CN107145941B - 基于最优光质和光子通量密度的需光量实时动态获取方法 - Google Patents
基于最优光质和光子通量密度的需光量实时动态获取方法 Download PDFInfo
- Publication number
- CN107145941B CN107145941B CN201710237014.9A CN201710237014A CN107145941B CN 107145941 B CN107145941 B CN 107145941B CN 201710237014 A CN201710237014 A CN 201710237014A CN 107145941 B CN107145941 B CN 107145941B
- Authority
- CN
- China
- Prior art keywords
- flux density
- optimal
- photon flux
- photosynthetic rate
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004907 flux Effects 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000000243 photosynthetic effect Effects 0.000 claims abstract description 78
- 238000013528 artificial neural network Methods 0.000 claims abstract description 60
- 230000002068 genetic effect Effects 0.000 claims abstract description 54
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 210000002569 neuron Anatomy 0.000 claims description 68
- 230000006870 function Effects 0.000 claims description 43
- 238000004364 calculation method Methods 0.000 claims description 27
- 238000005457 optimization Methods 0.000 claims description 27
- 210000000349 chromosome Anatomy 0.000 claims description 21
- 238000011156 evaluation Methods 0.000 claims description 19
- 238000012549 training Methods 0.000 claims description 19
- 230000035772 mutation Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 239000002096 quantum dot Substances 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 210000004205 output neuron Anatomy 0.000 claims 1
- 238000010219 correlation analysis Methods 0.000 abstract description 12
- 238000003062 neural network model Methods 0.000 abstract description 5
- 238000012417 linear regression Methods 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 24
- 240000008067 Cucumis sativus Species 0.000 description 7
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 5
- 230000029553 photosynthesis Effects 0.000 description 5
- 238000010672 photosynthesis Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- 206010021033 Hypomenorrhoea Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Hardware Design (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Geometry (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710237014.9A CN107145941B (zh) | 2017-04-12 | 2017-04-12 | 基于最优光质和光子通量密度的需光量实时动态获取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710237014.9A CN107145941B (zh) | 2017-04-12 | 2017-04-12 | 基于最优光质和光子通量密度的需光量实时动态获取方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107145941A CN107145941A (zh) | 2017-09-08 |
CN107145941B true CN107145941B (zh) | 2020-11-13 |
Family
ID=59773555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710237014.9A Active CN107145941B (zh) | 2017-04-12 | 2017-04-12 | 基于最优光质和光子通量密度的需光量实时动态获取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107145941B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108614601B (zh) * | 2018-04-08 | 2021-05-04 | 西北农林科技大学 | 一种融合随机森林算法的设施光环境调控方法 |
CN109660340B (zh) * | 2018-12-11 | 2021-11-26 | 北京安御道合科技有限公司 | 一种基于量子密钥的应用系统及其使用方法 |
CN109658988A (zh) * | 2018-12-20 | 2019-04-19 | 中海石油炼化有限责任公司 | 一种加氢精制催化剂性能预测方法 |
CN110852505B (zh) * | 2019-11-08 | 2022-07-15 | 闽江学院 | 基于量子遗传优化lvq神经网络的智慧城市交通流预测方法 |
CN112083748B (zh) * | 2020-09-18 | 2021-06-15 | 西北农林科技大学 | 一种光质优先的设施光环境调控方法 |
CN113609652B (zh) * | 2021-07-14 | 2023-10-13 | 中国地质大学(武汉) | 分数阶环状基因调控网络的状态反馈控制方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103237380B (zh) * | 2013-03-15 | 2014-09-03 | 西北农林科技大学 | 基于多因子耦合的光环境智能调控系统方法与系统 |
JP6444611B2 (ja) * | 2014-04-22 | 2018-12-26 | 岩谷産業株式会社 | 植物栽培方法 |
CN105678405B (zh) * | 2015-12-31 | 2017-02-22 | 西北农林科技大学 | 一种融合气孔导度的黄瓜ga‑rbf光合速率预测模型建模方法 |
CN106054836B (zh) * | 2016-06-21 | 2019-01-25 | 重庆科技学院 | 基于grnn的转炉炼钢工艺成本控制方法及系统 |
-
2017
- 2017-04-12 CN CN201710237014.9A patent/CN107145941B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107145941A (zh) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107145941B (zh) | 基于最优光质和光子通量密度的需光量实时动态获取方法 | |
CN112906298B (zh) | 一种基于机器学习的蓝莓产量预测方法 | |
Xin et al. | Optimization and control of the light environment for greenhouse crop production | |
CN107329511A (zh) | 基于适宜根温区间的水培蔬菜光环境高效调控方法与系统 | |
CN113282122A (zh) | 一种商用建筑能耗预测优化方法及系统 | |
CN105678405B (zh) | 一种融合气孔导度的黄瓜ga‑rbf光合速率预测模型建模方法 | |
CN111915062B (zh) | 水分利用率与光合速率协同的温室作物需水调控方法 | |
CN105654203A (zh) | 一种基于支持向量机的黄瓜全程光合速率预测模型及建立方法 | |
CN108633697A (zh) | 一种基于植物日常数据分析与云技术的智能植物养培方法 | |
CN110119767A (zh) | 一种基于lvq神经网络的黄瓜温室温度智能化检测装置 | |
CN115453868B (zh) | 基于番茄光响应差分特征的全生长期光强调控方法 | |
CN112735511B (zh) | 一种基于qga-svr的冷害黄瓜psii潜在活性预测方法 | |
CN110321627B (zh) | 融合叶片光合潜能的光合速率预测方法 | |
CN108614601A (zh) | 一种融合随机森林算法的设施光环境调控方法 | |
Liu et al. | Prediction model of photosynthetic rate based on SOPSO-LSSVM for regulation of greenhouse light environment | |
Niu et al. | Photosynthesis prediction and light spectra optimization of greenhouse tomato based on response of red–blue ratio | |
Du et al. | Classification of plug seedling quality by improved convolutional neural network with an attention mechanism | |
An et al. | A simulator-based planning framework for optimizing autonomous greenhouse control strategy | |
Vanegas-Ayala et al. | A systematic review of greenhouse humidity prediction and control models using fuzzy inference systems | |
CN108319134A (zh) | 一种基于极限学习机网络的温室环境智能控制方法 | |
Gao et al. | Greenhouse light and CO2 regulation considering cost and photosynthesis rate using i-nsGA Ⅱ | |
Das et al. | Linear regression based crop suggestive system for local pakistani farmers | |
CN114021816A (zh) | 基于混合机器学习与深度学习模型的农作物产量预测方法 | |
Yu et al. | Estimating the rice nitrogen nutrition index based on hyperspectral transform technology | |
Lu et al. | An optimization approach for environmental control using quantum genetic algorithm and support vector regression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Hu Jin Inventor after: Zhang Haihui Inventor after: Zhang Zhen Inventor after: Xin Pingping Inventor after: Wang Zhiyong Inventor after: Zhang Siwei Inventor after: Zhang Pan Inventor before: Zhang Haihui Inventor before: Zhang Zhen Inventor before: Hu Jin Inventor before: Xin Pingping Inventor before: Wang Zhiyong Inventor before: Zhang Siwei Inventor before: Zhang Pan |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |