CN107193131A - 热光关联非定域阿贝成像方法及其系统 - Google Patents

热光关联非定域阿贝成像方法及其系统 Download PDF

Info

Publication number
CN107193131A
CN107193131A CN201710631211.9A CN201710631211A CN107193131A CN 107193131 A CN107193131 A CN 107193131A CN 201710631211 A CN201710631211 A CN 201710631211A CN 107193131 A CN107193131 A CN 107193131A
Authority
CN
China
Prior art keywords
light
image detector
abbe
localized
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710631211.9A
Other languages
English (en)
Inventor
高禄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201710631211.9A priority Critical patent/CN107193131A/zh
Publication of CN107193131A publication Critical patent/CN107193131A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种热光关联非定域阿贝成像方法及其系统,涉及热光关联非定域“鬼”成像和空间光信息处理领域;热光关联非定域阿贝成像系统包括:激光器、毛玻璃、分束器、成像透镜、滤波器、第一图像探测器、第二图像探测器以及计算机;所述毛玻璃可转动地设置在所述激光器和所述分束器之间,所述计算机分别与所述第一图像探测器和第二图像探测器连接,用于同步采集所述第一光束和所述第二光束的图像信息并进行关联测量和计算得到待测物体的像。本发明具有非定域性,可操作性强,所得的图像真实地反映了物体一维方向上的信息。

Description

热光关联非定域阿贝成像方法及其系统
技术领域
本发明涉及热光关联非定域“鬼”成像和空间光信息处理领域,尤其是涉及一种热光关联非定域阿贝成像方法及其系统。
背景技术
经典的阿贝成像所利用的光源是激光光源,在此成像系统中要求利用空间相干热光源,在系统中放置一个狭缝作为简易的滤波器,可以过滤物体的空间频谱信息,从而得到一定方向上的物体的像。
阿贝成像原理在现今工程设计上有诸多应用,例如θ调制和图像加密等能够对图像进行有意识的处理从而得到特定图像。而传统的阿贝成像机制中物体、透镜和狭缝在同一光路,在应用中受到很大的限制。
发明内容
本发明的目的在于提供热光关联非定域阿贝成像方法及其系统,以解决现有技术中存在的物体、透镜和狭缝在同一光路,并且要求利用相干光源等在应用中受到很大的限制的技术问题。
为解决上述技术问题,本发明提供的热光关联非定域阿贝成像系统,其包括:激光器、毛玻璃、分束器(或者分束镜)、成像透镜、滤波器、第一图像探测器、第二图像探测器以及计算机;
所述激光器发出激光光束照射在所述毛玻璃上,所述毛玻璃用于将所述激光光束转变成非相干光束;
所述分束器设置在所述非相干光束的光路上,用于将所述非相干光束按照光强均分为第一光束和第二光束;
所述第一光束的光路为第一光路(或称取样光路);
所述第二光束的光路为第二光路(或称参考光路);
所述第一光路上依次设置有待测物体和所述第一图像探测器;
所述第二光路上依次设置有所述成像透镜、所述滤波器和所述第二图像探测器;
所述计算机分别与所述第一图像探测器和第二图像探测器连接,用于同步采集所述第一光束和所述第二光束的图像信息并进行关联测量和计算得到待测物体的像。
本发明利用激光相干光束照射旋转的毛玻璃获得在空间上有强度涨落分布的非相干热光源,并最终通过计算机关联测量和计算得到待测物体的像,即获得阿贝成像的效果。在实际应用中非相干光源更具有普遍性,更容易获取。本发明解除了传统阿贝成像对光源相干性的要求,大大拓宽了阿贝成像空间滤波的应用范围。
进一步地,所述毛玻璃可转动地设置,毛玻璃持续转动用于将所述激光光束转变成在空间上有强度涨落分布的所述非相干光束。
进一步地,所述激光器为氦氖激光发生器。
进一步地,所述毛玻璃通过电机带动绕转轴转动。
进一步地,所述激光器与所述毛玻璃之间的光路上设置有两个偏振片,两个所述偏振片在通光方向上间隔设置用于调整所述激光光束的强度。
进一步地,所述偏振片与所述毛玻璃之间的光路上设置有用于调节所述激光光束截面大小的扩束透镜。
其中,扩束透镜可以扩大激光光束横截面大小。
进一步地,所述毛玻璃与所述分束器之间的光路上设置有用于调节所述非相干光束横截面大小的光阑。
通过调节光阑,可以调节阿贝成像系统成像的分辨率。光阑越大,探测器探测面上的散斑尺寸越小,系统的分辨率越高。
进一步地,所述分束器为非偏振分束器。
进一步地,所述滤波器设置在所述成像透镜的后焦平面上。
进一步地,所述滤波器为狭缝。
进一步地,所述待测物体紧贴靠在所述第一图像探测器上。
进一步地,所述激光器产生的激光光束经反射镜反射后进入并通过所述偏振片。
其中,所述待测物体为具有空间结构分布的任意透光物体,例如为待测光栅等。
本发明公开的一种热光关联非定域阿贝成像系统,将待测光栅等待测物体和成像透镜分别置于两个子光路(第一光路和第二光路)中,并将狭缝等滤波器放置于成像透镜的后焦平面,测量时,分别对待测光栅等待测物体的信息进行了横向和竖向的滤波,即将狭缝等滤波器垂直放置或者水平放置,来获得滤波过后的图像。与传统的滤波相比,本发明具有非定域性,可操作性强,利用非相干热光源等特点,所得的图像真实地反映了物体一维方向上的信息。
另外,本发明还公开了一种采用上述成像系统的热光关联非定域阿贝成像方法,其具体包括如下步骤:
步骤一,激光器产生的激光光束照射毛玻璃,所述毛玻璃持续旋转,利用毛玻璃的转动将所述激光光束转变成为在空间有强度涨落分布的非相干光束;
步骤二,非相干光束通过分束器后按照光强均分为第一光束和第二光束;
步骤三,所述计算机同步采集所述第一光束和所述第二光束的图像信息并进行关联测量和计算得到待测物体的像。
进一步地,所述激光光束的光路上设置有偏振片,用于调整激光光束的强度;
和/或,所述激光光束的光路上设置有扩束透镜,用于调节所述激光光束截面大小。
优选地,所述激光器产生的激光光束经反射镜反射后,依次通过两个偏振片和一个扩束透镜后照射并通过所述毛玻璃。
激光光束照射所述毛玻璃后产生的非相干光束通过光阑然后进入所述分束器;调节所述反射镜,使得激光光束依次透过两个偏振片、扩束透镜的中心。
进一步地,调节所述第一图像探测器和所述第二图像探测器,使得第一光束和第二光束的光斑中心分别与所述第一图像探测器和所述第二图像探测器的十字中心重合。
进一步地,所述第一光路上的所述第一图像探测器采取桶测量方法,即第一图像探测器没有空间分辨能力,只接收物体的信息;所述第二光路上的所述第二图像探测器对所述第二光束的光场进行逐点扫描。
进一步地,所述第一光路上,所述分束器与所述第一图像探测器之间的间距为Z1;所述第二光路上,所述分束器与所述成像透镜之间中心间距为Z2,所述滤波器设置在所述成像透镜的后焦平面上,所述成像透镜的焦距为f,所述滤波器与所述第二图像探测器之间的间距为Z3,则满足:
进一步地,观察所探测到的所述第一光束和所述第二光束的光斑强度,并调节两个所述偏振片,使光斑强度不高于所述第一图像探测器和所述第二图像探测器的探测饱和值。
例如,本发明实验中探测器的饱和值为200,实验过程中所述第一光束和所述第二光束的光斑强度为90到110之间。
本发明首次利用激光器进行了非定域的阿贝成像,打破了传统成像机制中物体、透镜和狭缝在同一光路的限定,对物体的空间频谱信息进行了横向和竖向的调制,并且利用关联测量技术获得了调制后的像,实现了非定域成像系统中的空间滤波。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的热光关联非定域阿贝成像系统的结构示意图;
图2为2D网格目标物体(待测物体)的放大图像;
图3为栅格(滤波器S)水平放置在成像透镜L的后焦平面上时获得的垂直滤波图案;
图4为栅格(滤波器S)垂直放置在成像透镜L的后焦平面上时获得的水平滤波图案。
附图标记:
10-激光器;11-激光光束;12-第一光束;13-第二光束;14-非相干光束;20-计算机;G-毛玻璃;BS-分束器;L-成像透镜;S-滤波器;CCD1-第一图像探测器;CCD2-第二图像探测器;O-待测物体;P1-第一偏振片;P2-第二偏振片;P3-光阑;N-扩束透镜;M-反射镜。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合具体的实施方式对本发明做进一步的解释说明。
实施例1
如图1所示,本实施例提供的热光关联非定域阿贝成像系统,其包括:激光器10、毛玻璃G、分束器BS(或者分束镜)、成像透镜L、滤波器S、第一图像探测器CCD1、第二图像探测器CCD2以及计算机20;CCD(Charge Coupled Device)为CCD图像传感器。
激光器10用于发出激光光束11;激光光束11照射在毛玻璃G上,毛玻璃G用于将激光光束11转变成空间非相干光束14;
非相干光束14通过分束器BS按照光强均分为第一光束12和第二光束13;
第一光束12的光路为第一光路(或称取样光路);
第二光束13的光路为第二光路(或称参考光路);
第一光路上依次设置有待测物体O和第一图像探测器CCD1
第二光路上依次设置有成像透镜L、滤波器S和第二图像探测器CCD2
毛玻璃G可转动地设置在激光器10和分束器BS之间,毛玻璃G持续转动用于激光光束11通过后形成在空间上有强度涨落分布的空间非相干光束14;
计算机20分别与第一图像探测器CCD1和第二图像探测器CCD2连接,用于同步采集第一光束12和第二光束13的图像信息并进行关联测量和计算得到待测物体O的像。
本实施例中,激光器10为氦氖激光发生器。
具体而言,毛玻璃G通过电机带动绕转轴转动,激光光束11照射通过毛玻璃G的非转轴区域以形成非相干光束14。
激光器10与毛玻璃G之间的光路上依次设置有两个第一偏振片P1和第二偏振片P2,两个第一偏振片P1和第二偏振片P2在在通光方向上间隔设置用于调整激光光束11的强度。
第二偏振片P2与毛玻璃G之间的光路上设置有用于扩大并调节激光光束11截面大小的扩束透镜N。
其中,扩束透镜N可以扩大激光光束的横截面大小,使之变为可调节尺寸大小的光源。
而毛玻璃G与分束器BS之间的光路上设置有用于调节非相干光束14横截面大小的光阑P3
通过调节光阑,可以调节阿贝成像系统成像的分辨率。光阑越大,探测器探测面上的散斑尺寸越小,系统的分辨率越高。
优选地,分束器BS为非偏振分束器或者分束镜。滤波器S设置在成像透镜L的后焦平面上。
而滤波器S为狭缝等简易滤波器,当然也可以采用其他更为精准的滤波装置。
使用时,第一光路12上的第一图像探测器CCD1采取桶测量方法,待测物体O紧贴靠在第一图像探测器CCD1上,从而使得第一图像探测器CCD1没有空间分辨能力,只接收物体的信息。
其中,本实施例中,激光器10产生的激光光束11经反射镜M反射后进入并通过第一偏振片P1和第二偏振片P2
其中待测物体为具有空间结构分布的任意透光物体。在本实施例中,待测物体O为3行x3列光栅,分辨率为250微米见方;滤波器的缝宽a=0.3mm,在本系统中光学器件的像距和物距满足热光关联成像系统的高斯透镜成像公式。
本发明公开的一种热光关联非定域阿贝成像系统,将待测光栅等待测物体O和成像透镜L分别置于两个子光路(第一光路和第二光路)中,并将狭缝等滤波器S放置于成像透镜L的后焦平面,测量时,分别对待测光栅等待测物体O的信息进行了横向和竖向的滤波,即将狭缝等滤波器S垂直放置或者水平放置,来获得滤波过后的图像。与传统的滤波相比,本装置具有非定域性,可操作性强,利用非相干热光源等特点,所得的图像真实地反映了物体一维方向上的信息。
实施例2
本实施例公开了一种采用上述成像系统的热光关联非定域阿贝成像方法,其具体包括如下步骤:
步骤一,激光器10产生的激光光束11照射毛玻璃G,毛玻璃G持续旋转,利用毛玻璃G的转动将激光光束11转变成为在空间有强度涨落分布的非相干光束14;
步骤二,非相干光束14通过分束器BS后按照光强均分为第一光束12和第二光束13;
具体而言,激光器10产生的激光光束11经反射镜M反射后,依次通过两个第一偏振片P1和第二偏振片P2、扩束透镜N和毛玻璃G后,转变成为非相干光束14,非相干光束14通过光阑P3进入分束器BS被均分为第一光束12和第二光束13;调节反射镜M,使得激光光束11依次透过两个第一偏振片P1和第二偏振片P2、扩束透镜N的中心。
步骤三,调节第一图像探测器CCD1和第二图像探测器CCD2,使得第一光束12和第二光束13的光斑中心分别与第一图像探测器CCD1和第二图像探测器CCD2的十字中心重合;
步骤四,计算机20同步采集第一光束12和第二光束13的图像信息并进行关联测量和计算得到待测物体O的像。
第一光路上的第一图像探测器CCD1采取桶测量方法,即第一图像探测器CCD1没有空间分辨能力,只接收物体的信息;第二光路上的第二图像探测器CCD2对第二光束13的光场进行逐点扫描。
第一光路上,分束器BS与第一图像探测器CCD1之间的间距为Z1;第二光路上,分束器BS与成像透镜L之间中心间距为Z2,滤波器S设置在成像透镜L的后焦平面上,成像透镜L的焦距为f,滤波器与第二图像探测器CCD2之间的间距为Z3,则满足:
观察所探测到的第一光束12和第二光束13的光斑强度,并调节两个第一偏振片P1和第二偏振片P2,使光斑强度不高于第一图像探测器CCD1和第二图像探测器CCD2的探测饱和值。
例如,本发明实验中探测器的饱和值为200,实验过程中第一光束12和第二光束13的光斑强度为90到110之间。
本发明首次利用激光器10进行了非定域的阿贝成像,打破了传统成像机制中物体、透镜和狭缝在同一光路的限定,对物体的空间频谱信息进行了横向和竖向的调制,并且利用关联测量技术获得了调制后的像,实现了非定域成像系统中的空间滤波。
在无滤波器时所成的像包括物体的全部信息,加入狭缝之后,所测得的像是物体的部分信息。本测量方法的图像信息完整,操作简单,并且利用激光器成功实施了传统的阿贝成像,打破了传统阿贝成像的需要利用相干光源的限制,并且具有非定域特性。
图2-4为通过非相干热光源进行关联测量获得的阿贝成像的试验结果;其中,图2为2D网格目标物体(待测物体)的放大图像;图3为栅格(滤波器S)水平放置在成像透镜L的后焦平面上时获得的垂直滤波图案;图4为栅格(滤波器S)垂直放置在成像透镜L的后焦平面上时获得的水平滤波图案;在实验中,统计平均帧数超过10000帧。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.热光关联非定域阿贝成像系统,其特征在于,其包括:激光器、毛玻璃、分束器、成像透镜、滤波器、第一图像探测器、第二图像探测器以及计算机;
所述激光器发出激光光束照射在所述毛玻璃上,所述毛玻璃用于将所述激光光束转变成非相干光束;
所述分束器设置在所述非相干光束的光路上,用于将所述非相干光束按照光强均分为第一光束和第二光束;
所述第一光束的光路为第一光路;
所述第二光束的光路为第二光路;
所述第一光路上依次设置有待测物体和所述第一图像探测器;
所述第二光路上依次设置有所述成像透镜、所述滤波器和所述第二图像探测器;
所述计算机分别与所述第一图像探测器和第二图像探测器连接,用于同步采集所述第一光束和所述第二光束的图像信息并进行关联测量和计算得到待测物体的像。
2.根据权利要求1所述的热光关联非定域阿贝成像系统,其特征在于,所述毛玻璃可转动地设置,毛玻璃持续转动用于将所述激光光束转变成在空间上有强度涨落分布的所述空间非相干光束。
3.根据权利要求1所述的热光关联非定域阿贝成像系统,其特征在于,所述激光器与所述毛玻璃之间的光路上设置有两个偏振片,两个所述偏振片在通光方向上间隔设置用于调整所述激光光束的强度;
所述偏振片与所述毛玻璃之间的光路上设置有用于调节所述激光光束截面大小的扩束透镜。
4.根据权利要求1所述的热光关联非定域阿贝成像系统,其特征在于,所述毛玻璃与所述分束器之间的光路上设置有用于调节所述非相干光束横截面大小的光阑。
5.根据权利要求1所述的热光关联非定域阿贝成像系统,其特征在于,所述滤波器设置在所述成像透镜的后焦平面上;所述待测物体紧贴靠在所述第一图像探测器上。
6.一种采用权利要求1-5任一项所述成像系统的热光关联非定域阿贝成像方法,其特征在于,其具体包括如下步骤:
步骤一,激光器产生的激光光束照射毛玻璃,所述毛玻璃持续旋转,利用毛玻璃的转动将所述激光光束转变成为在空间有强度涨落分布的非相干光束;
步骤二,非相干光束通过分束器后按照光强均分为第一光束和第二光束;
步骤三,所述计算机同步采集所述第一光束和所述第二光束的图像信息并进行关联测量和计算得到待测物体的像。
7.根据权利要求6所述的热光关联非定域阿贝成像方法,其特征在于,所述激光光束的光路上设置有偏振片,用于调整激光光束的强度;
和/或,所述激光光束的光路上设置有扩束透镜,用于调节所述激光光束截面大小。
8.根据权利要求6所述的热光关联非定域阿贝成像方法,其特征在于,调节所述第一图像探测器和所述第二图像探测器,使得第一光束和第二光束的光斑中心分别与所述第一图像探测器和所述第二图像探测器的十字中心重合。
9.根据权利要求6所述的热光关联非定域阿贝成像方法,其特征在于,所述第一光路上的所述第一图像探测器采取桶测量方法,即第一图像探测器没有空间分辨能力,只接收物体的信息;所述第二光路上的所述第二图像探测器对所述第二光束的光场进行逐点扫描。
10.根据权利要求6所述的热光关联非定域阿贝成像方法,其特征在于,所述第一光路上,所述分束器与所述第一图像探测器之间的间距为Z1;所述第二光路上,所述分束器与所述成像透镜之间中心间距为Z2,所述滤波器设置在所述成像透镜的后焦平面上,所述成像透镜的焦距为f,所述滤波器与所述第二图像探测器之间的间距为Z3,则满足:
<mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>f</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>f</mi> </mfrac> <mo>.</mo> </mrow> 2
CN201710631211.9A 2017-07-28 2017-07-28 热光关联非定域阿贝成像方法及其系统 Pending CN107193131A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710631211.9A CN107193131A (zh) 2017-07-28 2017-07-28 热光关联非定域阿贝成像方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710631211.9A CN107193131A (zh) 2017-07-28 2017-07-28 热光关联非定域阿贝成像方法及其系统

Publications (1)

Publication Number Publication Date
CN107193131A true CN107193131A (zh) 2017-09-22

Family

ID=59884696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710631211.9A Pending CN107193131A (zh) 2017-07-28 2017-07-28 热光关联非定域阿贝成像方法及其系统

Country Status (1)

Country Link
CN (1) CN107193131A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918529A (zh) * 2018-06-13 2018-11-30 佛山科学技术学院 一种透明介质的表面划痕成像检测装置及方法
CN110230995A (zh) * 2019-05-10 2019-09-13 首都师范大学 一种基于鬼成像的感兴趣区域成像装置
CN110441262A (zh) * 2019-08-28 2019-11-12 中国地质大学(北京) 一种非定域相位物体边缘增强方法及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345063A (zh) * 2013-07-22 2013-10-09 高禄 补偿式热光无透镜关联成像系统及成像方法
CN103973976A (zh) * 2014-04-14 2014-08-06 杭州电子科技大学 一种利用光学成像的显著性提取装置及方法
EP2767797A1 (de) * 2013-02-13 2014-08-20 Polytec GmbH Niedrigkohärenzinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung des Oberflächenprofils eines Objekts
CN106768312A (zh) * 2017-01-11 2017-05-31 中国地质大学(北京) 热光源非定域物体辨别方法及系统
CN207164378U (zh) * 2017-07-28 2018-03-30 中国地质大学(北京) 热光关联非定域阿贝成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767797A1 (de) * 2013-02-13 2014-08-20 Polytec GmbH Niedrigkohärenzinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung des Oberflächenprofils eines Objekts
CN103345063A (zh) * 2013-07-22 2013-10-09 高禄 补偿式热光无透镜关联成像系统及成像方法
CN103973976A (zh) * 2014-04-14 2014-08-06 杭州电子科技大学 一种利用光学成像的显著性提取装置及方法
CN106768312A (zh) * 2017-01-11 2017-05-31 中国地质大学(北京) 热光源非定域物体辨别方法及系统
CN207164378U (zh) * 2017-07-28 2018-03-30 中国地质大学(北京) 热光关联非定域阿贝成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李曾沛等: "利用漫射器研究空间相干与非相干成像", 《光电子.激光》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918529A (zh) * 2018-06-13 2018-11-30 佛山科学技术学院 一种透明介质的表面划痕成像检测装置及方法
CN110230995A (zh) * 2019-05-10 2019-09-13 首都师范大学 一种基于鬼成像的感兴趣区域成像装置
CN110441262A (zh) * 2019-08-28 2019-11-12 中国地质大学(北京) 一种非定域相位物体边缘增强方法及其系统

Similar Documents

Publication Publication Date Title
US6229913B1 (en) Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
CN102870034B (zh) 观察装置
CN102506748B (zh) 一种基于激光探针阵列的三维测量方法及装置
CN106840027A (zh) 光学自由曲面的像散补偿型干涉检测装置与检测方法
CN102564612B (zh) 一种基于组合棱镜的相位差波前传感器
CN106292238A (zh) 一种反射式离轴数字全息显微测量装置
CN107193131A (zh) 热光关联非定域阿贝成像方法及其系统
US20220065617A1 (en) Determination of a change of object&#39;s shape
CN108226036A (zh) 基于双光栅剪切干涉的一体化激光材料热效应测量装置
Wang et al. Surface shape measurement of transparent planar elements with phase measuring deflectometry
CN105758381A (zh) 一种基于频谱分析的摄像头模组倾斜探测方法
CN101033948B (zh) 基于分束光纤的三维变形测量系统
CN103076724B (zh) 基于双光束干涉的投影物镜波像差在线检测装置和方法
CN207164378U (zh) 热光关联非定域阿贝成像系统
Inui et al. Correction method of phase deference in accordance with the angle field for Wide-Viewing-Angle Fourier-Spectroscopic-Imaging
CA3051969A1 (en) Method and optical system for acquiring the tomographical distribution of wave fronts of electromagnetic fields
CN104568214A (zh) 光致等离子体三维温度场的测量装置和测量方法
CN107797264A (zh) 综合孔径望远镜的共相调节装置
CN102878930A (zh) 一种位相物体位相分布的定量测量方法和装置及其应用
CN100510662C (zh) 空间调制干涉型计算层析成像光谱仪
CN102589702B (zh) 一种菲涅尔双面镜干涉成像光谱仪
EP4004632A1 (en) Telescopes
Zhao et al. X-ray wavefront characterization with grating interferometry using an x-ray microfocus laboratory source
Dong et al. Photothermal vortex interferometer with azimuthal complex spectra analysis for the measurement of laser-induced nanoscale thermal lens dynamics
Rasouli et al. Two-channel wavefront sensor arrangement employing moiré deflectometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination