zh) MgO改性的Ni/CaO双功能催化剂及制备方法和应用
Sun et al. Effects of CaO addition on Ni/CeO2–ZrO2–Al2O3 coated monolith catalysts for steam reforming of N-decane
Musso et al. High performance Ni-catalysts supported on rare-earth zirconates (La and Y) for hydrogen production through ethanol steam reforming. Characterization and assay
CN107282050A (zh) 一种乙酸自热重整制氢的类水滑石型铁促进镍基催化剂及制备方法
Mohamedali et al. Hydrogen production from oxygenated hydrocarbons: Review of catalyst development, reaction mechanism and reactor modeling
Cao et al. Dry reforming of methane by La2NiO4 perovskite oxide, part I: Preparation and characterization of the samples
Qi et al. Hydrogen production via catalytic propane partial oxidation over Ce1-xMxNiO3-λ (M= Al, Ti and Ca) towards solid oxide fuel cell (SOFC) applications
Jabotra et al. CO2/CO methanation over Ru and Ni supported γ-Al2O3: A study on the effect of the stoichiometry of reactant gases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170929