CN107162584B - 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关 - Google Patents

无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关 Download PDF

Info

Publication number
CN107162584B
CN107162584B CN201710332813.4A CN201710332813A CN107162584B CN 107162584 B CN107162584 B CN 107162584B CN 201710332813 A CN201710332813 A CN 201710332813A CN 107162584 B CN107162584 B CN 107162584B
Authority
CN
China
Prior art keywords
ferroelectric
tio
lead
ceramics
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710332813.4A
Other languages
English (en)
Other versions
CN107162584A (zh
Inventor
高志鹏
谷伟
韩旭
高刘德
王海晏
谢庆海
李兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN201710332813.4A priority Critical patent/CN107162584B/zh
Publication of CN107162584A publication Critical patent/CN107162584A/zh
Application granted granted Critical
Publication of CN107162584B publication Critical patent/CN107162584B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关,目的在于解决现有的铁电开关大部分都是以锆钛酸铅或者BaTiO3作为基材,而锆钛酸铅中的铅会导致严重的环境污染,且PZT和BaTiO3铁电材料的使用温度大都在100℃以内,具有一定局限性的问题。申请人通过研究发现,Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料((1‑x)(Bi0.5Na0.5)TiO3‑xBiAlO3,Na0.5Bi0.5TiO3‑xZnO)在电场触发下具有良好的开关性能,并基于该发现,得到了本发明的技术方案。本申请中,将无铅铁电材料用作脉冲功率开关的基材,所述无铅铁电材料为Na0.5Bi0.5TiO3铁电陶瓷、其固溶体材料中的一种或多种。本发明中,首次将Na0.5Bi0.5TiO3铁电陶瓷及其固溶体材料作为脉冲功率开关基材,用于铁电开关中,并取得了较好的效果,具有较高的应用价值,及较好的应用前景。

Description

无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关
技术领域
本发明涉及脉冲领域,具体为一种无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关,其是一种新型无铅高性能铁电开关。本发明中首次将Na0.5Bi0.5TiO3铁电陶瓷及其固溶体材料作为脉冲功率开关基材,用于铁电开关中,并取得了较好的效果,具有较好的应用前景。
背景技术
脉冲功率技术是指慢慢把能量储存起来,然后快速压缩、转换或直接释放能量给负载的电物理技术。基于脉冲功率技术自身的优点,其在等离子体物理与受控核聚变研究、高功率激光、大功率微波、电磁脉冲、电磁发射等工业领域有着广泛的应用。近年来,各个先进国家的军用和民用部门、高等院校等都在积极开展脉冲功率技术及其应用的研究。
目前,高功率脉冲技术的发展方向主要包括如下三个方面:1)提高储能密度,2)研制大功率转换开关,3)产生高重频的大功率脉冲。其中,开关元件的参数和特性对脉冲的上升时间、幅值等产生最直接、最敏感的影响,因此,开关元件在脉冲功率技术领域占有特殊的地位。
铁电开关材料是一种在脉冲电压或者脉冲激光激励下,从铁电体表面获得很强的电脉冲的新型功能材料,其工作原理如图1所示,其利用铁电材料的电畴翻转产生高强度、高速度的脉冲信号。如图1(a)所示,在极化的铁电材料两端加上反向的触发电场,外加电场使得电畴翻转,在外电路上形成脉冲大电流信号。如图1(b)所示,开关工作完成后,其铁电材料的电畴完全翻转。图1(c)则给出了开关信号和触发信号的示意图,测试电流的最大值为峰值电流,其上升前沿为响应时间。铁电开关具高可靠、高稳定、电流密度大和工艺简单等优势,因而受到研究人员的广泛关注。
目前,工业上使用的铁电开关大部分都是以锆钛酸铅(简称PZT)或者BaTiO3作为基材。然而,锆钛酸铅中的铅会导致严重的环境污染;另外,PZT和BaTiO3铁电材料的使用温度大都在100℃以内,具有一定的局限性。
但目前除了上述铁电材料外,对于其他体系铁电陶瓷的铁电开关性能还鲜有人报道。因此,迫切需要一种新的用于铁电开关基材,以解决上述问题。
发明内容
本发明的发明目的在于:针对现有的铁电开关大部分都是以锆钛酸铅或者BaTiO3作为基材,而锆钛酸铅中的铅会导致严重的环境污染,且PZT和BaTiO3铁电材料的使用温度大都在100℃以内,具有一定局限性的问题,提供一种无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关。申请人通过研究发现,Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料((1-x)(Bi0.5Na0.5)TiO3-xBiAlO3,Na0.5Bi0.5TiO3-xZnO)在电场触发下具有良好的开关性能,并基于该发现,得到了本发明的技术方案。本发明中,首次将Na0.5Bi0.5TiO3铁电陶瓷及其固溶体材料作为脉冲功率开关基材,用于铁电开关中,并取得了较好的效果,具有较高的应用价值和较好的应用前景。
为了实现上述目的,本发明采用如下技术方案:
无铅铁电材料作为脉冲功率开关基材的应用,将无铅铁电材料用作脉冲功率开关的基材,所述无铅铁电材料为Na0.5Bi0.5TiO3铁电陶瓷、其固溶体材料中的一种或多种。
该无铅铁电材料的使用范围为0~200℃,脉冲电流峰值为40-133A/cm2
所述Na0.5Bi0.5TiO3的固溶体材料的化学分子式为:Na0.5Bi0.5TiO3-xCeO2、Na0.5Bi0.5TiO3-yZnO、(1-z)(Bi0.5Na0.5)TiO3-zBiAlO3中的一种或多种;
其中,x≤0.01,y≤0.02,z≤0.08。
采用前述无铅铁电材料制备的铁电开关,其采用包括如下步骤的方法制备而成:
(1)制备无铅铁电陶瓷材料,其相对密度大于95%;
(2)将步骤1制备的无铅铁电陶瓷材料进行切片,所得样品的厚度为0.5~2.0mm,并在样品的两面涂银电极,再经500~600℃高温烧结,即得产品。
所述步骤2中,高温烧结时间为0.5~3h。
所述步骤2中,高温烧结时间为1h。
前述铁电开关的测试方法,包括如下步骤:
(a)在常温至120℃条件下,将制备的铁电开关在外加直流高电场下极化10~20min,电场强度为2-5kV/mm,使得铁电陶瓷电畴翻转极化;
(b)将步骤a极化好的铁电开关接入测试电路,从而测试铁电开关的性能。
针对前述问题,本发明提供无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关。本发明中,申请人发现Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料((1-x)(Bi0.5Na0.5)TiO3-xBiAlO3,Na0.5Bi0.5TiO3-xZnO)在电场触发下具有良好的开关性能,并首次利用Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料(Na0.5Bi0.5TiO3-xCeO2(x<0.01),Na0.5Bi0.5TiO3-xZnO(x<0.02),(1-x)(Bi0.5Na0.5)TiO3-xBiAlO3(x<0.08)等)这一类高极化无铅铁电材料作为铁电开关基材;经测定,本发明的铁电开关材料的使用范围为0℃到200℃,脉冲电流峰值为40-133A/cm2。与现有技术相比,本发明中不使用铅,避免了铅材料对环境的危害;同时,将铁电材料的使用范围,扩大至200℃以下,有效扩大铁电开关材料的应用范围,具有显著的进步意义。
需要强调的是,Na0.5Bi0.5TiO3铁电陶瓷是一种现有材料,但利用材料的铁电开关特性,并将其用于制作脉冲功率开关基材,则是现有技术所没有给出技术启示的,具有显著的进步。
进一步,本发明还提供前述铁电开关的制备方法,其包括如下步骤。
(1)样品制备:利用固相烧结法(或通过其他方法,包括等离子放电烧结法,热压法等方法制备陶瓷)制备Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料(Na0.5Bi0.5TiO3-xCeO2(x<0.01),Na0.5Bi0.5TiO3-xZnO(x<0.02),(1-x)(Bi0.5Na0.5)TiO3-xBiAlO3(x<0.08)等),陶瓷的相对密度大于95%。
(2)电极烧实:把烧结好的陶瓷切片,样品厚度在0.5-2mm范围内,样品尺寸为任意方便涂电极尺寸,样品两面涂银电极并高温(优选500-600℃,1h,即将样品两面涂银后,升温至500-600℃,保温1h,然后降温至室温)烧实,降温到室温后,取出样品。
(3)样品的极化储能:在常温-120℃条件下,把烧结好而且涂有电极的陶瓷在外加直流高电场下极化15min,电场强度为2-5kV/mm,使得铁电陶瓷电畴翻转极化(如图3所示)。
(4)把极化好的陶瓷接入测试电路,测试其开关性能:把极化好的陶瓷片放入开关测试电路内,对其激发后的脉冲信号进行测试(如图2所示)。测试结果表明:Na0.5Bi0.5TiO3铁电陶瓷以及其固溶体材料((1-x)(Bi0.5Na0.5)TiO3-xBiAlO3,Na0.5Bi0.5TiO3-xZnO等等)能在0-200℃的温度范围内稳定工作,结果证明,其能够作为铁电开关基材使用。
综上所述,本发明首次利用Na0.5Bi0.5TiO3(NBT)铁电陶瓷以及其固溶体材料作为基材,在电场触发下,有良好的开关性能。另外NBT为典型的无铅铁电材料,对于环境污染较小。因此,本发明开发的NBT无铅铁电开关材料对于高功率脉冲电源的发展具有重要的意义,同时此类材料在开关方向有着较好的应用前景。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1为铁电开关的工作原理图。
图2为本实施例中样品测试示意图。
图3为铁电开关陶瓷极化示意图。
图中标记:1为触发电源,2为匹配电阻,3为二极管,4为待测试的铁电开关陶瓷,5为测试电流的罗氏线圈,6为匹配电阻,7为示波器,8为加热装置(加热装置主要用于为铁电开关陶瓷进行加热),11为陶瓷样品,12为银电极,13为直流高压电源。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本实施例中采用的样品测试装置如图2所示,采用图2的测试装置对实施例制备的铁电开关进行测试。图3为实施例中,铁电开关陶瓷极化示意图。
实施例1 Na0.5Bi0.5TiO3铁电陶瓷的铁电开关应用
(1)利用等离子体电火花烧结技术制备Na0.5Bi0.5TiO3铁电陶瓷,该陶瓷的相对密度为99%。
(2)将步骤(1)烧结好的铁电陶瓷切片,所得样品厚度为0.5mm,尺寸为3×2mm。在样品两面涂银电极,电极尺寸为2.5×1.5mm,600℃高温烧结1h,降温到室温后,取出样品。
(3)将步骤(2)制备的样品在硅油中加热到80℃,保温15min。在陶瓷的两面加2kV直流电压,保持此条件15min。
(4)采用上述相同条件,制备5件陶瓷样品。
(5)在不同温度条件下,测试Na0.5Bi0.5TiO3铁电陶瓷的开关性能。测试结果如表1所示,开关峰值电流为49.5-89.7A/cm2
表1
测试温度(℃) 25 50 75 100 150
相应时间(ns) 41.8 52.2 47.8 37.4 33.9
电流峰值(A/cm<sup>2</sup>) 77.5 73.3 89.7 66.3 49.5
实施例2 Na0.5Bi0.5TiO3铁电陶瓷的铁电开关应用
(1)利用热压烧结技术制备Na0.5Bi0.5TiO3铁电陶瓷,瓷的相对密度为96.5%。
(2)将步骤(1)烧结好的陶瓷切片,样品厚度为1.5mm,尺寸为2.5×2.5mm。在样品两面涂银电极,电极尺寸为2.4×2.4mm,600℃高温烧结1h,降温到室温,取出样品。
(3)将步骤(2)制备的样品在硅油中加热到120℃,保温15min。在陶瓷的两面加4kV直流电压,保持此条件15min。
(4)重复前述步骤(1)-(3)五次(即在相同条件下进行重复制备),制备5件陶瓷样品。
(5)在不同温度条件下,测试Na0.5Bi0.5TiO3铁电陶瓷的开关性能。测试结果如表2所示,开关峰值电流为59.1-103.3A/cm2
表2
测试温度(℃) 25 50 75 100 150
相应时间(ns) 81.8 79.2 107.8 67.4 63.0
电流峰值(A/cm<sup>2</sup>) 87.5 103.3 91.7 69.9 59.1
实施例3 Na0.5Bi0.5TiO3-xCeO2铁电陶瓷的铁电开关应用
(1)利用热压烧结技术制备Na0.5Bi0.5TiO3-xCeO2(x=0.002,0.005,0.01)铁电陶瓷。所得陶瓷的相对密度分别为96.5%,96.3%,96.9%。
(2)把步骤(1)烧结好的陶瓷切片,所得Na0.5Bi0.5TiO3-xCeO2(x=0.002,0.005,0.01)的样品厚度均为1.0mm,尺寸为3×3mm。在样品两面涂银电极,电极尺寸为2.9×2.9mm,500℃高温烧结1h,降温到室温后,取出样品。
(3)将步骤(2)制备的所有样品在硅油中加热到60℃,保温15min。在陶瓷样品的两面加5kV直流电压,保持此条件15min。
(4)在室温条件下,测试所得Na0.5Bi0.5TiO3-xCeO2铁电陶瓷的开关性能,结果如表3所示。测试结果表明,本实施例的材料有着良好的开关性能。
表3
Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-xCeO<sub>2</sub> x=0.002 x=0.005 x=0.01
相应时间(ns) 117.9 109.5 97.8
电流峰值(A/cm<sup>2</sup>) 121.5 93.3 81.6
实施例4 Na0.5Bi0.5TiO3-xZnO铁电陶瓷的铁电开关应用
(1)利用等离子体电火花烧结技术制备Na0.5Bi0.5TiO3-xZnO(x=0.005,0.01,0.015,0.02)铁电陶瓷。所得陶瓷的相对密度分别为98.1%,97.7%,97.5%,98.5%。
(2)把步骤(1)烧结好的陶瓷切片,所得Na0.5Bi0.5TiO3-xZnO(x=0.005,0.01,0.015,0.02)样品厚度均为0.5mm,尺寸为1.5×1.5mm。在样品两面涂银电极,电极尺寸为1.3×1.3mm,高温600℃烧结1h,降温到室温后,取出样品。
(3)将步骤(2)制备的所有样品在硅油中加热到80℃,保温15min。在陶瓷的两面加2.5kV直流电压,保持此条件15min。
(4)在50℃条件下测试Na0.5Bi0.5TiO3-xZnO铁电陶瓷的开关性能,结果如表4所示。测定结果表明,本实施例的材料有着良好的开关性能。
表4
Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-xZnO x=0.005 x=0.01 x=0.015 x=0.02
相应时间(ns) 47.5 39.3 45.5 34.1
电流峰值(A/cm<sup>2</sup>) 57.1 62.9 44.8 53.3
实施例5 (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3(x<0.08)铁电陶瓷的铁电开关应用
(1)利用传统固相烧结法制备(1-x)(Bi0.5Na0.5)TiO3-xBiAlO3(x=0.002,0.004,0.006,0.008)铁电陶瓷。所得陶瓷的相对密度分别为95.5%,96.6%,95.8%,95.1%。
(2)把步骤(1)烧结好的陶瓷切片,所得(1-x)(Bi0.5Na0.5)TiO3-xBiAlO3(x=0.002,0.004,0.006,0.008)样品厚度均为2.0mm,尺寸为4×4mm。在样品两面涂银电极,电极尺寸为3.9×3.9mm,高温600℃烧结1h,降温到室温后,取出样品。
(3)将步骤(2)制备的所有样品在硅油中加热到80℃,保温15min。在陶瓷的两面加4kV直流电压,保持此条件15min。
(4)在室温条件下,测试(1-x)(Bi0.5Na0.5)TiO3-xBiAlO3铁电陶瓷的开关性能,结果如表5所示。测试结果表明,本实施例的材料有着良好的开关性能。
表5
(1-x)(Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub>-xBiAlO<sub>3</sub> x=0.002 x=0.004 x=0.006 x=0.008
相应时间(ns) 88.7 109.4 100.5 94.4
电流峰值(A/cm<sup>2</sup>) 79.0 81.2 104.9 133.7
实施例6 Na0.5Bi0.5TiO3铁电陶瓷的铁电开关应用
(1)利用传统固相烧结法制备Na0.5Bi0.5TiO3铁电陶瓷。所得陶瓷的相对密度为96.5%。
(2)把步骤(1)烧结好的陶瓷切片,样品厚度为1.0mm,尺寸为2×2mm。在样品两面涂银电极,电极尺寸为1.9×1.9mm,600℃高温烧结1h,降温到室温后,取出样品。
(3)将步骤(2)制备的样品在硅油中加热到80℃,保温15min。在陶瓷的两面加4kV直流电压,保持此条件15min。
(4)采用上述相同条件,制备4件陶瓷样品。
(4)在不同温度条件下,测试Na0.5Bi0.5TiO3铁电陶瓷的开关性能,结果如表6所示,开关峰值电流为40.0-71.2A/cm2
表6
测试温度(℃) 50 100 150 200
相应时间(ns) 67.9 61.0 49.9 33.5
电流峰值(A/cm<sup>2</sup>) 66.4 71.2 49.5 40.0
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (4)

1.无铅铁电材料作为脉冲功率开关基材的应用,其特征在于,将无铅铁电材料用作脉冲功率开关的基材,所述无铅铁电材料为Na0.5Bi0.5TiO3铁电陶瓷、其固溶体材料中的一种或多种;
所述Na0.5Bi0.5TiO3的固溶体材料的化学分子式为:Na0.5Bi0.5TiO3-xCeO2、Na0.5Bi0.5TiO3-yZnO、(1-z)(Bi0.5Na0.5)TiO3-zBiAlO3中的一种或多种;
其中,x≤0.01,y≤0.02,z≤0.08;
采用所述脉冲功率开关基材制备铁电开关包括如下步骤:
(1)制备无铅铁电陶瓷材料,其相对密度大于95%;
(2)将步骤1制备的无铅铁电陶瓷材料进行切片,所得样品的厚度为0.5~2.0mm,并在样品的两面涂银电极,再经500~600℃高温烧结,即得产品。
2.根据权利要求1所述的应用,其特征在于,该无铅铁电材料的使用范围为0~200℃,脉冲电流峰值为40-133A/cm2
3.根据权利要求1所述的铁电开关,其特征在于,所述步骤2中,高温烧结时间为0.5~3h。
4.根据权利要求1-3任一项所述的铁电开关,其特征在于,所述步骤2中,高温烧结时间为1h。
CN201710332813.4A 2017-05-12 2017-05-12 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关 Expired - Fee Related CN107162584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710332813.4A CN107162584B (zh) 2017-05-12 2017-05-12 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710332813.4A CN107162584B (zh) 2017-05-12 2017-05-12 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关

Publications (2)

Publication Number Publication Date
CN107162584A CN107162584A (zh) 2017-09-15
CN107162584B true CN107162584B (zh) 2019-11-29

Family

ID=59815599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710332813.4A Expired - Fee Related CN107162584B (zh) 2017-05-12 2017-05-12 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关

Country Status (1)

Country Link
CN (1) CN107162584B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964123A (zh) * 2012-12-12 2013-03-13 中国科学院上海硅酸盐研究所 氧化钐掺杂改性的锆钛酸铅铁电陶瓷及其制备方法
CN105254296A (zh) * 2015-09-23 2016-01-20 中国工程物理研究院流体物理研究所 一种无铅高储能铁电材料及其应用
CN105957958A (zh) * 2016-05-04 2016-09-21 中国工程物理研究院流体物理研究所 La2Ti2O7或其固溶体材料在高温压电传感器中的应用及其制备的传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964123A (zh) * 2012-12-12 2013-03-13 中国科学院上海硅酸盐研究所 氧化钐掺杂改性的锆钛酸铅铁电陶瓷及其制备方法
CN105254296A (zh) * 2015-09-23 2016-01-20 中国工程物理研究院流体物理研究所 一种无铅高储能铁电材料及其应用
CN105957958A (zh) * 2016-05-04 2016-09-21 中国工程物理研究院流体物理研究所 La2Ti2O7或其固溶体材料在高温压电传感器中的应用及其制备的传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铁电体触发开关的实验研究;李爱萍等;《高压电技术》;20070531;全文 *

Also Published As

Publication number Publication date
CN107162584A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
Zhou et al. Room-temperature creep of soft PZT under static electrical and compressive stress loading
Li et al. Stable energy density of a PMN–PST ceramic from room temperature to its Curie point based on the synergistic effect of diversified energy
CN105254296B (zh) 一种无铅高储能铁电材料及其应用
Capsal et al. Evaluation of macroscopic polarization and actuation abilities of electrostrictive dipolar polymers using the microscopic Debye/Langevin formalism
Sun et al. Polarization and piezoelectricity in polymer films with artificial void structure
CN107162584B (zh) 无铅铁电材料作为脉冲功率开关基材的应用及其铁电开关
Li et al. Study on the impact of space charge on the lifetime of pulsed capacitors
CN105957958A (zh) La2Ti2O7或其固溶体材料在高温压电传感器中的应用及其制备的传感器
Qin et al. Polarization study of poly (vinylidene fluoride) films under cyclic electric fields
Zhang et al. Magnetoelectric phenomena of insulator polymers after corona poling: procedure and experiments
Del Duca et al. Comprehensive evaluation of electrocaloric effect and fatigue behavior in the 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 bulk relaxor ferroelectric ceramic
Di Lillo et al. Quasi-static electric properties of insulating polymers at a high voltage for electro-bonded laminates
Nie et al. Enhanced shock performance by disperse porous structure: A case study in PZT 95/5 ferroelectric ceramics
JP5313904B2 (ja) 積層型圧電/電歪素子の分極処理方法
Hang et al. Investigation of partial discharge in piezoelectric ceramics
Paralı The electret effects of crystallized polymer–ferropiezoelectric composite under electric discharge plasma
Huang et al. Experimental investigation on the hysteresis phenomenon and the photostrictive effect of PLZT with coupled multi-physics fields
Brown et al. Characterization of the temperature dependence of the electrical and mechanical properties of a high breakdown strength nanodielectric composite
Sun et al. Research on ion enhancement effect in micro-gap gas discharge
Belhora et al. Thickness effects of electret and polymer for energy harvesting: Case of CYTOP-CTLM and polyurethane
Tu et al. TSC characteristics of AC aged ZnO varistors
Jiang et al. Electric response of Pb0. 99 [(Zr0. 90Sn0. 10) 0.968 Ti0. 032] 0.98 Nb0. 02O3 ceramics to the shock-wave-induced ferroelectric-to-antiferroelectric phase transition
SE9901755D0 (sv) Method of measuring thermal properties of materials with direction dependant properties
Bai et al. Simulation and validation of temperature-dependent ferroelectric properties of multifunctional BCZT and KNBNNO ceramics
Liberts et al. Electric-field-induced suppression of thermal lensing in ferrofluids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191129

Termination date: 20200512

CF01 Termination of patent right due to non-payment of annual fee