CN107144556B - 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法 - Google Patents

一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法 Download PDF

Info

Publication number
CN107144556B
CN107144556B CN201710248459.7A CN201710248459A CN107144556B CN 107144556 B CN107144556 B CN 107144556B CN 201710248459 A CN201710248459 A CN 201710248459A CN 107144556 B CN107144556 B CN 107144556B
Authority
CN
China
Prior art keywords
glass sheet
glucose oxidase
solution
silver
sensing chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710248459.7A
Other languages
English (en)
Other versions
CN107144556A (zh
Inventor
徐抒平
孙丹
齐国华
徐蔚青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710248459.7A priority Critical patent/CN107144556B/zh
Publication of CN107144556A publication Critical patent/CN107144556A/zh
Application granted granted Critical
Publication of CN107144556B publication Critical patent/CN107144556B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片及其制备方法,属于SERS检测技术领域。是首先在支持基底通过组装方法实现金属纳米粒子和葡萄糖氧化酶(GOD)的高效固定;银离子通过配位作用结合在葡萄糖氧化酶的辅酶因子FAD的N‑5和C‑4上的羰基氧之间,导致葡萄糖氧化酶的结构发生变化,在激光照射下,其SERS信号发生了明显的改变(包括峰位移的改变以及某些峰的逐渐出现和消失),银离子浓度越高,1629cm‑1与1485cm‑1相对强度越小,根据此规律实现银离子的定量检测。此外,通过还原剂溶液还原银离子生成零价银恢复葡萄糖氧化酶的SERS信号,使得该传感芯片能够被循环利用。

Description

一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感 芯片及其制备方法
技术领域
本发明属于SERS检测技术领域,具体涉及一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片及其制备方法。
背景技术
重金属污染已成为当今非常严重和紧迫的问题,即使在低浓度下,这些污染物也会对环境和人体产生不利影响,造成生殖障碍,影响胎儿正常发育,威胁儿童和成人身体健康等,最终降低人口身体素质,阻碍人口的可持续发展。其中,银是普遍的金属污染物之一。由于在摄影,电子,制药和镜子生产等行业中的广泛使用,每年有大量的银从工业废物释放到空气,水,土壤,甚至食物中。因此,开发和建立一种用于检测痕量银离子的高灵敏度和高选择性的分析方法非常重要,特别是对于毒性监测,临床诊断等。当前,测定银离子的方法有极谱法,电感耦合等离子体-原子发射光谱法(ICP-AES),原子吸收/发射光谱法等。这些方法能够准确检测银离子,但成本高昂,步骤繁琐,需要的样品量多。为了克服这些缺点,各种用于检测重金属离子的平台陆续得以开发,包括比色检测,电化学分析,荧光和表面增强拉曼散射技术等。
拉曼光谱分析法是对于入射光频率产生频移的散射光谱进行分析,以得到分子振动、转动方面的信息,并应用于分子结构研究,是一种原位、实时检测的技术。由于拉曼散射的效率极低,散射截面极小,因此常规拉曼在应用上存在很大局限性。直到20世纪70年代,Fleischmann等发现吡啶分子吸附在粗糙的银电极表面时会导致拉曼信号强度大幅增加的现象。表面增强拉曼不仅可以作为指纹光谱用于定性分析研究物质的结构,也可以广泛应用于分析传感领域。SERS光谱在传感领域的优势包括:较高的灵敏度,可实现单分子检测,无需样品前处理,可实现在线痕量检测,所需样品量较少。基于上述优势,SERS技术被广泛应用到环境污染物检测,生物分子检测,以及食品安全中。
葡萄糖氧化酶(GOD)因为其高特异性,高转换率,高稳定性和低成本,被广泛用于生物传感。葡萄糖氧化酶(GOD)主要由氧化型的黄素腺嘌呤二核苷酸(FAD)和还原型的黄素腺嘌呤二核苷酸(FADH)构成,是一种常用的功能酶,它可以特异性催化水解D-葡萄糖和O2的反应,生成D-葡萄糖酸(δ-内酯)和H2O2。根据文献报道GOD具有较强的SERS信号,其SERS信号来自于葡萄糖氧化酶的辅酶因子:黄素腺嘌呤二核苷酸(FAD)。此外,GOD对生物系统几乎没有毒性,可以将GOD作为SERS探针用于细胞及活体的生物学研究。
在人类的生产和生活活动中,为了把资源利用率提高到最高点,把资源的消耗率降低到最低点,节约自然资源,降低成本,减轻工业生产对于环境的污染,要求我们设计开发新型实用的可循环利用的传感器。
发明内容
本发明的目的是提供一种简易的可循环使用的可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片及其制备方法,该方法利用葡萄糖氧化酶(GOD)的表面增强拉曼(SERS)信号随银离子浓度变化的特点,将葡萄糖氧化酶作为SERS探针实现银离子的检测。该芯片结构简单,成本低廉,原料来源广泛,响应速度快。
该芯片对银离子的传感机制是:在激光照射下,GOD与银离子作用前后,GOD的表面增强拉曼(SERS)信号中1629cm-1与1485cm-1相对强度发生改变。银离子浓度越高,1629cm-1与1485cm-1相对强度越小,根据此规律实现银离子的定量检测。此外,通过还原剂溶液还原银离子生成零价银恢复葡萄糖氧化酶的SERS信号,使得该传感芯片能够被循环利用。
本发明所述的可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片,是首先在支持基底通过组装方法实现金属纳米粒子和葡萄糖氧化酶(GOD)的高效固定;银离子通过配位作用结合在葡萄糖氧化酶的辅酶因子FAD的N-5和C-4上的羰基氧之间,导致葡萄糖氧化酶的结构发生变化,在激光照射下,其SERS信号发生了明显的改变(包括峰位移的改变以及某些峰的逐渐出现和消失),银离子浓度越高,1629cm-1与1485cm-1相对强度越小,根据此规律实现银离子的定量检测。
本发明所述的一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片的制备方法,其步骤如下:
1)银纳米粒子的合成:称取硝酸银粉末0.017~0.019g,溶解于100mL二次去离子水中,在三颈烧瓶中搅拌并加热至100~120℃。当溶液微沸时加入1.9~2.1mL质量分数为1%的柠檬酸钠溶液,溶液由无色逐渐变为浅黄色、深黄色,最后变为灰绿色,此时将温度降至80~95℃,保持此温度冷却回流30~40min,得到表面带负电的银纳米粒子溶液;
2)清洗玻璃片:将玻璃片(还可以是石英片或者硅片)依次用去离子水、乙醇、丙酮、氯仿、丙酮、乙醇、去离子水的顺序超声清洗,每次清洗时间为5~10min;
3)玻璃片的羟基化:将清洗干净的玻璃片置于羟基化的溶液中(体积比:H2O2:H2SO4=3:7,H2O2水溶液的质量分数为30%,H2SO4水溶液的质量分数为98%),放置在通风橱内,待无气泡产生后将其在酒精灯上加热煮沸,直到溶液中完全没有气泡冒出时,停止加热;然后将玻璃片用大量去离子水多次清洗去除残余的羟基化溶液,得到带负电的羟基化玻璃片;
4)组装银纳米粒子:将带负电的羟基化玻璃片浸入带正电的聚二甲基二烯丙基氯化铵(1~3mg/mL)溶液中,组装时间为30~50min,然后取出玻璃片用大量去离子水冲洗,用氮气吹干;再将玻璃片浸入到表面带负电的银纳米粒子溶液中进行组装,组装时间为11~13h,取出玻璃片用去离子水洗净,氮气吹干;从而在玻璃片表面组装一层致密的灰绿色薄膜,即为银纳米粒子组装膜,膜的厚度范围是1~2nm;
5)组装葡萄糖氧化酶:将上述组装过银纳米粒子膜的玻璃片浸入到聚二甲基二烯丙基氯化铵(1~3mg/mL)溶液中,组装时间为30~40min,然后取出玻璃片用PBS(pH=5.6,PBS,磷酸缓冲盐溶液)溶液冲洗,氮气吹干;再将该玻璃片浸入到葡萄糖氧化酶(GOD,0.3~0.4wt%,pH=5.6)的水溶液中,组装时间为3~4h;最后取出玻璃片用大量的PBS(pH=5.6)溶液冲洗,氮气吹干,从而制备得到本发明所述的可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片。
本发明进一步提供了一种可循环利用的银离子传感芯片,将检测完银离子的传感芯片浸入硼氢化钠溶液中,硼氢化钠可以还原一价银离子生成零价银从而恢复葡萄糖氧化酶的SERS信号,使得该传感芯片能够被多次重复利用。
本发明的特点在于:
1.制作该银离子传感芯片采用的葡萄糖氧化酶具有双重作用,它既是SERS探针又可以特异性地结合银离子,简化了传感芯片的结构,使得制备的银离子传感芯片体积小,方便携带,可满足现场实际水体中银离子的检测;
2.由于GOD本身无毒,制备的银离子传感芯片具有良好的生物相容性,可用于细胞及活体内的研究;
3.该传感芯片的灵敏度高,最低检测浓度是0.1nM,符合国家要求水体中所含银离子的最低浓度(4.6×10-7M);
4.该传感芯片具有较好的检测重复性和选择性,可特异性识别银离子;
5.该传感芯片具有很好的稳定性,可在4℃条件下保存10个月;
6.该传感芯片中银离子与葡萄糖氧化酶之间的结合方式是可逆的,使得制备的传感芯片可以被重复使用。相比于其他传感器大大减少了制备成本,且所用原料价格低廉,可实现大批量生产。
附图说明
图1为实施例1中制备SERS基底时所用银纳米粒子的紫外吸收及扫描电子显微镜图(插图);
图2为实施例1中葡萄糖氧化酶与银离子作用前(曲线1)后(曲线2)的SERS光谱图。
图3(a)为实施例1中银离子传感芯片对银离子浓度的响应图。
图3(b)为实施例1中葡萄糖氧化酶的SERS信号I1629cm-1/I1485cm-1与银离子浓度的关系图。
图4为实施例2中该银离子传感芯片重复利用次数响应图。
图5(a)为实施例3中浸入到湖水里的银离子传感芯片在加入银离子前(曲线1)后(曲线2)的SERS光谱图。
图5(b)为实施例3中葡萄糖氧化酶的SERS信号I1629cm-1/I1485cm-1与银离子浓度形成的柱状图。
具体实施方式
实施例1、银离子传感芯片的制备及对银离子的响应
(1)银离子传感芯片的制备
1)银纳米粒子的合成:称取硝酸银粉末0.018g,溶解于100mL二次去离子水中,在三颈烧瓶中搅拌并加热至110℃。当溶液微沸时加入2mL质量分数为1%的柠檬酸钠溶液,溶液由无色逐渐变为微黄色、深黄色,最后变为灰绿色,此时将温度降至90℃,保持此温度冷却回流30min,得到表面带负电的银纳米粒子溶液。将制备得到的银纳米粒子进行扫描电子显微镜和紫外可见近红外吸收光谱表征(如图1所示),其在可见光范围内最大吸收波长的位置在429nm处,最后将其放置在冰箱里备用。
2)清洗玻璃片:将玻璃片切割成0.5cm×0.5cm大小,对其进行清洗。依次按照去离子水—乙醇—丙酮—氯仿—丙酮—乙醇—去离子水的顺序超声清洗,每次清洗时间为5min。
3)玻璃片的羟基化:将清洗干净的玻璃片置于羟基化的溶液中(体积比:H2O2:H2SO4=3:7,H2O2水溶液的质量分数为30%,H2SO4水溶液的质量分数为98%),放置在通风橱内,待无气泡产生后将其在酒精灯上加热煮沸,直到溶液中完全没有气泡冒出时,停止加热。冷却后将废液回收,用大量去离子水多次清洗去除残余的羟基化溶液,得到带负电的羟基化玻璃片,最后将该羟基化的玻璃片置于去离子水中密封待用。
4)组装银纳米粒子:将带负电的羟基化玻璃片浸入带正电的聚二甲基二烯丙基氯化铵溶液中,静止40min,然后取出玻璃片用大量去离子水冲洗,用氮气吹干。再将其浸入到制备好的表面带负电的银纳米粒子溶液中,组装时间为12h,取出玻璃片用去离子水洗净,氮气吹干。此时在玻璃片表面有一层致密的灰绿色薄膜,即为银纳米粒子组装膜。
5)组装葡萄糖氧化酶:将上述组装过银纳米粒子膜的玻璃片浸入到聚二甲基二烯丙基氯化铵(2mg/mL)溶液中,组装时间为40min,然后取出该玻璃片进行磷酸缓冲盐溶液(pH=5.6)冲洗,氮气吹干。此时玻璃片表面带有一定的正电,然后将该玻璃片浸入到葡萄糖氧化酶(GOD,wt 0.4%,pH=5.6)的水溶液中,组装时间为4h。最后取出玻璃片用大量的磷酸缓冲盐溶液(pH=5.6)冲洗,氮气吹干,从而制备得到本发明所述的可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片,将制备好的银离子传感芯片用锡纸包好放置在冰箱中(4℃)保存备用。
(2)银离子传感芯片对银离子的响应
在检测银离子之前,利用显微拉曼光谱仪测定银离子传感芯片上葡萄糖氧化酶的SERS信号,激发波长采用514nm,积分时间是5s,积分次数是1次,激光功率是10mW,记录拉曼位移在400-1800cm-1范围内的SERS光谱,如图2中曲线1所示。将上述制备的银离子传感芯片在室温条件下浸入到1.0mL硝酸银溶液中(1.0×10-6M,pH=5.6),由于葡萄糖氧化酶可以特异性地识别并键合银离子,导致其结构发生变化,因此SERS信号会发生相应的改变(1573cm-1处的峰位移到了1594cm-1处,1258cm-1处的峰位移到了1230cm-1处,1403cm-1处的峰消失了,而在1395cm-1处重新出现了一个肩峰,1485cm-1处峰的强度随银离子浓度逐渐增强,而1629cm-1处的峰强随银离子浓度逐渐减弱),如图2曲线2所示。
根据葡萄糖氧化酶的表面增强拉曼(SERS)信号随银离子浓度变化的特点,将该传感芯片用于银离子的检测。如图3所示,记录的是该传感芯片作用于不同浓度(图3a中曲线(1)—(9)分别代表银离子浓度是0,1.0×10-10、5.0×10-10、1.0×10-9、5.0×10-9、1.0×10-8、5.0×10-8、1.0×10-7、5.0×10-7M,pH=5.6)的银离子后葡萄糖氧化酶的SERS光谱图。银离子浓度较低时,Ag(I)-GOD复合物的SERS光谱类似于葡萄糖氧化酶的SERS光谱,随着银离子浓度的增加,葡萄糖氧化酶和Ag(I)-GOD复合物的SERS光谱出现了明显的差异(加入银离子后,1629cm-1处的峰逐渐消失,在1485cm-1处出现了新峰),其中,SERS光谱中I1629cm-1/I1485cm-1值随着银离子浓度的变化呈现规律性变化,相关拟合曲线如图3b所示(横坐标是银离子的浓度,纵坐标是各个银离子浓度对应下SERS光谱中I1629cm-1/I1485cm-1的值),该传感芯片对于银离子的最低检测浓度可达到0.1nM。
实施例2、可重复利用银离子传感芯片的制备
首先,配制质量分数为1%的硼氢化钠溶液,将溶液pH值调节(用磷酸缓冲盐溶液调节)为5.6。将检测完银离子的传感芯片浸入硼氢化钠溶液中,反应4min后,用去离子水清洗该芯片,并用氮气吹干。采用葡萄糖氧化酶在1629cm-1处的SERS强度表示该银离子传感芯片循环测定银离子的情况,如图4所示。该芯片在加入银离子之前在1629cm-1处的SERS强度大约是780a.u.,加入银离子之后,该波数处的SERS强度减弱到54a.u.左右。质量分数是1%的硼氢化钠溶液使得银离子还原为银,在1629cm-1处的SERS强度恢复到738a.u.左右,这一数值非常接近于初始水平。重复上述步骤7次循环后该传感芯片的SERS信号恢复到700a.u.左右,上述实验结果表明我们制备的银离子传感芯片至少可以被循环利用7次。
实施例3、银离子传感芯片在实际水样中的应用
将已制备的银离子传感芯片浸入1mL取自吉林大学中心校区晏湖的水中,浸泡8min后将芯片取出,用去离子水冲洗3次并用氮气吹干后进行SERS检测,得到的SERS光谱如图5(a)中曲线1所示。在所取晏湖水中加入浓度为1.0×10-8M的硝酸银溶液,反应8min后测其SERS信号发现此时在1629cm-1处的SERS强度明显减弱(如图5(a)中曲线2所示),说明该传感芯片用于实际水样中可检测出的银离子浓度是1.0×10-8M,上述实验结果表明该银离子传感芯片可以满足实际水体中检测银离子的需要(根据美国环保署的规定,饮用水中银离子浓度不超过4.6×10-7M)。

Claims (6)

1.一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片的制备方法,其步骤如下:
1)银纳米粒子的合成:称取硝酸银粉末0.017~0.019g,溶解于100mL二次去离子水中,搅拌并加热至100~120℃;当溶液微沸时加入1.9~2.1mL质量分数为1%的柠檬酸钠溶液,溶液由无色逐渐变为微黄色、深黄色,最后变为灰绿色,此时将温度降至80~95℃,保持此温度冷却回流30~40min,得到表面带负电的银纳米粒子溶液;
2)清洗玻璃片:将玻璃片依次用去离子水、乙醇、丙酮、氯仿、丙酮、乙醇和去离子水超声清洗,每次清洗时间为5~10min;
3)玻璃片的羟基化:将清洗干净的玻璃片置于羟基化的溶液中,待无气泡产生后将其加热煮沸,直到溶液中完全没有气泡冒出时停止加热;然后将玻璃片用大量去离子水多次清洗去除残余的羟基化溶液,得到带负电的羟基化玻璃片;
4)组装银纳米粒子:将带负电的羟基化玻璃片浸入带正电的聚二甲基二烯丙基氯化铵溶液中,组装时间为30~50min,聚二甲基二烯丙基氯化铵溶液的浓度为1~3mg/mL;取出玻璃片后用大量去离子水冲洗,用氮气吹干;再将玻璃片浸入到表面带负电的银纳米粒子溶液中进行组装,组装时间为11~12h,取出玻璃片后用去离子水洗净,氮气吹干;从而在玻璃片表面组装一层致密的灰绿色薄膜,即银纳米粒子组装膜,膜的厚度范围是1~2nm;
5)组装葡萄糖氧化酶:将上述组装银纳米粒子膜的玻璃片浸入到聚二甲基二烯丙基氯化铵溶液中,组装时间为30~40min,聚二甲基二烯丙基氯化铵溶液的浓度为1~3mg/mL;然后取出该玻璃片用PBS溶液冲洗,氮气吹干;再将该玻璃片浸入到葡萄糖氧化酶水溶液中,组装时间为3~4h;最后取出玻璃片用大量的PBS溶液冲洗,氮气吹干,从而制备得到可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片;
6)传感芯片的多次重复利用:将检测完银离子的传感芯片浸入硼氢化钠溶液中,硼氢化钠还原银离子生成零价银从而恢复葡萄糖氧化酶的SERS信号,使得该传感芯片能够被多次重复利用。
2.如权利要求1所述的一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片的制备方法,其特征在于:步骤3)中的羟基化的溶液为H2O2水溶液和H2SO4水溶液的混合,其体积比为3:7,H2O2水溶液的质量分数为30%,H2SO4水溶液的质量分数为98%。
3.如权利要求1所述的一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片的制备方法,其特征在于:步骤5)所述PBS溶液的pH=5.6。
4.如权利要求1所述的一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片的制备方法,其特征在于:步骤5)所述葡萄糖氧化酶水溶液的浓度为0.3~0.4wt%,pH=5.6。
5.一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片,其特征在于:是由权利要求1~4任何一项所述方法制备得到。
6.如权利要求5所述的一种可再生的用于痕量银离子检测的葡萄糖氧化酶SERS传感芯片,其特征在于:银离子的最低检测浓度是0.1nM。
CN201710248459.7A 2017-04-17 2017-04-17 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法 Expired - Fee Related CN107144556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710248459.7A CN107144556B (zh) 2017-04-17 2017-04-17 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710248459.7A CN107144556B (zh) 2017-04-17 2017-04-17 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN107144556A CN107144556A (zh) 2017-09-08
CN107144556B true CN107144556B (zh) 2019-12-10

Family

ID=59774697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710248459.7A Expired - Fee Related CN107144556B (zh) 2017-04-17 2017-04-17 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN107144556B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346347A (zh) * 2019-07-12 2019-10-18 深圳大学 一种具有SERS活性的Ag/PEDOT复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699724B1 (en) * 1998-03-11 2004-03-02 Wm. Marsh Rice University Metal nanoshells for biosensing applications
CN104697980B (zh) * 2015-04-02 2017-06-06 吉林师范大学 一种基于拉曼特征峰峰位变化对汞离子进行定量检测的方法

Also Published As

Publication number Publication date
CN107144556A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
Dong et al. Spatial-resolved photoelectrochemical biosensing array based on a CdS@ g-C3N4 heterojunction: a universal immunosensing platform for accurate detection
Zhang et al. Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection
Luo et al. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet
Bener et al. Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts
Viter et al. Metal oxide nanostructures in sensing
Koncki et al. Optical biosensors based on Prussian Blue films
Mohr A chromoreactand for the selective detection of HSO 3− based on the reversible bisulfite addition reaction in polymer membranes
Venkatesan et al. Fuel waste to fluorescent carbon dots and its multifarious applications
Zhao et al. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine
Xu et al. Nanomaterial-based sensors and strategies for heavy metal ion detection
Kailasa et al. Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples
Wang et al. Recent advances in porphyrin-derived sensors
Zheng et al. A novel near-infrared light-responsive photoelectrochemical platform for detecting microcystin-LR in fish based on Ag2S cubes and plasmonic Au nanoparticles
Garg et al. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems–A review
Kateshiya et al. Green fluorescent carbon dots functionalized MoO3 nanoparticles for sensing of hypochlorite
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
Qin et al. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection
Talebi et al. Photo-responsive oxidase-like nanozyme based on a vanadium-docked porphyrinic covalent organic framework for colorimetric L-Arginine sensing
Huang et al. Toward the limitation of dealloying: full spectrum responsive ultralow density nanoporous gold for plasmonic photocatalytic SERS
Chen et al. A new rhodamine probe with large stokes shift for Hg2+ detection and its application in real sample analysis
CN107144556B (zh) 一种可再生的用于痕量银离子检测的葡萄糖氧化酶sers传感芯片及其制备方法
Feng et al. One-pot synthesis of nano Zr-based metal-organic frameworks for fluorescence determination of quercetin and Hg2+
Pourbasheer et al. Design of a novel optical sensor for determination of trace amounts of copper by UV–visible spectrophotometry in real samples
Wang et al. A novel coumarin derivative-grafted dialdehyde cellulose-based fluorescent sensor for selective and sensitive detection of Fe3+
Cao et al. Reactive hydrogel patch for SERS detection of environmental formaldehyde

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191210

CF01 Termination of patent right due to non-payment of annual fee