CN107195711A - 一种光电混频hemt及其控制方法 - Google Patents

一种光电混频hemt及其控制方法 Download PDF

Info

Publication number
CN107195711A
CN107195711A CN201710304823.7A CN201710304823A CN107195711A CN 107195711 A CN107195711 A CN 107195711A CN 201710304823 A CN201710304823 A CN 201710304823A CN 107195711 A CN107195711 A CN 107195711A
Authority
CN
China
Prior art keywords
layer
hemt
optical signal
photoelectricity
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710304823.7A
Other languages
English (en)
Other versions
CN107195711B (zh
Inventor
杨春
贾少鹏
宋振杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710304823.7A priority Critical patent/CN107195711B/zh
Publication of CN107195711A publication Critical patent/CN107195711A/zh
Application granted granted Critical
Publication of CN107195711B publication Critical patent/CN107195711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种光电混频HEMT,包括最下层的衬底,衬底上生长缓冲层,缓冲层上生长量子阱有源层;其中所述量子阱有源层从上到下依次包括:第一势垒层、第一隔离层、第一沟道层、光吸收层、第二沟道层、第二隔离层、第二势垒层;在所述量子阱有源层的外表面设置源极、漏极和栅极,栅极位于源极和漏极的中间,源极和漏极为欧姆接触。本发明有效缩短了空穴的运动距离,并且消除了光生电子‑空穴之间的库伦吸引的影响,同时也消除了空穴迁移率低的缺陷,从而可以大大提升光电混频HEMT的频率特性。

Description

一种光电混频HEMT及其控制方法
技术领域
本发明属于半导体技术领域,特别涉及一种光电混频HEMT及其控制方法。
背景技术
HEMT(High Electron Mobility Transistor),是一种异质结场效应晶体管,能够工作于超高频(毫米波)、超高速领域。光电混频HEMT可以用于通信系统中的基站中,光纤传输的光本振信号入射光电混频HEMT,与HEMT栅极加载的电信号进行光电混频,进而实现上变频或下变频,可将中频电信号上变频到毫米波或THz波进行无线传输,也可将毫米波下变频到中频。常规的光电混频HEMT中光生电子和空穴都参与导电,由于空穴的迁移率远小于电子,并且电子与空穴之间有库伦吸引(coulomb attraction),因此也限制了器件的最大工作频率,目前光电混频HEMT的工作频率远小于1THz。
发明内容
发明目的:本发明针对现有技术存在的问题,提供了一种有效消除电子-空穴之间库伦吸引和空穴迁移率低的缺陷,大大提升光电混频HEMT的频率特性的光电混频HEMT。
技术方案:为了解决现有技术中存在的问题,本发明提供了一种光电混频HEMT,包括最下层的衬底,衬底上生长缓冲层,缓冲层上生长量子阱有源层;其中所述量子阱有源层从上到下依次包括:第一势垒层、第一隔离层、第一沟道层、光吸收层、第二沟道层、第二隔离层、第二势垒层;所述第二沟道层的禁带宽度均大于第一沟道层和光吸收层的禁带宽度;在所述量子阱有源层的外表面设置源极、漏极和栅极,栅极位于源极和漏极的中间,源极和漏极为欧姆接触。
进一步,第一沟道层的禁带宽度大于或等于光吸收层的禁带宽度。这样可以利用第一沟道层也产生光生载流子,从而提高光响应度。
进一步,所述光吸收层是多层量子阱结构的光吸收层。这样可以提高光转换的量子效率,并且可以调节吸收波长。
进一步,所述光吸收层是掺杂渐变型。这样可以在光吸收层中形成自建电场,加速电子与空穴的分离。
进一步,第一势垒层和第二势垒层为δ掺杂型。
进一步,第一沟道层和第二沟道层均为耗尽型或均为增强型。
进一步,所述缓冲层和量子阱有源层两侧通过刻蚀的方法形成台面结构,且缓冲层和量子阱有源层位于衬底的中间,在衬底两端的上表面与缓冲层和量子阱有源层的两个侧面分别覆盖有“L”型的源极和漏极,且均为欧姆接触。这样能够有效解决常规的表面电极引起的内部电场弯曲问题,同时能够使电子快速通过导电沟道。
本发明还提供了一种用于上述光电混频HEMT的控制方法,在栅极(9)加正压和所需频率的电信号与入射到量子阱有源层的光信号进行混频,转化为所需频率的信号。
进一步,所述光信号由光电混频HEMT的上表面或下表面入射。
进一步,所述光信号是单波长光信号,所述单波长光信号是一个调制光信号;或者是含有多个光波长的光信号,其中每个光波长的幅度或相位都可以被调制;或者是用于混频的光脉冲和被调制的光信号的混合信号;或者是空间不同路径的光信号经过光器件合并为同一路径的光信号,其中每个路径的光信号的幅度或相位都可以被调制。比如光脉冲采样光信号。
有益效果:与现有技术相比,本发明当合适的光信号照射到所述量子阱有源区时,所述光吸收层或第一沟道中产生的光生电子-空穴对可以在栅压电场的作用下迅速分离,空穴在电场作用下向第二沟道层漂移并与第二沟道层中的电子复合,使第一沟道层和第二沟道层只有电子导电传递信号,缩短了空穴的运动距离,并且消除了光生电子-空穴之间的库伦吸引的影响,同时也消除了空穴迁移率低的缺陷,从而可以大大提升HEMT的频率特性。
附图说明
图1是实施例1中光电混频HEMT的示意图;
图2是实施例2中光电混频HEMT的示意图;
图3是实施例3中光电混频HEMT的示意图;
图4是实施例4中光电混频HEMT的示意图
具体实施方式
下面结合附图对本发明做更进一步的解释。
实施例1:
如图1所示,实施例1提供了一种光电混频HEMT,包括衬底1,衬底上生长缓冲层2,缓冲层上生长量子阱有源层。其中量子阱有源层从上到下依次包括:第一势垒层8、第一隔离层7、第一沟道层6、光吸收层12、第二沟道层5、第二隔离层4、第二势垒层3。第一势垒层8和第二势垒层3为δ掺杂。第一沟道层6和第二沟道层5的禁带宽度均大于光吸收层12的禁带宽度;第一沟道层6和第二沟道层5均为耗尽型或均为增强型。量子阱有源层上表面设有源极10、漏极11和栅极9,栅极9位于源极10和漏极11的中间,源极10和漏极11位于栅极9的两侧。源极10和漏极11为欧姆接触。
在器件使用时,栅极加正压,光信号14由光电混频HEMT上表面或下表面入射使光吸收层12产生光生电子-空穴对。电子-空穴对在栅压的作用下迅速分离,光生电子在电场作用下向第一沟道层6漂移,光生空穴在电场作用下向第二沟道层5漂移并与第二沟道层5中的电子复合,第一沟道层6和第二沟道层5中都只有电子导电传递信号。光电混频HEMT工作时,栅极加所需频率的电信号13与入射到量子阱有源层的光信号进行混频,转化为所需频率的信号。光信号是单波长光信号,所述单波长光信号是一个调制光信号;或者是含有多个光波长的光信号,其中每个光波长的幅度或相位都可以被调制;或者是用于混频的光脉冲和被调制的光信号的光光混合信号,例如光脉冲采样光信号;或者是空间不同路径的光信号经过光器件合并为同一路径的光信号,其中每个路径的光信号的幅度或相位都可以被调制。
光信号14的能量大于或等于光吸收层12的禁带宽度而小于第一沟道层6和第二沟道层5的禁带宽度,光吸收层12可以是多层量子阱结构的光吸收层,光吸收层12的结构可以是与目前UTC-PD(单行载流子探测器)相同的结构,例如光吸收层掺杂渐变等。
本实施例1中,衬底1选用Ⅲ-V族半导体材料,缓冲层2、第一势垒层8、第一隔离层7、第一沟道层6、第二沟道层5、第二隔离层4、第二势垒层3的材质均选自与所用衬底晶格常数相近Ⅲ-V族半导体材料。
其中,衬底1可选用但不限于InP等;缓冲层2、第二势垒层3、第一势垒层8、第一隔离层7可选用但不限于InxAl(1-x)As等,x代表In在InAlAs所含Ⅲ族元素中所占比例,0<x<1;第一沟道层6可选用但不限于InxGa(1-x)As等,x代表In在InGaAs所含Ⅲ族元素中所占比例,0<x<1;第二沟道层5和第二隔离层4可选用但不限于GaSbyAs(1-y)等,y代表Sb在GaSbAs所含V族元素中所占比例,0<y<1;吸收层12可选用但不限于InxGa(1-x)As等,x代表In在InGaAs所含Ⅲ族元素中所占比例,0<x<1。
实施例2:
如图2所示,实施例2提供了一种光电混频HEMT,包括衬底1,衬底上生长缓冲层2,缓冲层上生长量子阱有源层。其中量子阱有源层从上到下依次包括:第一势垒层8、第一隔离层7、第一沟道层6、光吸收层12、第二沟道层5、第二隔离层4、第二势垒层3。第一势垒层8和第二势垒层3为δ掺杂。所述第一沟道层6和第二沟道层5的禁带宽度均大于光吸收层12的禁带宽度;第一沟道层6和第二沟道层5均为耗尽型或均为增强型。其中,缓冲层和量子阱有源层两侧通过刻蚀的方法形成台面结构,且缓冲层和量子阱有源层位于衬底的中间,在衬底1两端的上表面与缓冲层和量子阱有源层的两个侧面分别覆盖有“L”型的源极10和漏极11,且为欧姆接触,栅极9设置在量子阱有源层的上表面,并且位于量子阱有源层的上表面的中间。栅极加正压,混频方式和器件优选材料和实施例1相同。
“L”型的源极和漏极能够有效解决常规的表面电极引起的内部电场弯曲问题,漏极和源极电压可以无差别的加载到沟道层两端,增大漏极和源极水平方向的电场分量,使电子可以快速通过导电沟道。
实施例3:
如图3所示,实施例3提供了一种光电混频HEMT,包括衬底1,衬底上生长缓冲层2,缓冲层上生长量子阱有源层。其中量子阱有源层从上到下依次包括:第一势垒层8、第一隔离层7、第一沟道层6、光吸收层12、第二沟道层5、第二隔离层4、第二势垒层3。第一势垒层8和第二势垒层3为δ掺杂。第一沟道层6和第二沟道层5均为耗尽型或均为增强型。量子阱有源层上表明设有源极10、漏极11和栅极9,栅极9位于源极10和漏极11的中间,源极10和漏极11位于栅极9的两侧。源极10和漏极11为欧姆接触。
第一沟道层6的禁带宽度小于第二沟道层5的禁带宽度,并与光吸收层12的禁带宽度相近。光信号可以由器件上表面入射或器件下表面入射,并且光信号的能量大于第一沟道层和光吸收层12的禁带宽度而小于第二沟道层5的禁带宽度。栅极加正压,混频方式和器件优选材料和实施例1相同。
实施例4:
如图4所示,实施例4提供了一种光电混频HEMT,包括衬底1,衬底上生长缓冲层2,缓冲层上生长量子阱有源层。其中量子阱有源层从上到下依次包括:第一势垒层8、第一隔离层7、第一沟道层6、光吸收层12、第二沟道层5、第二隔离层4、第二势垒层3。第一势垒层8和第二势垒层3为δ掺杂。第一沟道层6和第二沟道层5均为耗尽型或均为增强型。量子阱有源层上表明设有源极10、漏极11和栅极9,栅极9位于源极10和漏极11的中间,源极10和漏极11位于栅极9的两侧。源极10和漏极11为欧姆接触。
光信号14由第一光信号15和第二光信号16通过一个光耦合器17进行光光合并后形成,所述第一光信号15可以是用于混频或采样的光脉冲,第二光信号16可以是被调制的光信号,从而形成光路径一致的光信号。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种光电混频HEMT,其特征在于:包括最下层的衬底(1),衬底上生长缓冲层(2),缓冲层上生长量子阱有源层;其中所述量子阱有源层从上到下依次包括:第一势垒层(8)、第一隔离层(7)、第一沟道层(6)、光吸收层(12)、第二沟道层(5)、第二隔离层(4)、第二势垒层(3);所述第二沟道层(5)的禁带宽度均大于第一沟道层(6)和光吸收层(12)的禁带宽度;在所述量子阱有源层的外表面设置源极(10)、漏极(11)和栅极(9),栅极(9)位于源极(10)和漏极(11)的中间,源极(10)和漏极(11)为欧姆接触。
2.根据权利要求1所述的一种光电混频HEMT,其特征在于:第一沟道层(6)的禁带宽度大于或等于光吸收层(12)的禁带宽度。
3.根据权利要求2所述的一种光电混频HEMT,其特征在于:所述光吸收层(12)是多层量子阱结构的光吸收层。
4.根据权利要求2所述的一种光电混频HEMT,其特征在于:所述光吸收层(12)是掺杂渐变型。
5.根据权利要求1所述的一种光电混频HEMT,其特征在于:第一势垒层(8)和第二势垒层(3)为δ掺杂型。
6.根据权利要求1所述的一种光电混频HEMT,其特征在于:第一沟道层(6)为和第二沟道层(5)均为耗尽型或均为增强型。
7.根据权利要求1所述的一种光电混频HEMT,其特征在于:所述缓冲层(2)和量子阱有源层两侧通过刻蚀的方法形成台面结构,且缓冲层(2)和量子阱有源层位于衬底(1)的中间,在衬底(1)两端的上表面与缓冲层(2)和量子阱有源层的两个侧面分别覆盖有“L”型的源极(10)和漏极(11),且均为欧姆接触。
8.一种用于权利要求1所述的光电混频HEMT的控制方法,其特征在于:在栅极(9)加正压和所需频率的电信号(13)与入射到量子阱有源层的光信号(14)进行混频,转化为所需频率的信号。
9.根据权利要8所述的光电混频HEMT控制方法,其特征在于:所述光信号(14)由光电混频HEMT的上表面或下表面入射。
10.根据权利要8所述的光电混频HEMT控制方法,其特征在于:所述光信号(14)是单波长光信号,所述单波长光信号是一个调制光信号;或者是含有多个光波长的光信号,其中每个光波长的幅度或相位都可以被调制;或者是用于混频的光本振和被调制的光信号的混合信号;或者是空间不同路径的光信号经过光器件合并为同一路径的光信号,其中每个路径的光信号的幅度或相位都可以被调制。
CN201710304823.7A 2017-05-03 2017-05-03 一种光电混频hemt及其控制方法 Active CN107195711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710304823.7A CN107195711B (zh) 2017-05-03 2017-05-03 一种光电混频hemt及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710304823.7A CN107195711B (zh) 2017-05-03 2017-05-03 一种光电混频hemt及其控制方法

Publications (2)

Publication Number Publication Date
CN107195711A true CN107195711A (zh) 2017-09-22
CN107195711B CN107195711B (zh) 2019-01-29

Family

ID=59872351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710304823.7A Active CN107195711B (zh) 2017-05-03 2017-05-03 一种光电混频hemt及其控制方法

Country Status (1)

Country Link
CN (1) CN107195711B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832208A (zh) * 2005-03-11 2006-09-13 中国科学院半导体研究所 一种包含量子点的光探测场效应晶体管及制备方法
CN101752389A (zh) * 2009-10-16 2010-06-23 中国科学院上海技术物理研究所 一种Al2O3/AlN/GaN/AlN MOS-HEMT器件及制作方法
US20130341595A1 (en) * 2012-06-22 2013-12-26 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same
US20150380461A1 (en) * 2014-06-27 2015-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives P-n junction optoelectronic device for ionizing dopants by field effect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832208A (zh) * 2005-03-11 2006-09-13 中国科学院半导体研究所 一种包含量子点的光探测场效应晶体管及制备方法
CN101752389A (zh) * 2009-10-16 2010-06-23 中国科学院上海技术物理研究所 一种Al2O3/AlN/GaN/AlN MOS-HEMT器件及制作方法
US20130341595A1 (en) * 2012-06-22 2013-12-26 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same
US20150380461A1 (en) * 2014-06-27 2015-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives P-n junction optoelectronic device for ionizing dopants by field effect

Also Published As

Publication number Publication date
CN107195711B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
Ishibashi et al. Uni-traveling-carrier photodiodes
EP0800219B1 (en) Heterojunction pin photodiode
US8692301B2 (en) Nanostructured photodiode
US20170012076A1 (en) Photodetectors based on interband transition in quantum wells
Decoster et al. Optoelectronic sensors
US8686471B2 (en) Minority carrier based HgCdTe infrared detectors and arrays
EP3229279A1 (en) Avalanche photodiode
CN107248535B (zh) 一种光控hemt及其控制方法
US6107652A (en) Metal-semiconductor-metal photodetector
US9543462B2 (en) Insulated-gate photoconductive semiconductor switch
Hu et al. Photocurrent response in a double barrier structure with quantum dots–quantum well inserted in central well
JP2747299B2 (ja) 半導体受光素子
US20220416110A1 (en) Avalanche photodiode structure
US5633512A (en) Semiconductor device for varying the mobility of electrons by light irradiation
CN107195711B (zh) 一种光电混频hemt及其控制方法
CN107248536B (zh) 基于量子阱结构的光开关器件
KR101663644B1 (ko) 변형된 도핑 및 조성 흡수층을 이용한 애벌랜치 포토다이오드
KR100436019B1 (ko) 저온성장 화합물반도체를 이용한 hemt 구조의 msm광검출기 제조방법
JPH11330536A (ja) 半導体受光素子
Zhao et al. Time response of two-dimensional gas-based vertical field metal–semiconductor–metal photodetectors
JPH0473310B2 (zh)
US5747864A (en) Light receiving element and a method of fabricating the same
Dietz et al. Photoconductive THz generation at 1.5 μm excitation in InGaAs/InAlAs structures with separated photoconductive and trapping layers
CN115084293B (zh) 一种异质结光电探测器
Kechiantz et al. Efficiency limit of AlxGa1-xAs solar cell modified by AlyGa1-ySb quantum dot intermediate band embedded outside of the depletion region

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 210009 No. 87 Dingjiaqiao, Gulou District, Nanjing City, Jiangsu Province

Applicant after: Southeast University

Address before: 211189 No. 2 Southeast University Road, Jiangning District, Nanjing, Jiangsu

Applicant before: Southeast University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant