CN107167784B - 一种基于多通道比相定位的多人体目标定位跟踪方法 - Google Patents

一种基于多通道比相定位的多人体目标定位跟踪方法 Download PDF

Info

Publication number
CN107167784B
CN107167784B CN201710542290.6A CN201710542290A CN107167784B CN 107167784 B CN107167784 B CN 107167784B CN 201710542290 A CN201710542290 A CN 201710542290A CN 107167784 B CN107167784 B CN 107167784B
Authority
CN
China
Prior art keywords
target
distance
targets
receiving
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710542290.6A
Other languages
English (en)
Other versions
CN107167784A (zh
Inventor
崔国龙
熊丁丁
付月
孙智
冯力方
赵青松
孔令讲
杨晓波
张天贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710542290.6A priority Critical patent/CN107167784B/zh
Publication of CN107167784A publication Critical patent/CN107167784A/zh
Application granted granted Critical
Publication of CN107167784B publication Critical patent/CN107167784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于多接收通道比相定位的多人体目标定位跟踪方法,其基于单发多收的线性调频连续波雷达系统,利用动目标显示和去均值的方法对实验数据进行预处理,并对回波数据的每一周期做二倍插值细化距离维加窗傅里叶变换,根据目标的距离谱获取目标的距离信息;从频谱的目标所在峰值处提取出该目标对应的相位信息;再将不同接收通道的相位信息融合,计算出不同接收通道间的相位差,换算出目标的方位角或俯仰角,结合目标距离信息计算出目标在二维或者三维平面的定位结果;最后利用卡尔曼滤波的方法,实现对目标的跟踪。本发明能够对室内和室外的多个人体目标进行检测、定位以及跟踪,在保留目标的同时能够有效地将多径剔除,并且对目标实现准确的定位。

Description

一种基于多通道比相定位的多人体目标定位跟踪方法
技术领域
本发明涉及雷达目标定位跟踪技术领域,特别涉及多个人体目标的定位跟踪方法。
背景技术
在许多探测系统中,运动人体目标的检测和定位跟踪都有着重要的应用。例如,在智能家居领域可以实现房屋监测;在车载雷达领域,可以实现无人驾驶以及防撞等多种功能。
国内外许多研究机构开展了关于运动人体目标定位跟踪的研究。电子科技大学提出了一种基于非相干MIMO雷达体制下的联合多目标检测和定位方法(Y.Ai,W.Yi,M.R.Morelande and L.J.Kong,“Joint multi-target detection and localizationwith a noncoherent statistical MIMO radar,”International Conf.on InformationFusion,2014.),它基于最大似然估计的理论,将多个目标联合最大化的问题分成多个非联合的优化问题,从而消除已经明确的目标所带来的干扰,实现对联合多目标的检测和定位。杭州电子科技大学提出了一种在图像域的目标定位跟踪方法(C.Wang and L.Zhang,“Meanshift based orientation and location tracking of targets,”2010SixthInternational Conference on Natural Computation(ICNC),2010.),该方法基于均值漂移算法,利用目标梯度角的概率密度分布为特征,通过多次迭代,实现了目标的方位估计和跟踪。
上述方法有复杂的算法流程和大的计算复杂度,而在实际的目标定位跟踪场合,需要一定的实时性。因此,研究一种具有实时性且定位准确,适用于室内室外场景的多个人体目标定位跟踪方法在雷达目标定位跟踪技术领域具有重要的价值。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种适用于多目标的定位方法,基于单发多收(SIMO)的线性调频连续波(LFMCW)雷达系统,首先利用动目标显示(MTI)和去均值的方法对回波数据进行预处理;然后对回波数据的每一周期做二倍插值细化距离维加窗傅里叶变换,根据目标的距离谱,获取目标的距离信息;接着从频谱的目标所在峰值处提取出该目标对应的相位信息;最后,我们将不同接收通道的相位信息融合,从而计算出不同接收通道间的相位差,换算出目标的方位角或俯仰角,结合之前获取的目标距离信息,从而计算出目标在二维或者三维平面的定位结果;得到定位结果后,利用卡尔曼滤波的方法,实现对目标的跟踪。
本发明的一种基于多通道比相定位的多个人体目标定位跟踪方法,基于单发多收的线性调频连续波雷达系统执行以下步骤:
步骤1:回波矩阵预处理:
对雷达接收机各路接收通道的N×L维回波矩阵Am分别在慢时间(按行)上进行去均值处理和动目标显示滤波,得到距离-脉冲域矩阵Dm,其中N为每路接收通道一次定位时所处理的回波数,L为每个回波信号的采样点数m=1,…,M,M为雷达接收机的接收通道数,即接收天线数目;
对各距离-脉冲域矩阵Dm分别在距离维上(按行)先做加窗处理,再做二倍插值以及傅里叶变换,得到每个扫频周期的回波信号的压缩成sinc时域脉冲信号;
将N个扫频周期的sinc时域脉冲信号组合在一起,得到M路接收通道探测目标对应的距离-脉冲域矩阵Zm
将各距离-脉冲域矩阵Zm分别在速度维上(按列)做加窗处理,以及傅里叶变换,得到距离-速度矩阵Vm
步骤2:目标检测:
分别将各距离-速度矩阵Vm投影至距离平面,得到投影后的一维行向量Pm,即Pm的每个元素都是一个潜在目标的距离信息;
分别对M个向量Pm进行单元平均恒虚警检测(CA-CFAR),得到检测目标(包含虚警目标),分别从各向量Pm中提取对应各检测目标的元素,得到各检测目标的距离信息
Figure BDA0001342129570000021
其中上标p为初始目标区分符;
基于各距离信息
Figure BDA0001342129570000022
对M路接收通道的检测目标进行融合处理:将距离信息
Figure BDA0001342129570000023
相同的检测目标作为一个目标,并记录对应的距离信息;
对目标进行凝聚处理:两两对比目标的距离信息,若两目标间的距离间距小于人体目标的分布距离范围S,则将比对的两目标作为同一目标,保留幅值较大的目标,删除幅值较小的目标,直至所有目标间的距离间距均大于S;
表示凝聚处理后的目标数,Ri表示目标的距离信息,其中
Figure BDA0001342129570000025
根据距离信息Ri的值,回溯到各距离-速度矩阵V1、V2、….VM中提取出各Ri所在距离单元的峰值,得到各目标的速度信息vi
由于人体目标的运动速度一般小于3m/s,雷达探测信号为LFMCW的时频关系可知,目标运动不会引起速度模糊,因此可以根据公式
Figure BDA0001342129570000031
对目标进行距离解耦和,得到个目标的真实距离ri,其中f0,T,B分别为LFMCW信号的载波频率、信号时宽、信号带宽。
步骤3:目标定位及跟踪:
根据各个目标在距离-速度矩阵V1、V2、….VM对应的频谱峰值,在每个谱峰处提取与所述频谱峰值对应的相位值
Figure BDA0001342129570000033
即第m接收通道回波数据处理后对应于第i个目标的相位值;
对同一目标的M路接收通道的相位值
Figure BDA0001342129570000034
进行两两组合,计算每种组合下的初始角度信息
Figure BDA0001342129570000035
Figure BDA0001342129570000036
其中的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure BDA0001342129570000038
表示每种组合中同一目标的不同接收通道的相位值,λ表示载波波长,d表示接收通道l、k对应的接收天线的间隔。
优选的,在两两组合时,将接收天线相邻的两个接收通道的相位值组合在一起,再计算对应的初始角度信息
Figure BDA0001342129570000039
然后,再对同一目标的初始角度信息
Figure BDA00013421295700000310
进行融合处理(例如加权平均),得到各目标的角度值θi
根据目标的真实距离ri、角度值θi计算出目标的定位坐标(xi,yi):
Figure BDA00013421295700000311
获取同一目标在连续时间序列上的定位坐标(xi,yi),得到目标的运动轨迹,完成对多人体目标的定位跟踪。
为了实现对目标的三维平面的定位及跟踪,对应的雷达系统的天线阵列为:发射天线位于坐标原点,各接收天线阵列均匀分布于坐标Z轴和Y轴上。在目标定位及跟踪处理时的步骤如下:
根据各个目标在距离-速度矩阵V1、V2、….VM对应的频谱峰值,在每个谱峰处提取与所述频谱峰值对应的相位值
将对应分布于Y轴上的接收天线的接收通道作为第一接收通道,通道数目用M1表示,将对应分布于Z轴上的接收天线的接收通道作为第二接收通道,通道数目用M2表示,且M1+M2=M;则将对应第一接收通道的相位值
Figure BDA0001342129570000041
表示为:
Figure BDA0001342129570000042
对应第二接收通道的相位值
Figure BDA0001342129570000043
表示为:
Figure BDA0001342129570000044
其中m1=1,…,M1,m2=1,…,M2
对同一目标的所有
Figure BDA0001342129570000045
进行两两组合,计算每种组合下的初始俯仰角
Figure BDA0001342129570000046
Figure BDA0001342129570000047
其中
Figure BDA0001342129570000048
的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure BDA0001342129570000049
表示每种组合中同一目标的不同第一接收通道的相位值,λ表示载波波长,d表示第一接收通道l1、k1对应的接收天线的间隔;并对同一目标的初始俯仰角
Figure BDA00013421295700000410
进行融合处理,得到各目标的俯仰角
Figure BDA00013421295700000411
对同一目标的所有
Figure BDA00013421295700000412
进行两两组合,计算每种组合下的初始轴偏角
Figure BDA00013421295700000413
Figure BDA00013421295700000414
其中
Figure BDA00013421295700000415
的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure BDA00013421295700000416
表示每种组合中同一目标的不同第一接收通道的相位值,λ表示载波波长,d表示第一接收通道l2、k2对应的接收天线的间隔;并对同一目标的初始轴偏角
Figure BDA00013421295700000417
进行融合处理,得到各目标的轴偏角
Figure BDA00013421295700000418
根据目标的真实距离ri、俯仰角
Figure BDA00013421295700000419
轴偏角
Figure BDA00013421295700000420
计算出目标在三维平面的定位坐标(xi,yi,zi):
Figure BDA00013421295700000421
获取同一目标在连续时间序列上的定位坐标(xi,yi,zi),得到目标的运动轨迹。
在分别对
Figure BDA00013421295700000422
进行两两组合时,仅将相邻接收天线的对应通道的
Figure BDA00013421295700000423
进行组合,以便于进一步减少计算量。
为了使目标的运动轨迹更为平滑,以及去除一些异常值,得到目标的运动轨迹后,可以采用卡尔曼滤波的方法对运动轨迹进行滤波处理。
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明提出了一种单发多收(SIMO)的雷达系统下,适用于室内和室外环境中多个人体运动目标的检测、定位以及跟踪方法,该方法能够对多目标进行有效的检测定位和跟踪,在提高多目标定位精度的同时,不会造成检测目标的丢失。无论在室内还是室外的环境中,本发明均能够呈现出更好的目标定位效果,同时,结合卡尔曼滤波,本发明能够对目标实现实时的跟踪。本发明能够保证雷达探测系统对多目标定位跟踪的实用效果,在车载雷达等方面,有广泛的应用前景。
附图说明
图1为具体实施方式的处理流程图。
图2为定位场景示意图。
图3为多目标人体走动轨迹示意图
图4为多人体目标定位跟踪结果图。
图5为三维平面目标定位仿真场景示意图。
图6为三维目标定位仿真结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
将本发明用于对多个运动目标的定位和跟踪,其室内实测数据场景示意图如图2所示,坐标系零点位于发射天线位置,4个接收天线沿x轴等间隔放置,相邻两个接收天线之间的水平间隔为半波长d=λ/2,雷达的发射信号为中心频率24GHz、带宽500MHz的线性调频信号,信号时宽为300us。
论证实验中,三个人体目标分别从不同的起点开始出发,实际的运动轨迹示意图如图3所示。
参见图1,对上述场景采用本发明的多人体目标定位跟踪方法的处理步骤为:
S1:通过一发多收的LFMCW雷达系统回波信号(回波数据),本实施例中,采用的是1发4收的LFMCW雷达系统,即雷达接收机的接收通道数M=4,每个接收通道(接收天线)一次定位时所处理的回波数N=128,每个回波信号的采样点数L=128;
S2:对4路接收通道所得的N×L维回波矩阵A1、A2、…、A4分别在慢时间上(按行)进行去均值处理和MTI滤波,得到去除了静止背景等零频杂波的距离-脉冲域矩阵D1、D2、…D4
S3:对D1、D2、…D4分别在距离维上(按行)加窗处理且做二倍插值FFT(傅里叶变换),使每个周期的回波信号压缩成sin c时域脉冲信号,sin c带有了目标的距离信息;再将N个扫频周期上进行的上述操作得到的N个sin c信号组合在一起,得到4路接收通道探测目标对应的距离-脉冲域矩阵Z1、Z2、…Z4
S4:对Z1、Z2、…Z4分别在速度维(按列)做加窗FFT,得到对应的距离-速度矩阵V1、V2、….V4
即,通过上述步骤S1~S4完成对回波矩阵的预处理。
S5:将步骤S3得到的距离-速度矩阵V1、V2、….V4投影至距离平面,得到投影后的一维行向量P1、P2、….P4
S6:对P1、P2、….P4进行单元平均-恒虚警检测,获取目标(包含虚警目标)及其距离信息;
S7:对目标进行凝聚处理后,凝聚处理后的目标及其距离信息(R1、R2、R3),即真实目标的距离信息;
S8:根据R1、R2、R3的值,回溯到V1、V2、….V4中提取出R1、R2、R3所在距离单元的峰值,从而获取目标的速度v1、v2、v3
再根据
Figure BDA0001342129570000061
(其中i=1,2,3,f0,T,B为LFMCW信号的载波频率、信号时宽和信号带宽)对目标进行距离解耦和,从而得到探测目标对应的真实距离r1、r2、r3
根据各个目标在距离-速度矩阵V1、V2、….V4对应的频谱峰值,在每个谱峰处提取出该峰值处数值对应的相位值
Figure BDA0001342129570000062
基于相邻接收天线所对应的接收通道的相位值
Figure BDA0001342129570000063
计算初始角度信息
Figure BDA0001342129570000064
在对同一目标的初始角度信息求平均,可得到目标的角度值θi
即,通过上述步骤S5~S8完成目标检测处理。
S9:根据步骤S8得到的真实距离r1、r2、r3,可以计算出目标的定位坐标:
Figure BDA0001342129570000065
S10:重复步骤S2~S9,可以得到各目标的一系列定位坐标,从而得到目标粗略的目标运动轨迹,为了使目标运动轨迹更为平滑,以及去除一些异常值,采用卡尔曼滤波的方法粗略的目标运动轨迹进行滤波,得到最终的目标运动轨迹,如图4所示。图中目标探测到的运动轨迹与实际的目标运动轨迹基本一致。
上述在二维平面的目标定位和跟踪处理过程可以扩展至三维平面,其三维平面目标定位仿真场景示意图如图5所示,其中发射天线T位于坐标原点O,接收天线R阵列均匀分布于坐标Z轴和Y轴上,见图5中所示的R1,R3,R4,RM-3,RM-2,RM-1,RM,相邻天线的间隔d=λ/2。基于二维平面的定位原理,沿Y轴分布的接收天线阵列可以探测出三维平面中目标Pt(坐标为(xt,yt,zt))的俯仰角
Figure BDA0001342129570000071
沿Z轴分布的接收天线阵列可以探测出三维平面中目标Pt的轴偏角
Figure BDA0001342129570000072
图中的Pt′表示目标Pt的水平面投影。结合探测到的目标的真实距离r,可以计算出目标在三维平面的定位坐标:
Figure BDA0001342129570000073
三维目标定位的理论仿真结果如图6所示。
由上述实测数据结果和仿真结果可知,本发明提供的适用于多个人体目标检测、定位和跟踪的方法不仅能够有效地检测到目标的个数,还能对目标实现准确的定位,其定位误差小于0.5米,更能对目标的运动轨迹进行实时的跟踪,验证了本发明的有效性和实用性。

Claims (6)

1.一种基于多通道比相定位的多个人体目标定位跟踪方法,其特征在于,基于单发多收的线性调频连续波雷达系统执行以下步骤:
步骤1:回波矩阵预处理:
对雷达接收机各路接收通道的N×L维回波矩阵Am分别在慢时间上进行去均值处理和动目标显示滤波,得到距离-脉冲域矩阵Dm,其中N为每路接收通道一次定位时所处理的回波数,L为每个回波信号的采样点数,m=1,…,M,M为雷达接收机的接收通道数;
对各距离-脉冲域矩阵Dm分别在距离维上先做加窗处理,再做二倍插值,以及傅里叶变换,得到每个扫频周期的回波信号的压缩成sinc时域脉冲信号;
将N个扫频周期的sinc时域脉冲信号组合在一起,得到M路接收通道探测目标对应的距离-脉冲域矩阵Zm
将各距离-脉冲域矩阵Zm分别在速度维上做加窗处理,以及傅里叶变换,得到距离-速度矩阵Vm
步骤2:目标检测:
分别将各距离-速度矩阵Vm投影至距离平面,得到投影后的一维行向量Pm
分别对M个向量Pm进行单元平均恒虚警检测,得到检测目标,分别从各向量Pm中提取对应各检测目标的元素,得到各检测目标的距离信息
Figure FDA0002276379600000011
其中上标p为初始目标区分符;
基于各距离信息
Figure FDA0002276379600000012
对M路接收通道的检测目标进行融合处理:将距离信息
Figure FDA0002276379600000013
相同的检测目标作为一个目标,并记录对应的距离信息;
对目标进行凝聚处理:两两对比目标的距离信息,若两目标间的距离间距小于人体目标的分布距离范围S,则将比对的两目标作为同一目标,保留幅值较大的目标,删除幅值较小的目标,直至所有目标间的距离间距均大于S;
Figure FDA0002276379600000014
表示凝聚处理后的目标数,Ri表示各目标的距离信息,其中
Figure FDA0002276379600000015
根据距离信息Ri的值,回溯到距离-速度矩阵V1、V2、….、VM中提取出
Figure FDA0002276379600000016
所在距离单元的峰值,得到各目标的速度信息vi
根据公式
Figure FDA0002276379600000021
对各目标进行距离解耦和,得到个目标的真实距离ri,其中f0,T,B分别为雷达信号的载波频率、信号时宽、信号带宽;
步骤3:目标定位及跟踪:
根据各个目标在距离-速度矩阵V1、V2、….、VM对应的频谱峰值,在每个谱峰处提取与所述频谱峰值对应的相位值
Figure FDA0002276379600000023
对同一目标的不同接收通道的相位值,进行两两组合,计算每种组合下的初始角度信息
Figure FDA0002276379600000025
其中的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure FDA0002276379600000027
表示每种组合中同一目标的不同接收通道的相位值,λ表示载波波长,d表示接收通道l、k对应的接收天线的间隔;
对同一目标的初始角度信息
Figure FDA0002276379600000028
进行融合处理,得到各目标的角度值θi
根据目标的真实距离ri、角度值θi计算出目标的定位坐标(xi,yi):
获取同一目标在连续时间序列上的定位坐标(xi,yi),得到目标的运动轨迹。
2.如权利要求1所述的方法,其特征在于,步骤3中,对M路接收通道中,将接收天线相邻的两接收通道进行组合,并根据
Figure FDA00022763796000000210
计算对应的初始角度信息
Figure FDA00022763796000000211
其中表示接收天线相邻的两个接收通道的相位值。
3.如权利要求1或2所述的方法,其特征在于,通过加权平均法对同一目标的初始角度信息
Figure FDA00022763796000000213
进行融合处理,得到各目标的角度值θi
4.如权利要求1所述的方法,其特征在于,所述雷达系统的发射天线位于坐标原点,各接收天线阵列均匀分布于坐标Z轴和Y轴上;
则步骤3具体为:
根据各个目标在距离-速度矩阵V1、V2、….、VM对应的频谱峰值,在每个谱峰处提取与所述频谱峰值对应的相位值
Figure FDA00022763796000000214
将对应分布于Y轴上的接收天线的接收通道作为第一接收通道,通道数目用M1表示,将对应分布于Z轴上的接收天线的接收通道作为第二接收通道,通道数目用M2表示,且M1+M2=M;则将对应第一接收通道的相位值
Figure FDA0002276379600000031
表示为:
Figure FDA0002276379600000032
对应第二接收通道的相位值表示为:
Figure FDA0002276379600000034
其中m1=1,…,M1,m2=1,…,M2
对同一目标的所有
Figure FDA0002276379600000035
进行两两组合,计算每种组合下的初始俯仰角
Figure FDA0002276379600000036
Figure FDA0002276379600000037
其中
Figure FDA0002276379600000038
的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure FDA0002276379600000039
表示每种组合中同一目标的不同第一接收通道的相位值,λ表示载波波长,d表示第一接收通道l1、k1对应的接收天线的间隔;并对同一目标的初始俯仰角
Figure FDA00022763796000000310
进行融合处理,得到各目标的俯仰角
Figure FDA00022763796000000311
对同一目标的所有
Figure FDA00022763796000000312
进行两两组合,计算每种组合下的初始轴偏角
Figure FDA00022763796000000313
Figure FDA00022763796000000314
其中
Figure FDA00022763796000000315
的下标c用于区分不同的组合,上标i用于区分不同的检测目标,
Figure FDA00022763796000000316
表示每种组合中同一目标的不同第二接收通道的相位值,λ表示载波波长,d表示第二接收通道l2、k2对应的接收天线的间隔;并对同一目标的初始轴偏角
Figure FDA00022763796000000317
进行融合处理,得到各目标的轴偏角
Figure FDA00022763796000000318
根据目标的真实距离ri、俯仰角轴偏角
Figure FDA00022763796000000320
计算出目标在三维平面的定位坐标(xi,yi,zi):
Figure FDA00022763796000000321
获取同一目标在连续时间序列上的定位坐标(xi,yi,zi),得到目标的运动轨迹。
5.如权利要求4所述的方法,其特征在于,步骤3中,在分别对
Figure FDA00022763796000000322
进行两两组合时,仅将相邻接收天线的对应通道的
Figure FDA00022763796000000323
进行组合。
6.如权利要求1、2、4或5所述的方法,其特征在于,在得到目标的运动轨迹后,通过卡尔曼滤波法对各运动轨迹进行滤波处理。
CN201710542290.6A 2017-07-05 2017-07-05 一种基于多通道比相定位的多人体目标定位跟踪方法 Active CN107167784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542290.6A CN107167784B (zh) 2017-07-05 2017-07-05 一种基于多通道比相定位的多人体目标定位跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542290.6A CN107167784B (zh) 2017-07-05 2017-07-05 一种基于多通道比相定位的多人体目标定位跟踪方法

Publications (2)

Publication Number Publication Date
CN107167784A CN107167784A (zh) 2017-09-15
CN107167784B true CN107167784B (zh) 2020-02-14

Family

ID=59822839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542290.6A Active CN107167784B (zh) 2017-07-05 2017-07-05 一种基于多通道比相定位的多人体目标定位跟踪方法

Country Status (1)

Country Link
CN (1) CN107167784B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656255B (zh) * 2017-10-25 2019-10-25 中国人民解放军国防科技大学 基于多径回波的超宽带雷达动目标二维定位方法
CN107942323B (zh) * 2017-11-17 2021-05-18 西安电子科技大学 基于频域熵的进动目标时频曲线提取方法
CN108152796B (zh) * 2017-12-01 2020-07-28 北京理工大学 一种基于灰色卡尔曼滤波的主瓣移动干扰消除方法
CN108490427A (zh) * 2018-02-07 2018-09-04 浙江大学 一种运动目标室内定位及实时追踪方法
CN109239703B (zh) * 2018-09-27 2021-05-11 中国科学院电子学研究所 运动目标实时跟踪方法
CN109541585B (zh) * 2018-10-09 2020-11-06 中国人民解放军第四军医大学 一种基于峰度评估的人体穿墙检测成像方法
CN110873877B (zh) 2019-04-25 2021-04-23 北京航空航天大学 目标运动轨迹的确定方法及装置
CN110208741B (zh) * 2019-06-28 2022-12-02 电子科技大学 一种基于多圆阵测相的超视距单目标直接定位方法
CN110346753A (zh) * 2019-07-22 2019-10-18 芜湖易来达雷达科技有限公司 基于接收天线相位差实现车载雷达俯仰方向角度分辨方法
CN110531336A (zh) * 2019-09-20 2019-12-03 山东大学 一种物体检测识别方法及系统
CN113633268A (zh) * 2020-05-11 2021-11-12 富士通株式会社 生理信号检测方法、装置和数据处理设备
CN112001225B (zh) * 2020-07-06 2023-06-23 西安电子科技大学 一种在线多目标跟踪方法、系统及应用
CN111929653B (zh) * 2020-07-21 2024-03-26 上海交通大学 一种基于无人船航海雷达的目标检测、跟踪方法及系统
CN112611097A (zh) * 2020-11-30 2021-04-06 青岛海信日立空调系统有限公司 一种空调器和控制方法
CN113156390B (zh) * 2021-03-19 2023-09-08 深圳航天科技创新研究院 雷达信号处理方法及设备、计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644774B (zh) * 2009-07-07 2012-08-15 中国科学院声学研究所 一种基于线性规划的近场目标定位方法及其系统
US9473222B2 (en) * 2013-03-04 2016-10-18 Telefonaktiebolaget L M Ericsson (Publ) Tool for verifying a line of sight MIMO/SIMO system
CN104715471B (zh) * 2014-01-03 2018-01-02 杭州海康威视数字技术股份有限公司 目标定位跟踪方法及其装置
KR102218897B1 (ko) * 2015-05-08 2021-02-24 삼성전기주식회사 전자기기 및 위치 감지 시스템
CN106371078B (zh) * 2016-08-16 2018-06-26 电子科技大学 基于发射波形和位置联合估计的多发射源被动定位方法
CN106707258A (zh) * 2017-03-03 2017-05-24 电子科技大学 一种非高斯背景下微动目标多参数估计方法

Also Published As

Publication number Publication date
CN107167784A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107167784B (zh) 一种基于多通道比相定位的多人体目标定位跟踪方法
CN109061622B (zh) 一种基于毫米波雷达的隐蔽目标多径探测方法
Guercan et al. Super-resolution algorithm for joint range-azimuth-Doppler estimation in automotive radars
CN106353744B (zh) 基于双基地fda-mimo雷达的多参数联合估计方法
CN106443615B (zh) 一种双基地mimo雷达高速目标跨距离门测速定位方法
KR100244005B1 (ko) 다이폴 모멘트 검출기 및 로컬라이저
CN109633598B (zh) 基于特征分析的阵列雷达目标检测方法
CN104515971A (zh) 宽带多目标机载单站无源定位方法
CN106707258A (zh) 一种非高斯背景下微动目标多参数估计方法
Maher A survey of PHD filter and CPHD filter implementations
CN111175731A (zh) 一种多雷达目标单机无源定位方法
CN111413666A (zh) 一种阵列测频测向联合接收机设计方法
CN112782685B (zh) 基于mimo雷达的多声源定位与声音重构方法及系统
CN112698265A (zh) 一种低频辐射源目标的远距探测定位系统及方法
CN103091673A (zh) 基于相控阵雷达系统的压缩传感-检测前跟踪方法
CN110146873A (zh) 分布式非相参雷达的目标位置和速度的估计方法
CN110471029B (zh) 一种基于扩展卡尔曼滤波的单站无源定位方法及装置
Nuss et al. 3D radar image fusion using OFDM-based MIMO radar
CN102062851A (zh) 基于改进l阵的星载宽带多目标的测向方法
Liu et al. Compressed sensing based track before detect algorithm for airborne radars
CN114114271A (zh) 一种无人机机载防撞雷达测角方法
CN112014817B (zh) 一种空间自旋目标三维重构方法
Sakamoto et al. Revised range point migration method for rapid 3-D imaging with UWB radar
CN112068125B (zh) 一种六维探地雷达系统
CN112415469B (zh) 一种两维数字阵列雷达快速干扰测向方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant