CN107179431A - 基于双折射实时测量的光纤电流传感装置及其方法 - Google Patents

基于双折射实时测量的光纤电流传感装置及其方法 Download PDF

Info

Publication number
CN107179431A
CN107179431A CN201710478955.1A CN201710478955A CN107179431A CN 107179431 A CN107179431 A CN 107179431A CN 201710478955 A CN201710478955 A CN 201710478955A CN 107179431 A CN107179431 A CN 107179431A
Authority
CN
China
Prior art keywords
polarization
module
measured
sensor fibre
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710478955.1A
Other languages
English (en)
Other versions
CN107179431B (zh
Inventor
何祖源
马麟
刘银萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201710478955.1A priority Critical patent/CN107179431B/zh
Publication of CN107179431A publication Critical patent/CN107179431A/zh
Application granted granted Critical
Publication of CN107179431B publication Critical patent/CN107179431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Abstract

一种基于双折射实时测量的光纤电流传感装置及其方法,包括:偏振分束模块、依次相连的保偏激光器、空间偏振控制模块、光纤模块、光耦合器、偏振分析模块和数据采集模块,其中:保偏激光器产生的连续线偏信号光经过空间偏振模块输入光纤模块,光纤模块输出的偏振态发生变化的信号光经过光耦合器分为两路光,一路进入偏振分析模块,另一路进入偏振分束模块,数据采集模块分别采集偏振分析模块的偏振态数据和偏振分束模块的光强数据,从而得到待测传感光纤的双折射大小和法拉第偏转角;本发明设计合理,实现了对法拉第偏转角的准确测量,对提高光纤电流传感器实际应用的可靠性和准确性有指导意义。

Description

基于双折射实时测量的光纤电流传感装置及其方法
技术领域
本发明涉及的是一种光纤电流传感领域的技术,具体是一种基于双折射实时测量的光纤电流传感装置及其方法。
背景技术
传统的基于电磁效应的电流传感器在实际使用中存在一些问题,诸如磁饱和、铁磁谐振、动态范围小、体积大重量重、成本高、安装不便、易爆炸等安全性方面的问题。光纤电流传感器因其传感原理并不会存在上述问题,因而成为了电流传感领域的一个重要研究方向。实现全光纤磁场传感器的原理有多种,如法拉第效应、磁致伸缩效应和磁流体材料等,其中基于法拉第效应的光纤电流传感器因其对于电流变化的直观性和易检测性而成为研究领域中的一个热点。
基于法拉第效应的光纤电流传感器在实际应用中主要面临两个难题:一是传统单模光纤的费尔德常数很低,限制了电流传感器的灵敏度,常用的解决方法是采用高费尔德常数的掺杂光纤。二是光纤电流传感器的稳定性和可靠性低。单模光纤的线性双折射很容易受到外界一些不可预测因素的影响,譬如温度,应力,弯曲和扭曲,这将会减弱法拉第效应。由于光纤的线性双折射受各种环境扰动而随机变化并且不易测量,传统光纤电流传感器在解调法拉第偏转角时假设光纤不存在线性双折射,因而忽略了线性双折射对法拉第旋光角的退化作用,导致所测得的灵敏度失真。
发明内容
本发明针对现有技术无法实时补偿双折射受环境随机扰动的影响的问题,提出一种基于双折射实时测量的光纤电流传感装置及其方法,通过对待测传感光纤输入偏振态和输出偏振态的测量,得到待测传感光纤的双折射大小,再根据快慢轴的光强信号补偿法拉第偏转角的退化,可准确测量法拉第偏转角。
本发明是通过以下技术方案实现的:
本发明涉及一种基于双折射实时测量的光纤电流传感装置,包括:偏振分束模块、依次相连的保偏激光器、空间偏振控制模块、光纤模块、光耦合器、偏振分析模块和数据采集模块,其中:保偏激光器产生的连续线偏信号光经过空间偏振模块输入光纤模块,在磁场作用下信号光的偏振态发生变化,光纤模块输出的偏振态发生变化的信号光经过光耦合器分为两路光,一路进入偏振分析模块,另一路进入偏振分束模块,数据采集模块分别对偏振分析模块和偏振分束模块进行数据采集。
所述的空间偏振控制模块包括:同轴设置的λ/2波片、两个λ/4波片和两个准直镜,其中:两个准直镜对称设置于λ/2波片的两侧,两个λ/4波片分别对称设置于λ/2波片和准直镜之间。
所述的光纤模块包括:直流源和待测传感光纤,其中:直流源的正负极分别与待测传感光纤相连。
所述的偏振分析模块包括:1分4分束器、λ/4波片、0°起偏器、45°起偏器和四个平衡光电探测器,其中:1分4分束器输出四路光,一路直接输入平衡光电探测器;一路依次输入0°起偏器和平衡光电探测器;一路依次输入45°起偏器和平衡光电探测器;一路依次输入λ/4波片、45°起偏器和平衡光电探测器。
所述的偏振分束模块包括:偏振分束器和两个光电转换器,其中:偏振分束器输出两路相互垂直的正交偏振光,分别输入两个光电转换器。
所述的数据采集模块包括:6通道数据采集卡和两个平衡光电探测器。
所述的数据采集模块通过偏振分束模块得到待测传感光纤快慢轴的光强强度信号。
所述的待测传感光纤为50~2000m标准单模光纤。
本发明涉及一种基于上述装置的实时测量双折射的方法,偏振分析模块直接测得保偏激光器的输出的偏振态,通过空间偏振控制模块的传输矩阵得到待测传感光纤的输入偏振态,与振分析模块测得的待测传感光纤输出端的输出偏振态进行对比,即可得到待测传感光纤的线性双折射大小;待测传感光纤的线性双折射结合偏振分束模块得到的待测传感光纤快慢轴的两个光强度信号,即可得到待测传感光纤双折射补偿后的法拉第偏转角。
所述的输入偏振态通过空间偏振控制模块的琼斯矩阵计算得到。
所述的法拉第偏转角的计算公式为:其中:P1和P2分别为待测传感光纤快慢轴的光强,θ为法拉第偏转角,Δδ为待测传感光纤的线性双折射。
技术效果
与现有技术相比,本发明通过在待测传感光纤末端添加偏振分析模块实时监测待测传感光纤的输出偏振态,得到待测传感光纤的实时双折射用以补偿法拉第偏转角,实现对法拉第偏转角的准确测量,提高光纤电流传感器的可靠性。
附图说明
图1为光纤电流传感装置示意图;
图2为偏振分析模块示意图;
图3为光纤双折射较小状态下双折射补偿前后法拉第偏转角与电流大小的关系示意图;
图4为光纤双折射中等状态下双折射补偿前后法拉第偏转角与电流大小的关系示意图;
图5为光纤双折射较大状态下双折射补偿前后法拉第偏转角与电流大小的关系示意图;
图6为忽略双折射时旋光效应的退化与双折射大小的关系示意图;
图中:1保偏激光器、2空间偏振控制模块、3直流源、4待测传感光纤、5光耦合器、6偏振分束器、7光电转换器、8偏振分析模块、9数据采集模块、10准直镜、11λ/4波片、12λ/2波片、13信号光、141分4分束器、150°起偏器、1645°起偏器、17平衡光电探测器。
具体实施方式
如图1所示,本实施例包括:偏振分束模块、依次相连的保偏激光器1、空间偏振控制模块2、光纤模块、光耦合器5、偏振分析模块8和数据采集模块9,其中:保偏激光器1产生的连续线偏信号光13经过空间偏振模块输入光纤模块,在磁场作用下信号光13的偏振态发生变化,光纤模块输出的偏振态发生变化的信号光13经过光耦合器5分为两路光,一路进入偏振分析模块8,另一路进入偏振分束模块,数据采集模块9分别对偏振分析模块8和偏振分束模块进行数据采集。
所述的保偏激光器1输出连续线偏光,以保证输入空间偏振控制模块2的信号光13的偏振态稳定。
所述的空间偏振控制模块2包括:同轴设置的λ/2波片12、两个λ/4波片11和两个准直镜10,其中:两个准直镜10对称设置于λ/2波片12的两侧,两个λ/4波片11分别对称设置于λ/2波片12和准直镜10之间。
所述的光纤模块包括:直流源3和待测传感光纤4,其中:直流源3的正负极分别与待测传感光纤4相连。
如图2所示,所述的偏振分析模块8为集成化模块,包括:1分4分束器14、λ/4波片11、0°起偏器15、45°起偏器16、和四个平衡光电探测器17,其中:1分4分束器14输出四路光,一路直接输入平衡光电探测器17;一路依次输入0°起偏器15和平衡光电探测器17;一路依次输入45°起偏器16和平衡光电探测器17;一路依次输入λ/4波片11、45°起偏器16和平衡光电探测器17。
所述的平衡光电探测器17的增益一致。
所述的偏振分束模块包括:偏振分束器6和两个光电转换器7,其中:偏振分束器6输出两路相互垂直的正交偏振光,分别输入两个光电转换器7转换为电信号做后续数据处理。
所述的数据采集模块9包括:6通道数据采集卡和两个平衡光电探测器17。
所述的数据采集模块9通过偏振分束模块得到待测传感光纤4快慢轴的光强强度信号。
本实施例涉及基于上述装置的实时测量双折射的方法,偏振分析模块8直接测得保偏激光器1的输出的偏振态,将信号光13通过空间偏振控制模块2后的偏振态作为待测传感光纤4的输入偏振态,结合偏振分析模块8测得的待测传感光纤4输出端的输出偏振态即可得到待测传感光纤4的线性双折射大小;待测传感光纤4的线性双折射再结合偏振分束模块得到的待测传感光纤4快慢轴的两个光强度信号,即可得到待测传感光纤4双折射补偿后的法拉第偏转角。
由于空间偏振控制模块2中的波片旋转角度已知,所述的输入偏振态通过空间偏振控制模块2的琼斯矩阵计算得到。
所述的法拉第偏转角的计算公式为:其中:P1和P2分别为待测传感光纤4快慢轴的光强,θ为法拉第偏转角,Δδ为待测传感光纤4的线性双折射。
本实施例的保偏激光器1输出的信号光13波长为1550nm,待测传感光纤4为250m单模光纤。
所述的待测传感光纤4的长度可灵活调整:在大电流测试环境下,适合较短的光纤长度;在小电流条件下,适合较长的光纤长度。
所述的光耦合器5为50/50光耦合器。
所述的待测传感光纤4的双折射可通过调整光纤的弯曲形状改变。
如图3~图5所示,Ω1为忽略线性双折射时测量得到的法拉第偏转角,Ω2为本实施例考虑线性双折射时测量得到的法拉第偏转角,slope(斜率)为测量的灵敏度。在确定的双折射下,调整空间偏振控制模块2,从而改变待测传感光纤4的输入偏振态,光纤传感装置的灵敏度也会改变。由图可知,法拉第偏转角和待测传感光纤4的总相移随着电流的增加而线性变化,当总相移变大时,线性双折射对旋光效应的湮没效应愈加严重。当总相移为22.5°时,采用传统解调方法的灵敏度相对本实施例下降了96.9%;当总相移为108.73°时,传统解调方法的灵敏度相对本实施例下降至49%,灵敏度提高了1倍。
如图6所示,点表示实验结果,线表示理论结果;θ1为双折射补偿前的法拉第偏转角,θ2为经过双折射补偿的法拉第偏转角。当双折射接近0°时,传统解调方法测得的近似偏转角与实际偏转角基本一致;当双折射较大,如108.73°时,传统解调方法测得的偏转角的灵敏度下降了51%,实验结果与理论计算基本吻合。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (10)

1.一种基于双折射实时测量的光纤电流传感装置,其特征在于,包括:偏振分束模块、依次相连的保偏激光器、空间偏振控制模块、光纤模块、光耦合器、偏振分析模块和数据采集模块,其中:保偏激光器产生的连续线偏信号光经过空间偏振模块输入光纤模块,在磁场作用下信号光的偏振态发生变化,光纤模块输出的偏振态发生变化的信号光经过光耦合器分为两路光,一路进入偏振分析模块,另一路进入偏振分束模块,数据采集模块分别对偏振分析模块和偏振分束模块进行数据采集。
2.根据权利要求1所述的光纤电流传感装置,其特征是,所述的空间偏振控制模块包括:同轴设置的λ/2波片、两个λ/4波片和两个准直镜,其中:两个准直镜对称设置于λ/2波片的两侧,两个λ/4波片分别对称设置于λ/2波片和准直镜之间。
3.根据权利要求1所述的光纤电流传感装置,其特征是,所述的光纤模块包括:直流源和待测传感光纤,其中:直流源的正负极分别与待测传感光纤相连。
4.根据权利要求1所述的光纤电流传感装置,其特征是,所述的偏振分析模块包括:1分4分束器、λ/4波片、0°起偏器、45°起偏器和四个平衡光电探测器,其中:1分4分束器输出四路光,一路直接输入平衡光电探测器;一路依次输入0°起偏器和平衡光电探测器;一路依次输入45°起偏器和平衡光电探测器;一路依次输入λ/4波片、45°起偏器和平衡光电探测器。
5.根据权利要求1所述的光纤电流传感装置,其特征是,所述的偏振分束模块包括:偏振分束器和两个光电转换器,其中:偏振分束器输出两路相互垂直的正交偏振光,分别输入两个光电转换器。
6.根据权利要求1所述的光纤电流传感装置,其特征是,所述的数据采集模块包括:6通道数据采集卡和两个平衡光电探测器。
7.根据权利要求1所述的光纤电流传感装置,其特征是,所述的数据采集模块通过偏振分束模块得到待测传感光纤快慢轴的光强强度信号。
8.根据权利要求3所述的光纤电流传感装置,其特征是,所述的待测传感光纤为50~2000m标准单模光纤。
9.一种基于上述任一权利要求所述装置的实时测量双折射的方法,其特征在于,偏振分析模块直接测得保偏激光器的输出的偏振态,通过空间偏振控制模块的琼斯矩阵得到待测传感光纤的输入偏振态,与振分析模块测得的待测传感光纤输出端的输出偏振态进行对比,即可得到待测传感光纤的线性双折射大小;待测传感光纤的线性双折射结合偏振分束模块得到的待测传感光纤快慢轴的两个光强度信号,即可得到待测传感光纤双折射补偿后的法拉第偏转角。
10.根据权利要求9所述的方法,其特征是,所述的法拉第偏转角的计算公式为:其中:P1和P2分别为待测传感光纤快慢轴的光强,θ为法拉第偏转角,Δδ为待测传感光纤的线性双折射。
CN201710478955.1A 2017-06-22 2017-06-22 基于双折射实时测量的光纤电流传感装置及其方法 Active CN107179431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710478955.1A CN107179431B (zh) 2017-06-22 2017-06-22 基于双折射实时测量的光纤电流传感装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710478955.1A CN107179431B (zh) 2017-06-22 2017-06-22 基于双折射实时测量的光纤电流传感装置及其方法

Publications (2)

Publication Number Publication Date
CN107179431A true CN107179431A (zh) 2017-09-19
CN107179431B CN107179431B (zh) 2023-04-18

Family

ID=59844469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710478955.1A Active CN107179431B (zh) 2017-06-22 2017-06-22 基于双折射实时测量的光纤电流传感装置及其方法

Country Status (1)

Country Link
CN (1) CN107179431B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593995A (zh) * 2017-12-26 2018-09-28 上海大学 光涡旋模式全光纤电流传感器
CN110763897A (zh) * 2019-10-16 2020-02-07 中国矿业大学 在线消除光源功率波动的煤矿光纤电流传感器及控制方法
CN110780101A (zh) * 2019-11-07 2020-02-11 中国矿业大学 一种旋光型煤矿光纤电流传感器
CN111458553A (zh) * 2020-04-29 2020-07-28 中国矿业大学 一种具有双重循环结构的高灵敏度全光纤电流测量装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289404A (en) * 1979-09-27 1981-09-15 Standard Oil Company (Indiana) Laser-based deflection measuring method and apparatus
CN1419159A (zh) * 2002-12-19 2003-05-21 上海交通大学 光强控制变双折射光纤全光开关
CN101149401A (zh) * 2007-11-14 2008-03-26 哈尔滨工程大学 排除光学电流互感器中线性双折射影响的三态偏振检测法
CN101226210A (zh) * 2007-01-18 2008-07-23 武汉晟思高新技术有限公司 一种反射式偏振无关的小型化光电互感器
CN102042960A (zh) * 2009-10-15 2011-05-04 中国科学院福建物质结构研究所 一种法拉第效应测试系统
CN102262177A (zh) * 2011-07-05 2011-11-30 中国工程物理研究院流体物理研究所 一种全光纤脉冲电流传感器
US20130069628A1 (en) * 2010-05-27 2013-03-21 Adamant Kogyo Co., Ltd. Optical fibre birefringence compensation mirror and current sensor
CN103176023A (zh) * 2011-12-21 2013-06-26 北京首量科技有限公司 全光纤电流传感器系统及电流检测方法
US20140176937A1 (en) * 2011-08-18 2014-06-26 Tiegen Liu Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry
CN105953825A (zh) * 2016-06-29 2016-09-21 上海交通大学 用于温度与应变同时测量的光纤光栅式传感系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289404A (en) * 1979-09-27 1981-09-15 Standard Oil Company (Indiana) Laser-based deflection measuring method and apparatus
CN1419159A (zh) * 2002-12-19 2003-05-21 上海交通大学 光强控制变双折射光纤全光开关
CN101226210A (zh) * 2007-01-18 2008-07-23 武汉晟思高新技术有限公司 一种反射式偏振无关的小型化光电互感器
CN101149401A (zh) * 2007-11-14 2008-03-26 哈尔滨工程大学 排除光学电流互感器中线性双折射影响的三态偏振检测法
CN102042960A (zh) * 2009-10-15 2011-05-04 中国科学院福建物质结构研究所 一种法拉第效应测试系统
US20130069628A1 (en) * 2010-05-27 2013-03-21 Adamant Kogyo Co., Ltd. Optical fibre birefringence compensation mirror and current sensor
CN102262177A (zh) * 2011-07-05 2011-11-30 中国工程物理研究院流体物理研究所 一种全光纤脉冲电流传感器
US20140176937A1 (en) * 2011-08-18 2014-06-26 Tiegen Liu Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry
CN103176023A (zh) * 2011-12-21 2013-06-26 北京首量科技有限公司 全光纤电流传感器系统及电流检测方法
CN105953825A (zh) * 2016-06-29 2016-09-21 上海交通大学 用于温度与应变同时测量的光纤光栅式传感系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEI QI等: "Measurement Method of Verdet Constant Based on Refractive Index Dispersion of Optical Fiber Current Sensing Materials", 《2019 IEEE 3RD CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2)》 *
陶冶梦等: "基于光环形技术的高精度光纤电流传感器", 《光器件》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593995A (zh) * 2017-12-26 2018-09-28 上海大学 光涡旋模式全光纤电流传感器
CN108593995B (zh) * 2017-12-26 2020-11-24 上海大学 光涡旋模式全光纤电流传感器
CN110763897A (zh) * 2019-10-16 2020-02-07 中国矿业大学 在线消除光源功率波动的煤矿光纤电流传感器及控制方法
CN110763897B (zh) * 2019-10-16 2020-07-14 中国矿业大学 在线消除光源功率波动的煤矿光纤电流传感器及控制方法
CN110780101A (zh) * 2019-11-07 2020-02-11 中国矿业大学 一种旋光型煤矿光纤电流传感器
CN110780101B (zh) * 2019-11-07 2021-04-13 中国矿业大学 一种旋光型煤矿光纤电流传感器
CN111458553A (zh) * 2020-04-29 2020-07-28 中国矿业大学 一种具有双重循环结构的高灵敏度全光纤电流测量装置及方法

Also Published As

Publication number Publication date
CN107179431B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN103076155B (zh) 一种基于双光路的光纤Verdet常数测量系统
CN107179431A (zh) 基于双折射实时测量的光纤电流传感装置及其方法
CN103226162B (zh) 一种基于双光路补偿的光波导电压传感器
CN104459267B (zh) 具有温度补偿的薄膜型全光纤电流互感器
CN103197114B (zh) 新型反射式互易性光学电压互感器及其光路设计方法
CN104677508A (zh) 一种基于圆偏振探测光的原子自旋进动检测方法及装置
CN101968508B (zh) 全光纤电流传感器及其偏振态调节方法
CN107091950A (zh) 基于光学传感原理集成了温度传感的反射式电流和磁场传感器
CN206696332U (zh) 一种光学电流互感器
CN105203857A (zh) 基于电光二次效应的空间强电场测量系统
CN107064595A (zh) 基于复合光涡旋的晶体电流传感器
CN110007125A (zh) 双光路光学电流传感器
CN206818784U (zh) 基于双折射实时测量的光纤电流传感装置
CN202330519U (zh) 一种采用干涉闭环检测的磁光玻璃光学电流互感器
CN106291039A (zh) 磁光电流互感器
CN206497197U (zh) 光纤敏感环性能检测系统
CN106291040B (zh) 磁光电流互感器
CN101907650A (zh) 磁光平衡型光纤电流互感器
CN209746025U (zh) 一种基于双光纤光栅的电流测量系统
CN106597061A (zh) 萨格奈克式光纤电流传感器及其电流检测方法
CN106940395A (zh) 一种光学电流互感器
CN206556842U (zh) LiNbO3相位调制器性能检测系统
CN206557057U (zh) 激光粒度仪
Gibson et al. Enhanced bunch monitoring by interferometric electro-optic methods
CN103344199B (zh) 方波调制实现空间测角的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant