CN107202428A - 一种单个电热水器状态估计方法 - Google Patents

一种单个电热水器状态估计方法 Download PDF

Info

Publication number
CN107202428A
CN107202428A CN201710505656.2A CN201710505656A CN107202428A CN 107202428 A CN107202428 A CN 107202428A CN 201710505656 A CN201710505656 A CN 201710505656A CN 107202428 A CN107202428 A CN 107202428A
Authority
CN
China
Prior art keywords
hot water
behavior
water
electric heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710505656.2A
Other languages
English (en)
Other versions
CN107202428B (zh
Inventor
何怡刚
项胜
李志刚
阳辉
何鎏璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201710505656.2A priority Critical patent/CN107202428B/zh
Publication of CN107202428A publication Critical patent/CN107202428A/zh
Application granted granted Critical
Publication of CN107202428B publication Critical patent/CN107202428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply

Abstract

直接负荷控制通过调控可控负荷的运行方式,降低电力系统的峰值负荷负担。电热水器、空调等常见家用电器是将电能转化为热能,具备储能功能,暂时关断不影响使用,是首选的可控负荷。而电热水器由于日常用水活动频繁且水箱储能量大,可控容量大。对负荷状态精确地估计有利于有效使用可控负荷容量,在不影响用户正常使用的前提下,获得利益最大化。本发明提出的单个电热水器状态估计方法,通过构建家庭用水基本模式,将用水需求行为和次数模糊地分配到各个时间段内,估计下个时间段内热水器工作状态。针对单个电热水器随机性较大的特性,在估计的过程中通过反馈将用热水行为模式不断修正。

Description

一种单个电热水器状态估计方法
技术领域
本发明涉及一种单个电热水器状态估计方法,更具体地说,是通过已发生的行为不断修正用户行为模式,实现电热水器保持开关状态时间精确估计。
背景技术
直接负荷控制通过调节可控负荷的用电时间,在不影响用户使用的前提下,修改负荷曲线实现电力系统削峰填谷。电热水器是最常用且可控裕度大的可控负荷,对电热水器精确地状态估计有助于充分使用电热水器可控的负荷范围。越精确地估计电热水器加热和停止加热的时间点也就是保持开关状态时间估计,可以更精确地估计出电热水器可控负荷容量,实现更优的直接负荷调控。
发明内容
本发明要解决的技术问题是,填补现有技术空白,提供一种通过已发生的行为不断地修正用户行为模式,估计值精确的单个电热水器状态估计方法。
本发明解决其技术问题所采用的技术方案是:
一种单个电热水器状态估计方法,包括以下步骤:
(1)通过设置在电热水器水箱外表面的温度传感器实时采集电热水器温度,根据家庭用电功率变化得到电热水器工作状态。温度传感器安装在电热水器水箱表面上,这样装设简单,温度传感器按照固定采样频率不断地读取电热水器的温度。由于电热水器为电阻性元件,因此家庭用电功率瞬间增加或降低值等于电热水器额定功率。若家庭用电功率瞬间增加值等于电热水器功率,则可以认为是电热水器开。若家庭用电功率瞬间降低值等于电热水器功率,则可以认为是电热水器关闭。据此获得电热水器状态,即通过家庭用电功率波动得到电热水器工作状态。
(2)将当前时刻采集到的温度减去上一采样时刻采集到的温度,得到初始温度差;若电热水器此时的工作状态为非加热状态,将得到的初始温度差减去电热水器因散热产生的温度差,得到仅由用热水行为决定的温度差;若电热水器处于加热状态,将得到的初始温度差减去电热水器因散热产生的温度差后,再加上电热水器因加热产生的温度差,得到仅由用热水行为决定的温度差;将得到的仅由用热水行为决定的温度差保存在一个数据库中,该数据库是一时间序列,即仅由用热水行为决定的温度差的时间序列。因为电热水器是电阻性元件,所以电热水器在加热状态时电能持续性地转化为热能,转化速率恒定,在加热过程中转化的热能与消耗的电能相等,因此,加热使电热水器的水箱内的水温均匀上升。而非加热状态下,没有此部分能量来源。电热水器用热水时,热水放出的同时流入冷水,使得水箱中存储的能量降低,使得电热水器水箱内部水温度下降。热能会自发地由高温物体流向低温物体,即为散热,速率与温度差以及物体表面积有关。实际中电热水器水箱内部水温度(通过电热水器现有的内部机械结构设置,调节现有电热水器水箱内部的压力传感器设置热水器内部水温上限和下限)上下限差值一般为5℃,同一电热水器表面积相等,可以近似认为散热速率为恒定值。加热状态时有,初始得到的温度差△T=△T用水+△T散热-△T加热,△T用水表示仅由用热水行为决定的温度差,△T散热表示电热水器因散热产生的温度差,△T加热表示电热水器因加热产生的温度差;在非加热状态下,初始得到的温度差△T=△T用水+△T散热。因此在生成电热水器的温度差的时间序列时,要根据电热水器的工作状态消除电热水器因加热和散热带来的能量影响,即是获得△T用水,使得最后得到的温度差的时间序列仅由用热水行为决定,将各采样时刻得到仅由用热水行为形成的温度差,并存入数据库中,形成仅由用热水行为决定的温度差的时间序列。
(3)不同的用热水行为会产生不同的温度下降速率以及不同的变化持续时间,因此根据仅由用热水行为决定的温度差的时间序列辨识出用热水的行为。在实际使用中,主要的用热水设备有:淋浴头、浴缸、水龙头以及洗衣机。对应的用热水行为有:洗澡(淋浴、浴缸)、清洁(洗手、洗食物等)、洗衣服。其各自特征分别是:淋浴,持续时间一般为7-8分钟,全程基本保持持续放水,用水体积40-50L;浴缸,电热水器放热水时间一般为4-5分钟,用水体积与浴缸大小相关,一般30-40L;洗衣服,与选择的洗衣模式有关,一般在洗衣过程中选择使用热水,漂洗和脱水过程不使用热水,一般用热水时间3-3.5min,洗衣过程水体积与洗衣机容量有关,用水体积一般25-30L;水龙头是日常中使用最频繁的,主要洗手、洗餐具、洗食物等,放水时间较短一般20-30秒,但发生频率较高,用水体积一般为2L。具体数据可见表1,实际用热水过程中各用水行为并不会保持一个理想的匀速状态,且因电热水器温度由水箱表面测得,因此温度变化的速率不是一个常数。根据实验得到(电热水器温度上下限为45-50℃),淋浴引起的温度下降3.3-4.1℃,下降速率峰值为0.10℃/10s,浴缸引起的温度下降2.5-3.3℃,下降速率峰值为0.19℃/10s,洗衣机引起的温度下降2.3-2.5℃,下降速率峰值为0.15℃/10s,水龙头引起的温度下降0.16℃,下降速率峰值为0.6℃/10s。此处所有的用水体积为从电热水器放出的热水与水管中冷水混合达到适合温度后的温水总体积,因而,从电热水器中消耗的热水体积只占温水总体积的一部分,其比例由天气温度以及个人偏好、自来水管进水温度和电热水器出水温度决定,一般为60%-70%。每种用热水行为在单位时间内消耗电热水器中热水的体积各不相同,换句话说,因各用热水行为引起的温度变化速率也不相同。因各种用热水行为各有特点且相互间有差别,不同的用热水行为会产生不同的温度变化速率以及不同的持续时间,根据各种用热水行为的温度下降速率即采样时间间隔内温度下降差值构建模糊集,将用热水行为通过模糊辨识的手段辨识出来,也就是说,将仅由用热水行为决定的温度差的时间序列与所述模糊集比较,若仅由用热水行为决定的温度差的时间序列中某点值,在模糊集中某个用热水行为的温度差下降范围内,即位于模糊集中某个用热水行为的相邻两个采样时间间隔的温度下降差值之间;且,在由用热水行为决定的温度差的时间序列中,与所述点值连续的多个采样点所对应的时间长度处于相应用热水行为持续时间范围内,与所述点值连续的多个采样点的温度差均处于模糊集中相应用热水行为的温度差下降范围内,则认为此时有相应的用热水行为发生。
表1.各用热水行为统计
因实际生活中,水龙头用水能与其他三种设备(即淋浴头、浴缸以及洗衣机)用水同时发生,会增大流速,但是持续时间短于其他行为(即淋浴头、浴缸以及洗衣机用水),因此,可以通过流速的变动及变化持续时间能将同时进行的用热水行为辨识出来。
(4)将步骤(3)辨识出的用热水行为带入基本的用热水行为模式中,修正用热水行为模式,得到新的用热水行为模式。基本的用热水行为模式与家庭人口、用水习惯、环境气候有关,可以通过调查用户日常行为习惯,将各种用热水行为和次数划分到各个时间段中,时间段长度由用户行为可能发生的时间范围决定,在某一时间段内产生的用热水行为在此时间段内产生的时间是随机的,因此,行为发生概率是相等的,据此产生的就是基本的用热水行为模式。通过步骤(3)辨识用热水行为将会修正对应时间段内用热水行为发生的概率。
对同一用户而言,日常中洗澡、洗衣等行为基本固定在某个时间段且发生次数基本固定。清洗食物及清洁等行为发生也大致相似,其余零散用水变化略大。因此,将某一固定用户的行为按时间段划分,某时间段的某个行为会发生在该时间段的任何时间点上。根据步骤(3)辨识的用热水行为,在某个时间段内某个行为已经发生,则在该时间段剩余时间内该行为发生的概率下降,相应地,若该行为没有发生,则在该时间段剩余时间内该行为发生的概率上升。对已辨识出的用热水行为,带入基本的用热水行为模式中,修正用热水行为模式,得到新的用热水行为模式。随着程序不断循环执行,用水模式会越来越精确地接近该用户行为模式。
(5)根据电热水器的温度,以及由步骤(4)新生成的用热水行为模式,估计电热水器保持开或关状态不变的时间。根据此时刻电热水器的温度,计算出可以使用的热能Qnow,Qnow=cρV水箱Tnow,c是水的比热容,ρ是水的密度,V水箱表示水箱的体积,Tnow表示时刻电热水器的温度;
在加热状态下,可持续加热时间t(即电热水器保持开状态不变的时间)满足Qhi-Qnow=Priset-Plosst-Qout1+Qin1;式中,Qhi表示达到温度上限时存储的能量;Prise表示热能上升速度,与电热水器功率有关;Ploss表示散热速率,与电热水器表面积以及绝缘程度有关,Qout1表示在继续加热时间t内用掉热水的能量,由修正后的新的用水模式获得,Qin1表示补充进来等体积冷水具有的能量。在加热状态下,估计继续加热时间t为,
在非加热状态下,可持续时间t满足,Qnow-Qlo=Plosst+Qout0-Qin0;式中,Qlo表示达到温度下限时存储的能量,Qin0表示补充进来等体积冷水具有的能量。因此根据修正后的用水行为模式Qout0表示在继续不加热状态时间t内用掉热水的能量,由修正后新的用水模式获得。在非加热状态,估计持续时间t为,
(6)重复步骤(1)-(5):不断地读取温度和状态数据、形成温度差的时间序列、辨识用热水行为并修正用水模式、估计电热水器保持开或关状态不变持续时间,实现电热水器状态连续估计,以方便直接负荷控制。直至人为干预停止并结束。
直接负荷控制通过调控可控负荷的运行方式,降低电力系统的峰值负荷负担。电热水器、空调、冰箱等是常见家用电器,其工作原理都是将电能转化为热能。热能具备储存简单的优点,并且家用电器存储的能量均为日常生活所需,因此通过调节热能的存储行为模式,即可实现电能使用方式调节,因此,电热水器、空调和冰箱等可作为可控负荷。家庭热水使用量可达到每日人均100L,是一种调节容量极大的可控负荷。为了在不影响用户正常使用的前提下,获得最有效的直接负荷控制结果,达到利益最大化,必须对负荷的状态进行准确估计。因此,本发明提出一种电热水器状态估计方法。为实现控制方式简单化,现有电热水器常采用off-control,即只将处于加热状态的电热水器关断,而不能强制加热。因此精确地估计加热时间段对于直接负荷控制很有意义。本发明的单个电热水器状态估计方法,通过构建家庭用热水基本模式(即前文中的基本的用热水行为模式),将用水需求行为和次数模糊地分配到各个时间段内,估计下个时间段内热水器工作状态即电热水器保持开或关状态不变的时间。针对单个电热水器随机性较大的特性,在估计的过程中通过反馈将用热水行为模式不断修正。
本发明根据已发生用热水行为模式,不断修正用户用热水行为模式,更加精确地估计出后续可能发生的用水行为。
本发明通过电热水器能量变化守恒,精确地对电热水器开关或状态不变时间估计。最终实现,将电热水器的可控容量最大限度使用,实现最优的直接负荷控制。
附图说明
图1为本发明方法结构图;
图2为本发明一种单个电热水器状态估计方法的流程图;
图3为日常各用水行为流速模糊隶属度;
图4为日常各用水行为持续时间模糊隶属度;
图5为实际测量的两个浴缸用水行为温度差;
图6为实际测量的两个淋浴用水行为过程温度差;
图7为实际测量的两个洗衣机用水行为过程温度差;
图8为实际测量的三个水龙头用水行为过程温度差。
具体实施方式
下面结合附图和实例对本发明进一步详细说明。
参照图1,本方法包括以下步骤:
(1)首先执行步骤101,从电热水器水箱表面设置的温度传感器,根据功率变化读取电热水器状态,处于加热状态或者非加热状态,采样周期10s。由此完成数据采集。
(2)执行步骤102,对于一个固定的电热水器,其散热每时每刻都存在,其速率可以由,无用水时温度变化测得。加热时候温度上升速度,由加热状态下,无用水时温度变化测得。将由步骤101,得到温度处理,得到每一个10s因用水引起的温度变化值,并存入数据库中。
(3)执行步骤103,由图3和图4的用水行为模糊函数,辨识是否有新的用水行为产生。因为可能存在某些用水行为同时发生,因此需要将本次温度差与数据库中的历史温度差相结合,辨识出交叉用水行为。
图5是实际的两个浴缸用水行为引起的温度差,图6为实际的两个淋浴用水行为引起的温度差,图7为实际的两个洗衣机用水行为引起的温度差,图8为实际的三个水龙头用水的温度差。
(4)执行步骤104,用热水行为模式修正。若某行为发生,因用水行为不是暂态行为,后续的几个采样周期内,该用水行为将继续发生,在必定发生的采样周期后还有几个采样周期内有很大概率持续发生,具体持续时间与用水行为有关。如淋浴,在后续42个采样周期(即7min内)内持续发生,但淋浴有时会为8min,也即是,在42-48个采样周期内有较大概率发生。相应的在该用水行为结束后又有几个采样周期该用水行为会不再发生。对于该时间段内,若某用水行为发生了,则该时间段剩余时间内,该用水行为发生的概率下降,相应地,若该用水行为没有发生,则该时间段剩余时间内,该用水行为发生的概率上升。为进一步契合实际使用,若应该在已过去的某时间段发生的某个行为没有发生,则下一个时间段开始的一定采样周期内,该行为可能会发生(主要针对淋浴、浴缸及洗衣机)。据此,生成新的用热水行为模式。
(5)执行步骤105,根据温度和状态,计算在加热状态下,还够增加多少热能,在非加热状态下,还可以使用多少热能。根据最新的用水模式,估计多少时间内,因为用水和散热、加热(加热状态下)的热能总和与计算得到的可增加或可使用热能相等。这个时间即是估计的电热水器保持开或关状态不变的时间。
(6)执行步骤106,不断重复采集数据、辨识行为、修正模式并估计时间,直至人为干预停止并结束。
一种单个电热水器状态估计方法,通过辨识已发生用水行为模式,不断修正用户用水行为模式,更加精确地估计出后续可能发生的用水行为。并根据实时状态,精确地对电热水器开关状态不变时间估计。最终实现,将电热水器的可控容量最大限度使用,实现最优的直接负荷控制。

Claims (6)

1.一种单个电热水器状态估计方法,其特征在于,包括以下步骤:
(1)通过设置在电热水器水箱表面的温度传感器实时采集电热水器温度,通过家庭用电功率波动得到电热水器工作状态;
(2)将当前时刻采集到的温度减去上一采样时刻采集到的温度,得到初始温度差;若电热水器此时的工作状态为非加热状态,将得到的初始温度差减去电热水器因散热产生的温度差,得到仅由用热水行为决定的温度差;若电热水器处于加热状态,将得到的初始温度差减去电热水器因散热产生的温度差后,再加上电热水器因加热产生的温度差,得到仅由用热水行为决定的温度差;将各采样时刻得到的仅由用热水行为决定的温度差保存在一个数据库中,该数据库是一时间序列,即仅由用热水行为决定的温度差的时间序列;
(3)不同的用热水行为会产生不同的温度下降速率以及不同的持续时间,根据仅由用热水行为决定的温度差的时间序列辨识出用热水的行为;
(4)将步骤(3)辨识出的用热水行为带入基本的用热水行为模式中,修正用热水行为模式,得到新的用热水行为模式;基本的用热水行为模式与家庭人口、用水习惯、环境气候有关,通过调查用户日常行为习惯,将各种用热水行为和次数划分到各个时间段中,时间段长度由用户行为可能发生的时间范围决定,在某一时间段内产生的用热水行为在此时间段内产生的时间是随机的,因此,行为发生概率是相等的,据此产生的就是基本的用热水行为模式;
(5)通过由步骤(4)新生成的用热水行为模式以及此时电热水器温度,估计电热水器还需要加热多长时间或者还需要多少时间进入加热状态,即估计电热水器还能保持开或关状态不变的时间;
(6)重复步骤(1)-(5),实现电热水器状态连续估计,以方便直接负荷控制。
2.根据权利要求1所述的单个电热水器状态估计方法,其特征在于,所述步骤(2)中,生成仅由用热水行为决定的温度差的时间序列时,因为电热水器是电阻性元件,所以电热水器在加热状态时电能持续性地转化为热能,转化速率恒定,在加热过程中转化的热能与消耗的电能相等;电热水器用热水时,热水放出的同时流入冷水,因而电热水器水箱内部水温度下降;热能会自发地由高温物体流向低温物体,即为散热,速率与温度差以及物体表面积有关,同一电热水器表面积相等,故散热速率为恒定值;即加热状态时有,初始得到的温度差△T=△T用水+△T散热-△T加热,△T用水表示仅由用热水行为决定的温度差,△T散热表示电热水器因散热产生的温度差,△T加热表示电热水器因加热产生的温度差;在非加热状态下,初始得到的温度差△T=△T用水+△T散热;因此在生成电热水器的仅由用热水行为决定的温度差的时间序列时,要根据电热水器的工作状态消除因电热水器加热和散热带来的能量影响,即是获得△T用水,使得温度差的时间序列仅由用热水行为决定。
3.根据权利要求1所述的单个电热水器状态估计方法,其特征在于,所述步骤(3)中,根据仅由用热水行为决定的温度差的时间序列辨识出用热水的行为的方法为:
在实际使用中,主要的用热水设备有:淋浴头、浴缸、水龙头以及洗衣机;对应的用热水行为有:洗澡、清洁、洗衣服;洗澡包括淋浴和采用浴缸洗澡;清洁包括洗手、洗食物、洗脸;其各自特征分别是:淋浴,持续时间为7-8分钟,全程基本保持持续放水,用水体积40-50L;浴缸,从电热水器放热水时间为4-5分钟,用水体积与浴缸大小相关,为30-40L;洗衣服,与选择的洗衣模式有关,若在洗衣过程中选择使用热水,漂洗和脱水过程不使用热水,用热水时间3-3.5分钟,洗衣过程用水体积与洗衣机容量有关;水龙头是日常中使用最频繁的,主要洗手、洗餐具、洗食物放水时间较短,20-30秒,但发生频率较高,用水体积为2L;淋浴引起的温度下降3.3-4.1℃,温度下降速率峰值为0.10℃/10s,浴缸引起的温度下降2.5-3.3℃,温度下降速率峰值为0.19℃/10s,洗衣机引起的温度下降2.3-2.5℃,温度下降速率峰值为0.15℃/10s,水龙头引起的温度下降0.16℃,温度下降速率峰值为0.6℃/10s;
因各种用热水行为各有特点且相互间有差别,根据各种用热水行为的温度下降速率即采样时间间隔内温度下降差值构建模糊集,将用热水行为通过模糊辨识的手段辨识出来,也就是说,将仅由用热水行为决定的温度差的时间序列与所述模糊集比较,若仅由用热水行为决定的温度差的时间序列中某点值,在模糊集中某个用热水行为的温度差下降范围内,即位于模糊集中某个用热水行为的相邻两个采样时间间隔的温度下降差值之间;且,在由用热水行为决定的温度差的时间序列中,与所述点值连续的多个采样点所对应的时间长度处于相应用热水行为持续时间范围内,与所述点值连续的多个采样点的温度差均处于模糊集中相应用热水行为的温度差下降范围内,则认为此时有相应的用热水行为发生。
4.根据权利要求3所述的单个电热水器状态估计方法,其特征在于,因实际生活中,水龙头用水能与其他三种设备即淋浴头、浴缸以及洗衣机用水同时发生,会增大流速,但是持续时间短于淋浴头、浴缸以及洗衣机用水,因此,通过流速的变动及变化持续时间能将同时进行的用热水行为辨识出来。
5.根据权利要求1所述的单个电热水器状态估计方法,其特征在于,所述步骤(4)中,将步骤(3)辨识出的用热水行为带入基本的用热水行为模式中,修正用热水行为模式,得到新的用热水行为模式的方法为:
对同一用户而言,日常中洗澡、洗衣等行为基本固定在某个时间段且发生次数基本固定;清洗食物及清洁等行为发生也大致相似,其余零散用水变化略大,因此,将某一固定用户的行为按时间段划分,某时间段的某个行为会发生在该时间段的任何时间点上;根据步骤(3)辨识的用热水行为,在某个时间段内某个行为已经发生,则在该时间段剩余时间内该行为发生的概率下降,相应地,若该行为没有发生,则在该时间段剩余时间内该行为发生的概率上升;对已辨识出的用热水行为,带入基本的用热水行为模式中,修正用热水行为模式,得到新的用热水行为模式。
6.根据权利要求1所述的单个电热水器状态估计方法,其特征在于,所述步骤(5)中,估计电热水器还需要加热多长时间或者还需要多少时间进入加热状态的方法为;
根据此时刻电热水器的温度,计算出可以使用的热能Qnow,Qnow=cρV水箱Tnow,c是水的比热容,ρ是水的密度,V水箱表示水箱的体积,Tnow表示时刻电热水器的温度;
在加热状态下,可持续加热时间t满足Qhi-Qnow=Priset-Plosst-Qout1+Qin1;式中,Qhi表示达到温度上限时存储的能量;Prise表示热能上升速度,与电热水器功率有关;Ploss表示散热速率,与电热水器表面积以及绝缘程度有关;Qout1表示在继续加热时间t内用掉热水的能量;Qin1表示补充进来等体积冷水具有的能量;在加热状态下,估计继续加热时间为
在非加热状态下,可持续时间t满足,Qnow-Qlo=Plosst+Qout0-Qin0;式中,Qlo表示达到温度下限时存储的能量,Qin0表示补充进来等体积冷水具有的能量;Qout0表示在继续不加热状态时间t内用掉热水的能量由修正后新的用水模式获得;在非加热状态,估计持续时间为
CN201710505656.2A 2017-06-28 2017-06-28 一种单个电热水器状态估计方法 Active CN107202428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710505656.2A CN107202428B (zh) 2017-06-28 2017-06-28 一种单个电热水器状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710505656.2A CN107202428B (zh) 2017-06-28 2017-06-28 一种单个电热水器状态估计方法

Publications (2)

Publication Number Publication Date
CN107202428A true CN107202428A (zh) 2017-09-26
CN107202428B CN107202428B (zh) 2020-10-16

Family

ID=59906935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710505656.2A Active CN107202428B (zh) 2017-06-28 2017-06-28 一种单个电热水器状态估计方法

Country Status (1)

Country Link
CN (1) CN107202428B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785888A (zh) * 2017-10-13 2018-03-09 陆炜 一种智能电力负荷控制系统及控制方法
CN108302768A (zh) * 2017-12-29 2018-07-20 深圳和而泰数据资源与云技术有限公司 基于用水行为的实时校验方法、装置及存储介质
CN108399700A (zh) * 2018-01-31 2018-08-14 上海乐愚智能科技有限公司 防盗方法和智能设备
CN114384948A (zh) * 2022-01-13 2022-04-22 北京小米移动软件有限公司 设备控制方法、装置、电子设备及存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020043A (ja) * 1983-07-13 1985-02-01 Hanshin Electric Co Ltd 燃焼制御装置
CN1632409A (zh) * 2004-12-29 2005-06-29 上海交通大学 智能型热泵热水器
CN102401473A (zh) * 2010-09-17 2012-04-04 乐金电子(天津)电器有限公司 热泵热水器的运行方法
CN103363670A (zh) * 2012-03-31 2013-10-23 珠海格力电器股份有限公司 空气能热水器及其控制方法和装置
CN103968552A (zh) * 2013-01-30 2014-08-06 美的集团股份有限公司 一种电热水器及其控制方法
CN104110878A (zh) * 2013-12-23 2014-10-22 芜湖美的厨卫电器制造有限公司 具有eco功能模式的电热水器及其控制方法
CN104654594A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 模拟热水器用户行为的实验装置
CN105352192A (zh) * 2015-11-06 2016-02-24 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法
CN105466051A (zh) * 2015-12-29 2016-04-06 南京信息工程大学 太阳能热水器实时控制系统及其控制方法
CN105650886A (zh) * 2016-03-23 2016-06-08 佛山市顺德万和电气配件有限公司 储水式热水器及其控制方法和控制系统
CN105928208A (zh) * 2016-04-25 2016-09-07 珠海格力电器股份有限公司 热水器及出水控制方法、出水控制装置、出水控制系统
WO2017028135A1 (zh) * 2015-08-16 2017-02-23 李强生 热水器自学习控温方法和热水器
CN106532721A (zh) * 2016-12-30 2017-03-22 合肥工业大学 一种电热水器组多尺度直接负荷控制方法
CN106642727A (zh) * 2016-12-29 2017-05-10 海尔优家智能科技(北京)有限公司 一种电热水器预加热方法及装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020043A (ja) * 1983-07-13 1985-02-01 Hanshin Electric Co Ltd 燃焼制御装置
CN1632409A (zh) * 2004-12-29 2005-06-29 上海交通大学 智能型热泵热水器
CN102401473A (zh) * 2010-09-17 2012-04-04 乐金电子(天津)电器有限公司 热泵热水器的运行方法
CN103363670A (zh) * 2012-03-31 2013-10-23 珠海格力电器股份有限公司 空气能热水器及其控制方法和装置
CN103968552A (zh) * 2013-01-30 2014-08-06 美的集团股份有限公司 一种电热水器及其控制方法
CN104654594A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 模拟热水器用户行为的实验装置
CN104110878A (zh) * 2013-12-23 2014-10-22 芜湖美的厨卫电器制造有限公司 具有eco功能模式的电热水器及其控制方法
WO2017028135A1 (zh) * 2015-08-16 2017-02-23 李强生 热水器自学习控温方法和热水器
CN105352192A (zh) * 2015-11-06 2016-02-24 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法
CN105466051A (zh) * 2015-12-29 2016-04-06 南京信息工程大学 太阳能热水器实时控制系统及其控制方法
CN105650886A (zh) * 2016-03-23 2016-06-08 佛山市顺德万和电气配件有限公司 储水式热水器及其控制方法和控制系统
CN105928208A (zh) * 2016-04-25 2016-09-07 珠海格力电器股份有限公司 热水器及出水控制方法、出水控制装置、出水控制系统
CN106642727A (zh) * 2016-12-29 2017-05-10 海尔优家智能科技(北京)有限公司 一种电热水器预加热方法及装置
CN106532721A (zh) * 2016-12-30 2017-03-22 合肥工业大学 一种电热水器组多尺度直接负荷控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785888A (zh) * 2017-10-13 2018-03-09 陆炜 一种智能电力负荷控制系统及控制方法
CN107785888B (zh) * 2017-10-13 2019-07-23 陆炜 一种智能电力负荷控制系统及控制方法
CN108302768A (zh) * 2017-12-29 2018-07-20 深圳和而泰数据资源与云技术有限公司 基于用水行为的实时校验方法、装置及存储介质
CN108399700A (zh) * 2018-01-31 2018-08-14 上海乐愚智能科技有限公司 防盗方法和智能设备
CN114384948A (zh) * 2022-01-13 2022-04-22 北京小米移动软件有限公司 设备控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN107202428B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN107202428A (zh) 一种单个电热水器状态估计方法
Negnevitsky et al. Demand-side management evaluation tool
CN109282499B (zh) 一种热水器预测用户用水行为的方法及热水器
Sepulveda et al. A novel demand side management program using water heaters and particle swarm optimization
CN100555151C (zh) 准量加热电热水器及准量加热控制方法
Lomet et al. Statistical modeling for real domestic hot water consumption forecasting
CN109259579A (zh) 一种电蒸箱控制方法及电蒸箱
CN107924203A (zh) 温度控制系统
CN106839468A (zh) 一种太阳能热水器水量调节方法及系统
CN107461801A (zh) 一种集中供热系统的节能控制方法
CN110779239B (zh) 一种基于预测模型的太阳能-空气源热泵控制系统及节能控制方法
JP6471751B2 (ja) エネルギー制御システム、エネルギー制御装置、エネルギー制御方法及びプログラム
CN111898806A (zh) 电-热耦合的源储荷集成多能流园区运行优化方法及系统
CN107631424A (zh) 自动调温空调器控制方法及空调器
CN112348283A (zh) 蓄热式电采暖虚拟电厂日前可调度潜力评估方法及装置
CN110118509A (zh) 一种冷却塔风机节能控制方法及系统
CN104633844A (zh) 空调器的控制方法及空调器
CN106532721B (zh) 一种电热水器组多尺度直接负荷控制方法
CN106707807A (zh) 饮水机及其基于时序的智能控制方法、系统
CN112594775A (zh) 一种用于空气源供热回水温度的控制方法
CN105402908B (zh) 一种多源参数的空气源热泵辅助太阳能热水机组控制系统
Toai et al. Implementing the Markov decision process for efficient water utilization with Arduino board in agriculture
WO2022270496A1 (en) Acquiring a user consumption pattern of domestic hot water and controlling domestic hot water production based thereon
CN114200845B (zh) 基于智慧家庭用能的电热水器集群消纳新能源策略
US20220397306A1 (en) Monitoring and controlling domestic hot water production and distribution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant