CN107188237B - Fe、C共掺杂WO3多孔球及其制备方法和应用 - Google Patents

Fe、C共掺杂WO3多孔球及其制备方法和应用 Download PDF

Info

Publication number
CN107188237B
CN107188237B CN201710453897.7A CN201710453897A CN107188237B CN 107188237 B CN107188237 B CN 107188237B CN 201710453897 A CN201710453897 A CN 201710453897A CN 107188237 B CN107188237 B CN 107188237B
Authority
CN
China
Prior art keywords
ball
preparation
codope
acetone
dmf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710453897.7A
Other languages
English (en)
Other versions
CN107188237A (zh
Inventor
要红昌
申俊月
李中军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201710453897.7A priority Critical patent/CN107188237B/zh
Publication of CN107188237A publication Critical patent/CN107188237A/zh
Application granted granted Critical
Publication of CN107188237B publication Critical patent/CN107188237B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料技术领域,公开一种Fe、C共掺杂WO3多孔球及其制备方法和应用。将WCl6、Fe(NO3)3·6H2O、碳球加入到DMF中,室温下搅拌均匀后,将混合液转移到水热反应釜中,110~130℃溶剂热4~5 h,反应结束后离心、洗涤、干燥;其中,以质量体积比计,WCl6∶Fe(NO3)3·6H2O∶碳球∶DMF=0.9~1 g∶6.6~66.6 mg∶0.18~0.42 g∶50~70 mL;将干燥过的固体升温至400~650℃,煅烧1~2h,即得目标产物。本发明以碳球为模板,制备了Fe、C共掺杂的含ε相的WO3多孔球,提高对丙酮的选择性和灵敏度,为呼气中丙酮的检测提供了可能。

Description

Fe、C共掺杂WO3多孔球及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种Fe、C共掺杂WO3多孔球及其制备方法和应用。
背景技术
呼气中大多数气体是新陈代谢的产物,其浓度的变化可反映身体状况,因此一些气体可作为特种疾病的生物标记物。丙酮是乙酰辅酶A的代谢产物,可作为糖尿病的生物标记物。健康人群呼气中丙酮含量为300−900 ppm,而糖尿病患者呼气中丙酮含量高于1800ppm,因此,通过呼气中丙酮含量的检测从而诊断糖尿病具有重要意义。
WO3作为一种典型的n-型半导体,被广泛应用到痕量丙酮的检测中,然而,WO3基气敏材料用于丙酮检测时仍然存在一些问题,比如灵敏度低、选择性差。WO3具有不同的晶相,包括单斜Ⅱ(ε-WO3)相、单斜Ⅰ(γ-WO3)相和正交(β-WO3)相等,其中ε-WO3由于具有铁电性而与极性较大的丙酮分子间具有较强的相互作用,从而对丙酮表现出高灵敏度和高选择性。
对WO3材料本身的形貌控制,也是提高其气敏性能的有效手段。构建分级结构能够最大化地促进气体的传输和扩散,有利于氧化物表面化学反应的加快进行。
发明内容
本发明的目的旨在提供一种Fe、C共掺杂WO3多孔球及其制备方法和应用。
为实现上述目的,本发明采取的技术方案如下:
Fe、C共掺杂WO3多孔球的制备方法,包括以下步骤:
S1、将WCl6、Fe(NO3)3·6H2O、碳球加入到DMF中,室温下搅拌均匀后,将混合液转移到水热反应釜中,110~130 ℃溶剂热4~5 h,反应结束后离心、洗涤、干燥;其中,以质量体积比计,WCl6∶Fe(NO3)3·6H2O∶碳球∶DMF = 0.9~1 g∶6.6~66.6 mg∶0.18~0.42 g∶50~70 mL;
S2、将干燥过的固体升温至400~650 ℃,煅烧1 ~2 h,即得目标产物。
较好地,S2中,以2~5 ℃/min的升温速率升温。
最佳地,所述制备方法,包括以下步骤:
S1、以质量体积比计,称取1 g WCl6、35.4 mg的Fe(NO3)3·6H2O、0.30 g碳球加入到60 mL DMF中,室温下搅拌均匀后,将混合液转移到水热反应釜中,120 ℃溶剂热4 h,反应结束后离心、洗涤、干燥;
S2、将干燥过的固体,以2 ℃/min的升温速率升温至450 ℃,煅烧1 h,即得目标产物。
前述制备方法制备的Fe、C共掺杂WO3多孔球。
所述Fe、C共掺杂WO3多孔球在检测丙酮气体中的应用。
本发明具有以下优点:
本发明以碳球为模板,制备了Fe、C共掺杂的含ε相的WO3多孔球,提高对丙酮的选择性和灵敏度,为呼气中丙酮的检测提供了可能。
附图说明
图1是W0和FW1−FW5样品的Raman图。
图2是FW3样品的XPS图。
图3是FW3样品的SEM图。
图4是FW3样品的TEM和HRTEM图。
图5是FW3样品的EDS图。
图6是W0、FW1−FW5和纯WO3样品的气敏性能图。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步解释说明,但本发明的保护范围并不局限于此。
实施例1
一种Fe、C共掺杂WO3多孔球的制备方法,包括以下步骤:
S1、称取1 g WCl6和6.6 mg的Fe(NO3)3·6H2O溶于30 mL DMF,再称取0.30 g碳球分散于30 mL DMF,在搅拌下将前溶液缓慢加入到后分散液中,室温下持续搅拌20 min后,将混合液转移到100 mL的水热反应釜中,120 ℃溶剂热4 h,反应结束后离心、洗涤、干燥;
S2、将干燥过的固体放入马弗炉中,以2 ℃/min的升温速率至450 ℃煅烧1 h,得目标产物。
实施例2
与实施例1的不同之处在于:S1中,加入Fe(NO3)3·6H2O的质量为21.0 mg。
实施例3
与实施例1的不同之处在于:S1中,加入Fe(NO3)3·6H2O的质量为35.4 mg。
实施例4
与实施例1的不同之处在于:S1中,加入Fe(NO3)3·6H2O的质量为50.7 mg。
实施例5
与实施例1的不同之处在于:S1中,加入Fe(NO3)3·6H2O的质量为66.6 mg。
对照例1
与实施例1的不同之处在于:S1中,加入Fe(NO3)3·6H2O的质量为0 mg,即不掺杂Fe。
将实施例1~5所得产物,依次命名为FW1−FW5,对照例1所得未掺杂Fe样品命名为W0;其中FW1代表实施例1产品,FW2代表实施例2产品,FW3代表实施例3产品,FW4代表实施例4产品,FW5代表实施例5产品。
产物表征
图1是W0和FW1−FW5样品的Raman图,图1(b)是图1(a)的局部放大图,a为W0样品,b−f依次为FW1−FW5样品。结果表明,掺杂FW1−FW5样品为εγ相的混合相,由图1(b)可知,掺杂Fe可使峰向低频率偏移,并且偏移程度随着掺杂量的增加而增大。证明Fe掺杂到WO3晶格中,并且引起材料中氧空位数量增加。
图2是FW3样品的XPS图,图2b C 1s中282.7 eV处的峰归属于W-C键,证明C掺杂到WO3晶格中,同时检测到Fe 2p的三个峰(图2d),分别位于709.5、710.9和724.6 eV处,后两个峰分别归属于Fe3+ 2p3/2和Fe3+ 2p1/2,和Fe2O3中Fe 2p所在位置相比,掺杂到WO3晶格中的Fe的峰位置向高结合能方向移动。峰偏移证明Fe3+阳离子掺杂到了WO3晶格中替代W6+的位置。
图3是FW3样品的SEM图谱,图3(a)、(b)是FW3样品在不同放大倍数下的SEM图,且图3(b)样品经过氩离子抛光。从图3(a)可看出制备的WO3材料是球形形貌,由图3(b)可知球体内部呈现多孔结构。
图4(a)为FW3样品的TEM图,进一步表明材料为多孔结构,且由表面光滑的纳米颗粒组成。图4(b)、(c)为FW3的HRTEM图。图4(b)中晶格条纹清晰可见,说明样品的结晶度很好。通过计算可得晶面间距0.433 nm和0.368 nm分别对应于γ-WO3的(111)面和ε-WO3的(110)面,说明样品是ε相和γ相两相的混合相。图4(c)中发现晶格位错和切变等缺陷现象(如虚线矩形框所示),与晶格矩阵存在明显差别,缺陷的存在可能是由Fe掺杂生成的氧空位导致的。
图5为FW3样品的EDS图,6.4 KeV处的峰属于Fe的峰,证明Fe掺杂到WO3晶格中。
气敏性能测试
将实施例1~5 所得产物FW1-FW5以及对照例1所得产物W0研磨后滴加异丙醇混合成浆后,涂到陶瓷管表面,在马弗炉中以2 ℃/min的升温速率升温到380 ℃保持1 h,去除有机物,取出冷却到室温,即为气敏元件。采用WS-30A型号气敏测试仪(郑州炜盛电子科技有限公司),按照文献Sensors and Actuators B: Chemical, 209(2015) 622-629中的测试方法进行测试。
图6a是FW1-FW5对10 ppm丙酮气体的气敏性能图。由图6a可知:实施例3制备的Fe、C共掺杂WO3多孔球(FW3)在300 ℃工作温度下对丙酮的响应最高,达到17.7。
图6b是FW3、W0以及纯WO3(与实施例1相比,不添加Fe(NO3)3·6H2O和碳球,其它均同实施例1条件下所制备的产物)对不同浓度丙酮响应的对比图,结果表明:掺杂Fe后材料对丙酮的气敏性能明显提高。
图6c是FW3的选择性测试(气体浓度均为2 ppm),结果表明:实施例3制备的Fe、C共掺杂WO3多孔球对丙酮具有良好的选择性。
图6d是FW3在不同湿度下对不同浓度丙酮的响应,结果表明:实施例3制备的Fe、C共掺杂WO3多孔球在高湿度下对丙酮也具有良好的响应。
图6e是FW3的稳定性测试,结果表明:实施例3制备的Fe、C共掺杂WO3多孔球对不同浓度的丙酮气体均具有良好的长时间稳定性。

Claims (4)

1.Fe、C共掺杂WO3多孔球的制备方法,其特征在于,包括以下步骤:
S1、将WCl6、Fe(NO3)3·6H2O、碳球加入到DMF中,室温下搅拌均匀后,将混合液转移到水热反应釜中,110~130 ℃溶剂热4~5 h,反应结束后离心、洗涤、干燥;其中,以质量体积比计,WCl6∶Fe(NO3)3·6H2O∶碳球∶DMF = 0.9~1 g∶6.6~66.6 mg∶0.18~0.42 g∶50~70 mL;
S2、将干燥过的固体升温至400~650 ℃,煅烧1 ~2 h,即得目标产物。
2.如权利要求1所述的制备方法,其特征在于:S2中,以2~5 ℃/min的升温速率升温。
3.如权利要求1所述的制备方法,其特征在于,包括以下步骤:
S1、以质量体积比计,称取1 g WCl6、35.4 mg的Fe(NO3)3·6H2O、0.30 g碳球加入到60mL DMF中,室温下搅拌均匀后,将混合液转移到水热反应釜中,120 ℃溶剂热4 h,反应结束后离心、洗涤、干燥;
S2、将干燥过的固体,以2 ℃/min的升温速率升温至450 ℃,煅烧1 h,即得目标产物。
4.如权利要求1~3之任一所述制备方法制备的Fe、C共掺杂WO3多孔球。
CN201710453897.7A 2017-06-15 2017-06-15 Fe、C共掺杂WO3多孔球及其制备方法和应用 Expired - Fee Related CN107188237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710453897.7A CN107188237B (zh) 2017-06-15 2017-06-15 Fe、C共掺杂WO3多孔球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710453897.7A CN107188237B (zh) 2017-06-15 2017-06-15 Fe、C共掺杂WO3多孔球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107188237A CN107188237A (zh) 2017-09-22
CN107188237B true CN107188237B (zh) 2019-03-15

Family

ID=59879573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710453897.7A Expired - Fee Related CN107188237B (zh) 2017-06-15 2017-06-15 Fe、C共掺杂WO3多孔球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107188237B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760833B (zh) * 2018-05-23 2020-10-09 上海理工大学 一种用于检测丙酮气体的敏感材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712405A (zh) * 2016-01-06 2016-06-29 太原理工大学 一种钼掺杂氧化钨气敏材料的制备方法
CN106241879A (zh) * 2016-07-20 2016-12-21 河南科技大学 一种纳米三氧化钨空心团聚球粉末的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712405A (zh) * 2016-01-06 2016-06-29 太原理工大学 一种钼掺杂氧化钨气敏材料的制备方法
CN106241879A (zh) * 2016-07-20 2016-12-21 河南科技大学 一种纳米三氧化钨空心团聚球粉末的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors;Yao Yao et al.;《ACS Appl. Mater. Interfaces》;20160627;第8卷;第18165-18172页
Ferroelectric WO3 Nanoparticles for Acetone Selective Detection;L. Wang et al.;《Chem. Mater.》;20080407;第20卷(第15期);第4794-4796页
Highly enhanced acetone sensing performance of porous C-dopedWO3 hollow spheres by carbon spheres as templates;Jun-Yue Shen et al.;《Sensors and Actuators B》;20160812;第239卷;第597-607页
Low-Temperature H2S Detection with Hierarchical Cr-Doped WO3 Microspheres;Yanrong Wang et al.;《ACS Appl. Mater. Interfaces》;20160323;第8卷;第9674-9683页
Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities;Hui Song et al.;《Applied Catalysis B》;20141115;第112-120页

Also Published As

Publication number Publication date
CN107188237A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Gao et al. TiO2 decorated Co3O4 acicular nanotube arrays and its application as a non-enzymatic glucose sensor
Yin et al. In situ reduction of the Cu/Cu2O/carbon spheres composite for enzymaticless glucose sensors
Song et al. 3D hierarchical porous SnO 2 derived from self-assembled biological systems for superior gas sensing application
Lu et al. Three-dimensional roselike α-Ni (OH) 2 assembled from nanosheet building blocks for non-enzymatic glucose detection
Tuteja et al. Graphene-gated biochip for the detection of cardiac marker Troponin I
Li et al. Preparation and characteristics of nanocrystalline NiO by organic solvent method
Sofi et al. Cu 2+-BTC based metal–organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine
CN106442642B (zh) 一种氧化锌/石墨烯复合材料的制备方法、电阻型气体传感器
Feng et al. MOF‐Derived Spinel NiCo2O4 Hollow Nanocages for the Construction of Non‐enzymatic Electrochemical Glucose Sensor
Zou et al. Use of the peroxidase mimetic activity of erythrocyte-like Cu 1.8 S nanoparticles in the colorimetric determination of glutathione
Hu et al. Self-templated flower-like WO3-In2O3 hollow microspheres for conductometric acetone sensors
Jayaramulu et al. A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor
CN106986390B (zh) 一种检测酒精的气敏材料及其制备方法
Liu et al. Sub-ppm YSZ-based mixed potential type acetone sensor utilizing columbite type composite oxide sensing electrode
CN104118904A (zh) 三维空心多级结构氧化锡气敏材料的制备方法及其应用
Peng et al. Flower‐like Ni (II)‐based metal‐organic framework‐decorated ag nanoparticles: fabrication, characterization and electrochemical detection of glucose
CN106219537A (zh) 一种二氧化锡/石墨烯复合材料的制备方法、电阻型气体传感器
Malina et al. A simple high-yield synthesis of high-purity Hägg carbide (χ-Fe 5 C 2) nanoparticles with extraordinary electrochemical properties
Xu et al. Hollow POM@ MOF‐derived Porous NiMo6@ Co3O4 for Biothiol Colorimetric Detection
Jońca et al. SnO2 “Russian Doll” Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub‐ppm CO Detection
Li et al. An electrochemiluminescence aptasensor based on Ru (bpy) 3 2+ encapsulated titanium-MIL-125 metal-organic framework for bisphenol A assay
Wang et al. Hierarchically ordered porous nitrogen doped carbon modified a glassy carbon electrode for voltammetry detection of quercetin
Khan et al. Interfacing electrochemically reduced graphene oxide with poly (erichrome black T) for simultaneous determination of epinephrine, uric acid and folic acid
CN107188237B (zh) Fe、C共掺杂WO3多孔球及其制备方法和应用
Pan et al. MOF-templated synthesis of cobalt-doped zinc oxide superparticles for detection of the 3-hydroxy-2-butanone microbial biomarker

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190315

Termination date: 20200615

CF01 Termination of patent right due to non-payment of annual fee