CN107145661A - A kind of circuit design method of real number index power memristor model - Google Patents

A kind of circuit design method of real number index power memristor model Download PDF

Info

Publication number
CN107145661A
CN107145661A CN201710302716.0A CN201710302716A CN107145661A CN 107145661 A CN107145661 A CN 107145661A CN 201710302716 A CN201710302716 A CN 201710302716A CN 107145661 A CN107145661 A CN 107145661A
Authority
CN
China
Prior art keywords
memristor
power
memristive
real number
exponent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710302716.0A
Other languages
Chinese (zh)
Other versions
CN107145661B (en
Inventor
张小红
齐彦丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201710302716.0A priority Critical patent/CN107145661B/en
Publication of CN107145661A publication Critical patent/CN107145661A/en
Application granted granted Critical
Publication of CN107145661B publication Critical patent/CN107145661B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种实数指数幂忆阻模型的电路设计方法,在仅包含一个线性无源电导,一个线性无源电容和一个非线性忆阻器的简约混沌电路基础上,构建了一个指数幂的忆阻函数多项式,该指数幂为连续可变的正实数。对本发明的实数指数幂忆阻器模型系统进行数值仿真,验证了系统经典混沌吸引子的存在性。相应的电路实验仿真结果表明本发明设计的电子器件满足忆阻器的本质特征,实数指数幂忆阻函数具有更加广泛和通用的应用价值。

A circuit design method of a real exponential power memristor model, based on a simple chaotic circuit that only includes a linear passive conductance, a linear passive capacitor and a nonlinear memristor, an exponential power memristive function is constructed Polynomial, the power of the exponent is a continuously variable positive real number. Numerical simulation is carried out on the real number exponent power memristor model system of the present invention, and the existence of the classical chaotic attractor of the system is verified. The corresponding circuit experiment simulation results show that the electronic device designed by the present invention satisfies the essential characteristics of the memristor, and the real number exponent power memristive function has more extensive and universal application value.

Description

一种实数指数幂忆阻模型的电路设计方法A Circuit Design Method of Real Exponential Power Memristor Model

技术领域technical field

本发明属于非线性电路与系统中的忆阻电路理论领域,涉及最简混沌系统、忆阻器电路设计与实现。The invention belongs to the theoretical field of memristor circuits in nonlinear circuits and systems, and relates to the design and realization of the simplest chaotic system and memristor circuits.

背景技术Background technique

1971年,美籍华裔科学家Leon O.Chua根据电子学理论,预测到除电阻、电容、电感元件外,还存在电路的第四种基本元件,即忆阻器。忆阻器为二端口器件,它连接磁通与电荷非线性关系。2008年,美国惠普实验室Stanley Williams团队基于蔡氏忆阻器模型,利用双层二氧化钛薄膜成功研制出固态忆阻器,使Chua理论得以物理实现。此后,国内外广大学者从数学和物理的角度探索忆阻器的基本属性、物理模型、应用及其制造。Adhikari,Biolek等人提出忆阻器的三个本质特征,即(i)当一个双极性周期信号驱动时,该器件在v-i平面上为一条在原点紧缩的紧磁滞回线,且响应是周期的;(ii)从临界频率开始,磁滞旁瓣面积随激励频率的增加而单调减少;(iii)当频率趋近于无限大时,紧磁滞回线收缩为一个单值函数。In 1971, Chinese-American scientist Leon O.Chua predicted based on the theory of electronics that in addition to resistors, capacitors, and inductance components, there is a fourth basic component of the circuit, namely the memristor. A memristor is a two-port device that connects the magnetic flux to the charge nonlinearly. In 2008, based on Chua's memristor model, the team of Stanley Williams of Hewlett-Packard Laboratory in the United States successfully developed a solid-state memristor using a double-layer titanium dioxide film, making Chua's theory physically realized. Since then, scholars at home and abroad have explored the basic properties, physical models, applications and fabrication of memristors from the perspective of mathematics and physics. Adhikari, Biolek and others proposed three essential characteristics of memristors, namely (i) when driven by a bipolar periodic signal, the device is a tight hysteresis loop tightened at the origin on the v-i plane, and the response is Periodic; (ii) starting from the critical frequency, the hysteresis sidelobe area decreases monotonously with the increase of excitation frequency; (iii) when the frequency approaches infinity, the tight hysteresis loop shrinks to a single-valued function.

目前国内外科学家都通过寻找理想的忆阻器模型等效电路来分析忆阻器的动力学特性及本质特征,而对于一般忆阻器模型的联想记忆能力分析较少。2010年Muthuswamy和Chua利用一个线性无源电感、一个线性无源电容和一个非线性忆阻器,即3个电路基本元件设计实现了最简单的混沌电路,我们称之为最简混沌系统。在此基础上,2014年Lin Teng等人将忆阻器函数替换为四次多项式函数,增加了系统混沌吸引子的复杂度,并将整数阶系统拓展到分数阶系统。而对于一般忆阻器模型的研究,全部集中在忆阻函数多项式为特定整数指数幂的情况,而对于可变实数指数幂的研究鲜有涉及。At present, scientists at home and abroad analyze the dynamic characteristics and essential characteristics of memristors by looking for the equivalent circuit of the ideal memristor model, but there is little analysis of the associative memory ability of the general memristor model. In 2010, Muthuswamy and Chua realized the simplest chaotic circuit by using a linear passive inductor, a linear passive capacitor and a nonlinear memristor, that is, three basic circuit components, which we call the simplest chaotic system. On this basis, in 2014, Lin Teng et al. replaced the memristor function with a quartic polynomial function, which increased the complexity of the chaotic attractor of the system, and extended the integer order system to the fractional order system. For the general memristor model research, all focus on the case where the memristor function polynomial is a power of a specific integer exponent, but the research on variable real exponent power is seldom involved.

发明内容Contents of the invention

本发明的目的是提出一种忆阻函数多项式为可变实数指数幂模型,构建该实数指数幂忆阻电路,分析其可行性和实用性。The purpose of the present invention is to propose a memristive function polynomial as a variable real exponent power model, construct the real exponent power memristive circuit, and analyze its feasibility and practicability.

本发明在最简混沌系统的基础上设计了一种新的忆阻器模型,该模型中忆阻函数多项式的指数幂取可变正整数时,最简混沌系统可呈现混沌行为;将多项式指数幂拓展至正实数,通过调整线性参数,系统仍可呈现混沌现象。同时,本发明设计了该一般忆阻器模型的电路原理图,验证了忆阻器的紧磁滞回线特性。The present invention designs a new memristor model on the basis of the simplest chaotic system. When the exponent power of the memristive function polynomial in the model is a variable positive integer, the simplest chaotic system can present chaotic behavior; the polynomial exponent The power is extended to positive real numbers, and the system can still present chaotic phenomena by adjusting the linear parameters. At the same time, the invention designs the circuit schematic diagram of the general memristor model, and verifies the tight hysteresis loop characteristic of the memristor.

本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.

本发明所述的实数指数幂忆阻模型的电路设计方法,包括以下步骤:The circuit design method of the real number exponent power memristive model described in the present invention comprises the following steps:

步骤S01:基于最简混沌系统,构造忆阻函数多项式指数幂为可变参数的一般忆阻器模型;Step S01: Based on the simplest chaotic system, construct a general memristor model in which the polynomial exponent power of the memristive function is a variable parameter;

步骤S02:将步骤S01中忆阻函数多项式指数幂选取为正整数,验证其最简混沌系统的混沌特性;Step S02: Select the power of the polynomial exponent of the memristive function in step S01 as a positive integer to verify the chaotic characteristics of the simplest chaotic system;

步骤S03:基于步骤S02设计正整数指数幂忆阻模型的电路原理图,验证忆阻元件的三个本质特征的存在性;Step S03: Design a circuit schematic diagram of a positive integer exponential power memristive model based on step S02, and verify the existence of the three essential features of the memristive element;

步骤S04:将步骤S02中正整数拓展至正实数,数值计算基于该实数指数幂忆阻模型的最简混沌系统的混沌特性;Step S04: Extend the positive integer in step S02 to a positive real number, and numerically calculate the chaotic characteristics of the simplest chaotic system based on the real number exponent power memristive model;

步骤S05:基于步骤S04设计忆阻函数多项式指数幂为正实数时一般忆阻器模型的电路原理图,验证忆阻元件的三个本质特征。Step S05: Based on step S04, design a circuit schematic diagram of a general memristor model when the polynomial exponent power of the memristive function is a positive real number, and verify the three essential characteristics of the memristive element.

更进一步,本发明所述的实数指数幂忆阻模型的电路设计方法,其具体步骤如下:Further, the circuit design method of the real exponential power memristive model described in the present invention, its specific steps are as follows:

步骤1:含指数幂的最简混沌系统设计。Step 1: Design the simplest chaotic system with exponential power.

最简混沌系统电路图如图1所示,它包括三个基本电路元件,即:一个线性无源电感,一个线性无源电容和一个非线性忆阻器。其动力学行为描述如下:The circuit diagram of the simplest chaotic system is shown in Figure 1, which includes three basic circuit elements, namely: a linear passive inductor, a linear passive capacitor and a nonlinear memristor. Its dynamic behavior is described as follows:

其中,C是电容值、L是电感值,R(z)是忆阻元件的阻值,z是忆阻元件的状态变量,iC,iL,iM分别为流经电容、电感和忆阻器的电流,vC,vM分别为电容和忆阻元件两端的电压。本发明将忆阻元件模型选取为:Among them, C is the capacitance value, L is the inductance value, R(z) is the resistance value of the memristive element, z is the state variable of the memristive element, i C , i L , i M are respectively The current of the resistor, v C , v M are the voltages across the capacitor and the memristive element respectively. The present invention selects the memristive element model as:

令x(t)=vC(t),y(t)=iL(t),同时由于iM(t)=-iL(t),则本发明中最简混沌系统的动力学方程相应变为:Make x (t)=v C (t), y (t)=i L (t), because i M (t)=-i L (t) simultaneously, then the kinetic equation of the simplest chaotic system among the present invention correspondingly becomes:

式中,b1,b2,b3,c1,c2,c3均为系统参数,α为可变的指数幂参数。In the formula, b 1 , b 2 , b 3 , c 1 , c 2 , and c 3 are all system parameters, and α is a variable exponent power parameter.

步骤2:忆阻函数多项式为整数指数幂的最简混沌系统数值仿真。Step 2: Numerical simulation of the simplest chaotic system in which the polynomial of the memristive function is a power of an integer exponent.

本发明首先将一般忆阻器模型中忆阻函数多项式指数幂α选取为可变正整数,固定电容、电感值并设置系统初始条件,通过调整系统线性参数,观察系统能否产生混沌吸引子;同时给定输入信号,观察整数指数幂忆阻器模型的伏安特性曲线,验证其是否为过原点的“8”字型的紧磁滞回线。In the present invention, the polynomial exponent α of the memristor function in the general memristor model is selected as a variable positive integer, the capacitance and inductance values are fixed, and the initial conditions of the system are set. By adjusting the linear parameters of the system, it is observed whether the system can generate chaotic attractors; At the same time, given the input signal, observe the volt-ampere characteristic curve of the integer exponential power memristor model, and verify whether it is an "8"-shaped tight hysteresis loop passing through the origin.

采用定义法计算系统特定参数下的Lyapunov指数,理论上证明系统混沌吸引子是否存在。Using the definition method to calculate the Lyapunov exponent under the specific parameters of the system, it is theoretically proved whether the chaotic attractor of the system exists.

步骤3:整数指数幂忆阻电路原理图设计。Step 3: Integer Exponential Power Memristor Circuit Schematic Design.

对于步骤2中整数指数幂一般忆阻器模型,采用Multisim电路仿真系统设计整数指数幂的忆阻电路原理图,并与步骤2中的数值计算结果相比较,验证忆阻元件的三个本质特征的存在性。For the general memristor model of the integer exponent power in step 2, use the Multisim circuit simulation system to design the memristor circuit schematic diagram of the integer exponent power, and compare with the numerical calculation results in step 2 to verify the three essential characteristics of the memristor element existence.

步骤4:忆阻函数多项式为实数指数幂的最简混沌系统数值仿真。Step 4: Numerical simulation of the simplest chaotic system in which the polynomial of the memristive function is a power of a real number exponent.

为使本发明中忆阻器模型更具一般性,将忆阻函数多项式指数幂α从正整数拓展至正实数,电容、电感值及系统初始条件不变,通过调整系统线性参数,观察此时系统能否产生混沌吸引子;同时给定输入信号,观察此时忆阻器模型的伏安特性曲线,验证其是否为过原点的“8”字型的紧磁滞回线。In order to make the memristor model in the present invention more general, the polynomial exponent power α of the memristive function is expanded from a positive integer to a positive real number, and the capacitance, inductance and initial conditions of the system remain unchanged. By adjusting the linear parameters of the system, it is observed that Whether the system can generate chaotic attractors; at the same time, given the input signal, observe the volt-ampere characteristic curve of the memristor model at this time, and verify whether it is an "8"-shaped tight hysteresis loop passing through the origin.

同样采用定义法计算系统特定参数下的Lyapunov指数,理论上证明系统混沌吸引子是否存在。Also adopt the definition method to calculate the Lyapunov exponent under the specific parameters of the system, and theoretically prove whether the chaotic attractor of the system exists.

步骤5:实数指数幂一般忆阻器电路原理图设计。Step 5: Real number exponent power general memristor circuit schematic design.

对于步骤4中实数指数幂一般忆阻器模型,在步骤3中的整数指数幂忆阻电路基础上,增加一个乘方运算模块,其中乘方运算电路由集成对数运算电路和集成指数运算电路组合而成。通过调整电阻相关元器件值可实现任意实数指数幂。For the general memristor model of real number exponent power in step 4, on the basis of the integer exponent power memristor circuit in step 3, a power operation module is added, wherein the power operation circuit consists of an integrated logarithmic operation circuit and an integrated exponential operation circuit combined. Arbitrary real exponential powers can be achieved by adjusting the values of the resistor-related components.

本发明的特点在于:最简混沌系统中非线性忆阻器模型为一般忆阻器模型,且其忆阻函数多项式指数幂分别为可变正整数及正实数时,系统均会产生经典混沌吸引子。同时设计了整数指数幂及实数指数幂一般忆阻器电路原理图,验证了本发明忆阻器模型的三个本质特征存在性。The present invention is characterized in that: the nonlinear memristor model in the simplest chaotic system is a general memristor model, and when the polynomial exponent power of the memristive function is a variable positive integer and a positive real number respectively, the system will generate classical chaotic attraction son. Simultaneously, the general memristor circuit schematic diagrams of integer exponent power and real number exponent power are designed, and the existence of three essential features of the memristor model of the present invention is verified.

附图说明Description of drawings

图1为本发明包含忆阻元件的最简混沌系统电路图。FIG. 1 is a circuit diagram of the simplest chaotic system including a memristive element according to the present invention.

图2为本发明α=1时,实数指数幂忆阻模型各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 2 is the trajectory of each state variable of the real exponential power memristor model and the volt-ampere characteristic curve of the general memristor model when α=1 in the present invention. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图3为本发明α=2时,实数指数幂忆阻模型各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 3 is the trajectory of each state variable of the real exponential power memristor model and the volt-ampere characteristic curve of the general memristor model when α=2 in the present invention. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图4为本发明α=3时,实数指数幂忆阻模型各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 4 is the trajectory of each state variable of the real exponential power memristor model and the volt-ampere characteristic curve of the general memristor model when α=3 in the present invention. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图5为本发明α=1时整数指数幂一般忆阻器电路原理图。FIG. 5 is a schematic diagram of a general memristor circuit of an integer exponential power of the present invention when α=1.

图6为本发明α=1时输入信号频率f=1.7Hz时一般忆阻器的伏安特性曲线。FIG. 6 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=1.7Hz when α=1 in the present invention.

图7为本发明α=1时输入信号频率f=6.7Hz时一般忆阻器的伏安特性曲线。Fig. 7 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=6.7Hz when α=1 in the present invention.

图8为本发明α=1时输入信号频率f=45Hz时一般忆阻器的伏安特性曲线。FIG. 8 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=45Hz when α=1 in the present invention.

图9为本发明α=1.6时,最简混沌系统(4)各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 9 is the trajectory of each state variable of the simplest chaotic system (4) and the volt-ampere characteristic curve of the general memristor model when α=1.6 in the present invention. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图10本发明α=3.3时,最简混沌系统(4)各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 10, when α=3.3 of the present invention, the trajectory of each state variable of the simplest chaotic system (4) and the volt-ampere characteristic curve of the general memristor model. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图11本发明α=3.8时,最简混沌系统(4)各状态变量轨迹及一般忆阻器模型的伏安特性曲线。(a)为x-y变量轨迹,(b)为x-z变量轨迹,(c)为y-z变量轨迹,(d)为iM-vM变量轨迹。Fig. 11 When α=3.8 in the present invention, the trajectory of each state variable of the simplest chaotic system (4) and the volt-ampere characteristic curve of the general memristor model. (a) is the xy variable trajectory, (b) is the xz variable trajectory, (c) is the yz variable trajectory, and (d) is the i M -v M variable trajectory.

图12为本发明α=1.6时实数指数幂一般忆阻器电路原理图。Fig. 12 is a schematic diagram of a general memristor circuit of a power of real number exponent in the present invention when α=1.6.

图13为本发明乘方模拟运算电路。Fig. 13 is a power analog operation circuit of the present invention.

图14为本发明α=1.6时输入信号频率f=1.7Hz时一般忆阻器的伏安特性曲线。Fig. 14 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=1.7Hz when α=1.6 in the present invention.

图15为本发明α=1.6时输入信号频率f=6.7Hz时一般忆阻器的伏安特性曲线。Fig. 15 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=6.7Hz when α=1.6 in the present invention.

图16为本发明α=1.6时输入信号频率f=45Hz时一般忆阻器的伏安特性曲线。Fig. 16 is the volt-ampere characteristic curve of the general memristor when the input signal frequency f=45Hz when α=1.6 in the present invention.

具体实施方式detailed description

以下将结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.

实施例1。忆阻函数多项式指数幂为可变正整数时最简混沌系统数值仿真。Example 1. Numerical simulation of the simplest chaotic system when the polynomial power of the memristive function is a variable positive integer.

(1)含指数幂的最简混沌系统设计。(1) Design of the simplest chaotic system with exponential power.

对最简混沌系统电容、电感值分别选取为C=1,L=1,并设置初始条件为x(0)=0.1,y(0)=0.1,z(0)=-0.01,则系统(3)相应变为:For the simplest chaotic system, the capacitance and inductance values are respectively selected as C=1, L=1, and the initial conditions are set as x(0)=0.1, y(0)=0.1, z(0)=-0.01, then the system ( 3) Correspondingly becomes:

(2):忆阻函数多项式指数幂α取正整数。(2): The power α of the polynomial exponent of the memristive function takes a positive integer.

当忆阻函数多项式指数幂α=1时,选取线性参数b1=-0.5,b2=0.5,b3=0.5,c1=-1,c2=-1.5,c3=-3,则系统(4)的各状态变量相图轨迹分别如图2(a)、(b)、(c)所示,均为经典的混沌吸引子,图(d)则描绘了一般忆阻器伏安特性曲线,为过原点的反斜体“8”字型的紧磁滞回线,其中输入信号选择为频率f=1.7Hz的正弦波。When the memristive function polynomial power α=1, select the linear parameters b 1 =-0.5, b 2 =0.5, b 3 =0.5, c 1 =-1, c 2 =-1.5, c 3 =-3, then The phase diagram trajectories of the state variables of the system (4) are shown in Fig. 2(a), (b), and (c), respectively, all of which are classical chaotic attractors, and Fig. (d) depicts the general memristor volt-ampere The characteristic curve is a tight hysteresis loop in the shape of a backslash "8" passing through the origin, and the input signal is a sine wave with a frequency f=1.7Hz.

采用定义法计算该系统Lyapunov指数分别为:LE1=0.3793,LE2=-0.3638,LE3=-1.4018,由于LE值有一个大于0,且三者之和小于0,理论上证明系统(4)在实施例1中存在一个经典混沌吸引子。Using the definition method to calculate the Lyapunov exponents of the system are: LE 1 = 0.3793, LE 2 = -0.3638, LE 3 = -1.4018. Since one of the LE values is greater than 0, and the sum of the three is less than 0, it is theoretically proved that the system (4 ) In Example 1 there is a classical chaotic attractor.

本申请还完成了当忆阻函数多项式指数幂α=2和α=3时,同样选取线性参数b1=-0.5,b2=0.5,b3=0.5,c1=-1,c2=-1.5,c3=-3,则系统(4)的各状态变量相图轨迹分别如图3和图4的(a)、(b)、(c)所示,它们均为经典的混沌吸引子,图3和图4的(d)则分别描绘了一般忆阻器伏安特性曲线,为过原点的反斜体“8”字型的紧磁滞回线,其中输入信号选择为频率f=1.7Hz的正弦波。The present application has also completed when the memristive function polynomial exponent power α=2 and α=3, also select the linear parameters b 1 =-0.5, b 2 =0.5, b 3 =0.5, c 1 =-1, c 2 = -1.5,c 3 =-3, then the phase diagram trajectories of the state variables of the system (4) are shown in (a), (b) and (c) of Figure 3 and Figure 4 respectively, and they are all classical chaotic attraction Figure 3 and (d) of Figure 4 respectively depict the volt-ampere characteristic curve of the general memristor, which is a tight hysteresis loop in the shape of a backslash "8" passing through the origin, wherein the input signal is selected as frequency f= 1.7Hz sine wave.

(3)整数指数幂一般忆阻器电路原理图设计。(3) Integer exponent power general memristor circuit schematic design.

设计α=1时整数指数幂一般忆阻器模型如图5所示,其中U0A、U1A、U2A为运算放大器AD712JN,A1、A2为模拟乘法器。选择Rs=10Ω,Rs1=100kΩ,Rs2=1kΩ,并设m=-1000,则电流iM转换成的电压v0表示为:When α=1, the general memristor model of integer exponent power is shown in Figure 5, where U 0A , U 1A , and U 2A are operational amplifiers AD712JN, and A 1 and A 2 are analog multipliers. Choose R s =10Ω, R s1 =100kΩ, R s2 =1kΩ, and set m=-1000, then the voltage v 0 converted from current i M is expressed as:

令Rf=100kΩ,Rb1=Rb2=Rb3=200kΩ,则忆阻函数表达式为:Let R f =100kΩ, R b1 =R b2 =R b3 =200kΩ, then the memristive function expression is:

vM=(-0.5+0.5z+0.5z)·miM (6)v M =(-0.5+0.5z+0.5z) mi M (6)

设置参数Cf=10uF,Rc1=100kΩ,Rc2=66.7kΩ,Rc3=33.3kΩ,则忆阻器内部状态变量z表示为:Set parameters C f =10uF, R c1 =100kΩ, R c2 =66.7kΩ, R c3 =33.3kΩ, then the internal state variable z of the memristor is expressed as:

电流源采用振幅为10mA正弦波。为研究忆阻器的三个本质特征,分别选取频率等于1.7Hz、6.7Hz时进行实验,电流探针XCP1的电压电流比例直接选取1V/mA=1000V/A,方向则选为电流源反方向,对应m=-1000。此时该忆阻器的伏安特性曲线如图6、7所示,均为在原点收缩的紧磁滞回线,满足忆阻器的本质特征(i);同时对比图6、图7可以发现,随着频率的增加,忆阻器的磁滞旁瓣面积单调减少,满足忆阻器的本质特征(ii)。为验证忆阻器的本质特征(iii),选取频率为45Hz(相对趋于无限大)进行实验,电路仿真如图8所示,近似收缩成一个单值函数。The current source uses a sine wave with an amplitude of 10mA. In order to study the three essential characteristics of the memristor, experiments were carried out at frequencies equal to 1.7Hz and 6.7Hz. The voltage-to-current ratio of the current probe XCP1 was directly selected as 1V/mA=1000V/A, and the direction was selected as the opposite direction of the current source. , corresponding to m=-1000. At this time, the volt-ampere characteristic curves of the memristor are shown in Figures 6 and 7, all of which are tight hysteresis loops shrinking at the origin, satisfying the essential characteristic (i) of the memristor; and comparing Figures 6 and 7 at the same time It is found that the hysteresis sidelobe area of the memristor decreases monotonously with the increase of the frequency, satisfying the essential characteristic (ii) of the memristor. In order to verify the essential feature (iii) of the memristor, a frequency of 45 Hz (relatively tending to infinity) is selected for experiments. The circuit simulation is shown in Figure 8, which is approximately shrunk into a single-valued function.

实施例2。忆阻函数多项式指数幂为正实数时最简混沌系统数值仿真。Example 2. Numerical simulation of the simplest chaotic system when the polynomial power of the memristive function is a positive real number.

(1)含指数幂的最简混沌系统设计。(1) Design of the simplest chaotic system with exponential power.

参照实施实例1中的步骤(1),完成含指数幂的最简混沌系统设计。Referring to the step (1) in the implementation example 1, the design of the simplest chaotic system with exponential power is completed.

(2):忆阻函数多项式指数幂α取实数。(2): The power α of the polynomial exponent of the memristive function is a real number.

当忆阻函数多项式指数幂α=1.6时,选取线性参数b1=-0.5,b2=0.5,b3=0.5,c1=-1,c2=-1.6,c3=-3,则系统(4)的各状态变量相图轨迹分别如图9(a)、(b)、(c)所示,均为经典的混沌吸引子,图(d)则描绘了一般忆阻器伏安特性曲线,为过原点的反斜体“8”字型的紧磁滞回线,其中输入信号选择为频率f=1.7Hz的正弦波。When the memristive function polynomial exponent power α=1.6, select linear parameters b 1 =-0.5, b 2 =0.5, b 3 =0.5, c 1 =-1, c 2 =-1.6, c 3 =-3, then The phase diagram trajectories of the state variables of the system (4) are shown in Figure 9(a), (b), and (c) respectively, all of which are classical chaotic attractors, and Figure (d) depicts the general memristor volt-ampere The characteristic curve is a tight hysteresis loop in the shape of a backslash "8" passing through the origin, and the input signal is a sine wave with a frequency f=1.7Hz.

采用定义法计算该系统Lyapunov指数分别为:LE1=0.3548,LE2=-0.3426,LE3=-1.4677,由于LE值有一个大于0,且三者之和小于0,理论上证明系统(4)在实施例4中存在一个经典混沌吸引子。Using the definition method to calculate the Lyapunov exponents of the system are: LE 1 = 0.3548, LE 2 = -0.3426, LE 3 = -1.4677. Since one of the LE values is greater than 0, and the sum of the three is less than 0, it is theoretically proved that the system (4 ) In Example 4 there is a classical chaotic attractor.

本申请还完成了当忆阻函数多项式指数幂α=3.3和α=3.8时,选取线性参数b1=-0.5,b2=0.5,b3=0.5,c1=-1,c2=-1.6,c3=-3,则系统(4)的各状态变量相图轨迹分别如图10和图11(a)、(b)、(c)所示,它们均为经典的混沌吸引子,图10和图11(d)则分别描绘了一般忆阻器伏安特性曲线,为过原点的反斜体“8”字型的紧磁滞回线,其中输入信号选择为频率f=1.7Hz的正弦波。(3)实数乘方运算电路设计。The present application has also completed the selection of linear parameters b 1 =-0.5, b 2 =0.5, b 3 =0.5, c 1 =-1, c 2 =- 1.6,c 3 =-3, then the trajectories of the phase diagrams of the state variables of the system (4) are shown in Figure 10 and Figure 11(a), (b) and (c) respectively, they are all classical chaotic attractors, Figure 10 and Figure 11(d) respectively depict the volt-ampere characteristic curve of a general memristor, which is a tight hysteresis loop in the shape of a backslash "8" passing through the origin, where the input signal is selected as a frequency f=1.7Hz sine wave. (3) Circuit design for powering real numbers.

对于(S4)中实数指数幂一般忆阻器模型,设计电路原理图如图12所示,即在图5的最右侧增加一个乘方运算模块(图13),并将其作为模拟乘法器A2一个输入端。其中乘方运算电路由左侧框中集成对数运算电路和右侧框中集成指数运算电路组合而成,其输出电压u0可表示为:For the general memristor model of the power of the real number exponent in (S4), the schematic diagram of the design circuit is shown in Figure 12, that is, a power operation module (Figure 13) is added to the far right of Figure 5, and it is used as an analog multiplier A 2 an input terminal. The power operation circuit is composed of the integrated logarithmic operation circuit in the left box and the integrated exponential operation circuit in the right box, and its output voltage u 0 can be expressed as:

若令IR1R1=1,IR2R9=1,通过调整电阻R4,R5,R6,R7,可实现任意实数指数幂。If let I R1 R 1 =1, I R2 R 9 =1, but By adjusting the resistors R 4 , R 5 , R 6 , and R 7 , any real exponent power can be realized.

(4)实数指数幂一般忆阻器电路原理图设计。(4) Real number exponent power general memristor circuit schematic design.

在实数指数幂一般忆阻器电路原理图中,继续以α=1.6为例,设置电路各参数如下:R1=R2=R3=R8=R9=100kΩ;Rref1=Rref2=1500kΩ;R4=R5=R7=100kΩ,R6=25kΩ;Rc2=62.5kΩ,其他参数设置同整数指数幂一般忆阻器电路参数。In the general memristor circuit schematic diagram of a power of real number, continue to take α=1.6 as an example, and set the parameters of the circuit as follows: R 1 =R 2 =R 3 =R 8 =R 9 =100kΩ; R ref1 =R ref2 = 1500kΩ; R 4 =R 5 =R 7 =100kΩ, R 6 =25kΩ; R c2 =62.5kΩ, other parameter settings are the same as the general memristor circuit parameters of integer exponential power.

测量方法也同实施实例1步骤(3)中测量方法,则该实数指数幂一般忆阻器的伏安特性曲线描绘为图14、15、16,观察可发现,同样满足忆阻器的三个本质特征。The measurement method is also the same as the measurement method in the implementation example 1 step (3), then the volt-ampere characteristic curve of the real number exponential power general memristor is depicted as Fig. 14, 15, 16, and it can be found by observation that it also satisfies the three requirements of the memristor essential features.

Claims (1)

1.一种实数指数幂忆阻模型的电路设计方法,其特征是包括以下步骤:1. A circuit design method of a real number exponent power memristive model, characterized in comprising the following steps: 步骤S01:基于最简混沌系统,构造忆阻函数多项式指数幂为可变参数的一般忆阻器模型;Step S01: Based on the simplest chaotic system, construct a general memristor model in which the polynomial exponent power of the memristive function is a variable parameter; 步骤S02:将步骤S01中忆阻函数多项式指数幂选取为正整数,验证其最简混沌系统的混沌特性;Step S02: Select the power of the polynomial exponent of the memristive function in step S01 as a positive integer to verify the chaotic characteristics of the simplest chaotic system; 步骤S03:基于步骤S02设计正整数指数幂忆阻模型的电路原理图,验证忆阻元件的三个本质特征的存在性;Step S03: Design a circuit schematic diagram of a positive integer exponential power memristive model based on step S02, and verify the existence of the three essential features of the memristive element; 步骤S04:将步骤S02中正整数拓展至正实数,数值计算基于该实数指数幂忆阻模型的最简混沌系统的混沌特性;Step S04: Extend the positive integer in step S02 to a positive real number, and numerically calculate the chaotic characteristics of the simplest chaotic system based on the real number exponent power memristive model; 步骤S05:基于步骤S04设计忆阻函数多项式指数幂为正实数时一般忆阻器模型的电路原理图,验证忆阻元件的三个本质特征。Step S05: Based on step S04, design a circuit schematic diagram of a general memristor model when the polynomial exponent power of the memristive function is a positive real number, and verify the three essential characteristics of the memristive element.
CN201710302716.0A 2017-05-03 2017-05-03 A Circuit Design Method of Real Exponential Power Memristive Model Active CN107145661B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302716.0A CN107145661B (en) 2017-05-03 2017-05-03 A Circuit Design Method of Real Exponential Power Memristive Model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710302716.0A CN107145661B (en) 2017-05-03 2017-05-03 A Circuit Design Method of Real Exponential Power Memristive Model

Publications (2)

Publication Number Publication Date
CN107145661A true CN107145661A (en) 2017-09-08
CN107145661B CN107145661B (en) 2020-07-21

Family

ID=59774012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710302716.0A Active CN107145661B (en) 2017-05-03 2017-05-03 A Circuit Design Method of Real Exponential Power Memristive Model

Country Status (1)

Country Link
CN (1) CN107145661B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319797A (en) * 2018-03-09 2018-07-24 武汉科技大学 A kind of equivalent circuit of fractional order memristor
CN108449059A (en) * 2018-05-25 2018-08-24 南京信息工程大学 A Signal Scaling Circuit Based on Power Function
CN110209111A (en) * 2019-06-10 2019-09-06 华北电力大学(保定) A Adjustable Fractional-Order Passive Inductor Based on Field Programmable Gate Array
CN110488634A (en) * 2019-09-03 2019-11-22 江西理工大学 Reverse sync is realized in coupled oscillator system and rotates the method for reverse sync
CN113255274A (en) * 2021-04-15 2021-08-13 杭州电子科技大学 Piecewise linear memristor model and design method
CN115130411A (en) * 2022-07-14 2022-09-30 电子科技大学 FPGA and DAC-based real-time reconfigurable universal memristor simulation method
CN115270677A (en) * 2022-07-14 2022-11-01 电子科技大学 Simulation method of real-time reconfigurable general memristor
CN115499116A (en) * 2022-09-19 2022-12-20 江西理工大学 A Realization Method of Simple Memristor Hyperchaotic Circuit with Large-scale Parameter Range
CN119150780A (en) * 2024-11-15 2024-12-17 中南大学 Memristor general design method and system and Jian Yizu-most memristor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054340A1 (en) * 2014-10-02 2016-04-07 Board Of Regents, The University Of Texas System Coupled memristor devices to enable feedback control and sensing of micro/nanoelectromechanical actuator and sensors
CN205622637U (en) * 2016-04-28 2016-10-05 李博雅 Simplest series connection is recalled and is hindered circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054340A1 (en) * 2014-10-02 2016-04-07 Board Of Regents, The University Of Texas System Coupled memristor devices to enable feedback control and sensing of micro/nanoelectromechanical actuator and sensors
CN205622637U (en) * 2016-04-28 2016-10-05 李博雅 Simplest series connection is recalled and is hindered circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMED-SALAH ABDELOUAHAB: "Bifurcation Analysis and Chaos in Simplest", 《IEEE PROCCEDINGS OF 3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT)》 *
滕琳: "混沌理论在忆阻器电路及图像安全中的应用研究", 《中国博士学位论文全文数据库-工程科技II辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319797A (en) * 2018-03-09 2018-07-24 武汉科技大学 A kind of equivalent circuit of fractional order memristor
CN108449059A (en) * 2018-05-25 2018-08-24 南京信息工程大学 A Signal Scaling Circuit Based on Power Function
CN110209111B (en) * 2019-06-10 2022-05-13 华北电力大学(保定) Adjustable fractional order passive inductor based on field programmable gate array
CN110209111A (en) * 2019-06-10 2019-09-06 华北电力大学(保定) A Adjustable Fractional-Order Passive Inductor Based on Field Programmable Gate Array
CN110488634B (en) * 2019-09-03 2022-06-10 江西理工大学 Method for realizing reverse synchronization and rotation reverse synchronization in coupled oscillator system
CN110488634A (en) * 2019-09-03 2019-11-22 江西理工大学 Reverse sync is realized in coupled oscillator system and rotates the method for reverse sync
CN113255274A (en) * 2021-04-15 2021-08-13 杭州电子科技大学 Piecewise linear memristor model and design method
CN113255274B (en) * 2021-04-15 2025-02-25 杭州电子科技大学 A piecewise linear memristor model and design method
CN115130411A (en) * 2022-07-14 2022-09-30 电子科技大学 FPGA and DAC-based real-time reconfigurable universal memristor simulation method
CN115270677A (en) * 2022-07-14 2022-11-01 电子科技大学 Simulation method of real-time reconfigurable general memristor
CN115499116A (en) * 2022-09-19 2022-12-20 江西理工大学 A Realization Method of Simple Memristor Hyperchaotic Circuit with Large-scale Parameter Range
CN119150780A (en) * 2024-11-15 2024-12-17 中南大学 Memristor general design method and system and Jian Yizu-most memristor
CN119150780B (en) * 2024-11-15 2025-02-11 中南大学 Universal design method and system of memristor and its simplest memristor

Also Published As

Publication number Publication date
CN107145661B (en) 2020-07-21

Similar Documents

Publication Publication Date Title
CN107145661B (en) A Circuit Design Method of Real Exponential Power Memristive Model
Bao et al. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability
Li et al. A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit
Bao et al. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis
Buscarino et al. Memristive chaotic circuits based on cellular nonlinear networks
CN106130713B (en) A kind of most simple four-dimensional self-governing chaos system and realization circuit with double memristors
CN107016200B (en) A circuit design method for smooth cellular neural network based on magnetron memristor
CN104573183B (en) That recalls container realizes that circuit and Any Order recall the implementation method of condenser circuit
Tan et al. A simple inductor-free memristive circuit with three line equilibria
CN107947914A (en) A kind of chaos circuit based on fractional order memristor
Zhang et al. Approximated SPICE model for memristor
CN111859837B (en) Hidden attractor chaotic system and circuit based on voltage-controlled memristor
Xu et al. A feasible memristive Chua’s circuit via bridging a generalized memristor
CN101510862A (en) Method and system for generating ultra-chaos signal
Khalil et al. A simple bjt inverse memristor emulator and its application in chaotic oscillators
Petrzela Hyperchaotic self-oscillations of two-stage class C amplifier with generalized transistors
CN105306192A (en) Fourth-order memristor Colpitts chaotic signal generator achieved by coupled first-order generalized memristor
Yang et al. A simple hyperchaotic circuit with coexisting multiple bifurcations and offset boosting
CN110430035A (en) A kind of four-dimensional hyper-chaotic circuit based on memristor
Yang et al. Dynamic Behaviors and the Equivalent Realization of a Novel Fractional‐Order Memristor‐Based Chaotic Circuit
Zayer et al. Tio 2 memristor model-based chaotic oscillator
Corinto et al. Mathematical models and circuit implementations of memristive systems
Zhang et al. Oscillatory circuits built on physical SBT memristor
CN109271703B (en) Current Fractional Integral Controlled Memristor
CN109117590B (en) Voltage Fractional Integral Control Memristor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant