CN107142462B - 一种金刚石基海水盐度传感器电极材料 - Google Patents

一种金刚石基海水盐度传感器电极材料 Download PDF

Info

Publication number
CN107142462B
CN107142462B CN201710230848.7A CN201710230848A CN107142462B CN 107142462 B CN107142462 B CN 107142462B CN 201710230848 A CN201710230848 A CN 201710230848A CN 107142462 B CN107142462 B CN 107142462B
Authority
CN
China
Prior art keywords
diamond
buddha
seawater salinity
composite film
salinity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710230848.7A
Other languages
English (en)
Other versions
CN107142462A (zh
Inventor
姜辛
盖志刚
李恒
郭风祥
李正军
邰凯平
黄楠
刘鲁生
史丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Puze Marine Technology Co.,Ltd.
Original Assignee
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanographic Instrumentation Research Institute Shandong Academy of Sciences filed Critical Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority to CN201710230848.7A priority Critical patent/CN107142462B/zh
Publication of CN107142462A publication Critical patent/CN107142462A/zh
Application granted granted Critical
Publication of CN107142462B publication Critical patent/CN107142462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Abstract

本发明公开了一种金刚石基海水盐度传感器电极材料,使用金刚石薄膜材料/金刚石复合薄膜材料作为海水盐度传感器的电极材料,所述金刚石薄膜材料包括掺硼多晶金刚石薄膜材料、掺硼纳米金刚石薄膜材料,所述金刚石复合薄膜材料包括金刚石/石墨复合薄膜材料、金刚石/碳化物复合薄膜材料、掺硼金刚石/非晶碳复合薄膜材料以及经过金属、有机物或无机物分子表面修饰或改性过的金刚石薄膜材料,本发明所公开的电极材料具有电化学窗口宽、背景电流低、抗腐蚀性强、防生物附着能力强、机械强度高、化学性能稳定高、功能化途径多、再加工性好、生物亲和性强等优点,还提高了海水盐度传感器的测量精度和可靠性,延长了海水盐度传感器的使用寿命。

Description

一种金刚石基海水盐度传感器电极材料
技术领域
本发明涉及海水水质监测设备技术领域,特别涉及一种金刚石基海水盐度传感器电极材料。
背景技术
盐度是海洋动力学以及海洋与大气相互作用中起关键作用的重要参数,盐度的变化与海洋环境及气候的变化有很强的内在联系。对其精确的检测,对研究海洋学、海洋环境和气候的监测及预测、军事、沿海采油、以及海洋渔业等具有十分重要的意义。
电极式海水盐度传感器以其测量精度高、响应速度快的优势在海洋盐度检测中得到广泛应用。然而,电极式海水盐度传感器在海水中使用时,环境极其恶劣,海水污染、海水腐蚀、潮湿、高压、生物附着等因素往往会对电极材料产生损害,影响海水盐度传感器的测量精度、可靠性以及寿命。电极材料的制备工艺是电极式海水盐度传感器的技术瓶颈,目前电极式海水盐度传感器多采用铂黑电极材料,在复杂的海洋环境下,铂黑电极易发生氧化失活,致使氧化层遮盖电极表面,且长时间使用易造成电极表面发生物理和化学堕化,电化学反应中的反应产物不能从电极表面移除。此外,易被海洋生物附着,致使检测的精度、可靠性和寿命大大降低。
因此,亟待一种金刚石基海水盐度传感器电极,具有优异的物理和化学特性,提供比传统铂黑电极更高的测量精度、更高的可靠性、更长的工作寿命。
发明内容
为解决上述技术问题,本发明提供了一种金刚石基海水盐度传感器电极材料,以达到提高海水盐度传感器的测量精度和可靠性,延长海水盐度传感器的使用寿命的目的。
为达到上述目的,本发明的技术方案如下:
一种金刚石基海水盐度传感器电极材料,使用金刚石薄膜材料/金刚石复合薄膜材料作为海水盐度传感器的电极材料。
上述方案中,所述金刚石薄膜材料包括掺硼多晶金刚石薄膜材料、掺硼纳米金刚石薄膜材料,所述金刚石复合薄膜材料包括金刚石/石墨复合薄膜材料、金刚石/碳化物复合薄膜材料、掺硼金刚石/非晶碳复合薄膜材料以及经过金属、有机物或无机物分子表面修饰或改性过的金刚石薄膜材料。所述表面修饰或改性包括在金刚石薄膜电极表面沉积或涂覆修饰材料的分子/团簇、优化金刚石薄膜电极表面微观结构。利用表面改性和修饰技术,在金刚石薄膜电极表面沉积或涂覆修饰材料的分子/团簇,或优化金刚石薄膜电极表面微观结构,以形成如纳米线,纳米球、纳米管,纳米颗粒,纳米团簇以及它们组成的纳米阵列,纳米多孔结构等形式;或利用金属、有机物或无机物同时改性和修饰,以提高电极材料的电化学稳定性、防污染性能、防腐蚀性能、防生物附着性能、机械性能:铂、银、金、钌、铑、钯、锇、铱等金属,可提高金刚石薄膜电极的化学稳定性及导电性;金属钛可形成连续的金属层,金属镍可形成纳米颗粒,对金刚石表面进行保护;二氧化硅、氧化铝、二氧化钛、磷钼酸等无机物,可在金刚石表面形成20~400nm的纳米球,提高耐热性,抗氧化性,抗污染/生物附着能力;厚度小于20nm的聚3-吡咯基羧酸、氨基化合物等有机物,可以调节金刚石薄膜电极的疏水性,提高防生物附着能力、电化学测量的灵敏度。
上述方案中,所述海水盐度传感器的电极包括基底和位于基底上的金刚石薄膜/金刚石复合薄膜层,所述金刚石薄膜/金刚石复合薄膜层上设有电极引线,所述基底可以是金属、半导体或绝缘体,如钛、硅、半导体石英、氧化铝陶瓷。
上述方案中,所述金刚石薄膜/金刚石复合薄膜层通过微波等离子体增强化学气相沉积法或热丝化学气相沉积法沉积在基底上。
上述方案中,所述海水盐度传感器的性能如下:盐度测量范围为0~60ppt;温度范围为-2~60℃;压力范围为0~6000米;电导率测量精度不低于±0.005mS/cm,稳定工作时间不低于6个月。
上述方案中,所述基底为半导体或绝缘体时,金刚石薄膜/金刚石复合薄膜层与电极引线之间还镀有钛蒸镀层和金蒸镀层,所述钛蒸镀层和金蒸镀层是采用电子束蒸发-沉积法或磁控溅射法在金刚石薄膜/金刚石复合薄膜层表面依次沉积制得;所述钛蒸镀层厚度为20~200nm,所述金蒸镀层厚度为为20~500nm。
上述方案中,所述海水盐度传感器包括壳体、电导率探头、压力探头以及温度探头,所述电导率探头和压力探头安装在壳体上,所述电导率探头内设有电导池,电导池内放置三电极/四电极/七电极,所述电导池前端安装温度探头。
上述方案中,所述海水盐度传感器通过电导池内的电极监测海水盐度变化引起的电阻的变化,通过文氏桥振荡电路将电阻的变化转换为振荡频率的变化,通过频率检测电路获取振荡频率,利用振荡频率与电导率之间的关系,计算出电导率,再综合电导率、温度和压力计算出海水的盐度。
上述方案中,所述微波等离子体增强化学气相沉积法包括如下步骤:
(1)以单晶硅作为沉积金刚石薄膜的基底,单晶硅的粗糙度小于15nm,硅片基底厚度大于100μm,为实现高的形核密度,先将单晶硅晶片在含0.05wt%纳米金刚石颗粒悬浮液中预处理10~60分钟;
(2)选用甲烷作为碳源、硼烷或三甲基硼烷作为硼源,与氢气混合,沉积过程在3000~8000Pa的恒定气压下进行,反应温度为700~950℃,微波功率为800~2000W,实现掺硼纳米金刚石薄膜的生长;硼烷或三甲基硼烷浓度为10~500ppm,沉积过程持续6~200小时,制备得到掺硼纳米金刚石薄膜的厚度为1~200μm;氢气、碳源、硼源的体积比分别为:95~99%:1~5%:0.001~0.05%。
上述方案中,所述热丝化学气相沉积法包括如下步骤:
(1)以单晶硅作为沉积掺硼金刚石/非晶碳复合薄膜的基底,单晶硅的粗糙度小于15nm,硅片基底厚度大于100μm;
(2)将单晶硅基底放入热丝化学气相沉积设备,以甲烷为碳源,硼烷或三甲基硼烷为硼源,硼在混合气体中的质量浓度范围为1000~4000ppm,将甲烷、氢气、硼烷或三甲基硼烷的混合气体通入到反应室中,反应温度450~690℃,反应时间4~100小时,在单晶硅基底上制备得到厚度为1~100μm的掺硼金刚石/非晶碳复合薄膜;氢气、碳源、硼源的体积比分别为:95~99%:1~5%:0.001~0.05%。
通过上述技术方案,本发明提供的金刚石基海水盐度传感器电极材料电化学窗口宽,无论在水性介质还是非水性介质中,都表现出比其他常规电极更宽的电势窗口,极其适用于海水盐度的测量;背景电流低,在电化学检测中表现出更高的信噪比;稳定性好,表现出极强的抗腐蚀性,且其表面难以被“毒化”,具有强力的抗污染特性;防生物附着能力强;机械强度高;功能化途径多,借助丰富的碳表面化学反应,通过光、电、热、化学等方法,可以引入不同种类和不同数量的功能基,实现电极表面上从原子到分子不同级别的化学修饰;再加工性好易,可以采用刻蚀法、再生长法或无模板法等工艺手段,在其表面人为设计和精密加工各种纳米表面;生物亲和性强,通过电极表面的化学修饰及各种微纳米结构的筑建,各种生物分子都有可能在其表面展现它们自身的生物活性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的一种金刚石基海水盐度传感器电极结构示意图;
图2为本发明实施例所公开的微波等离子体增强化学气相沉积法示意图;
图3为本发明实施例所公开的热丝化学气相沉积法示意图;
图4为本发明实施例所公开的盐度测量原理示意图;
图5为本发明实施例所公开的海水盐度传感器结构示意图;
图6为本发明实施例一所公开的金刚石基海水盐度传感器电极与铂黑电极盐度盐度测量响应特性对比;
图7为本发明实施例二所公开的金刚石基海水盐度传感器电极与铂黑电极盐度测量线性相关性对比;
图8为本发明实施例一和实施例二所公开的金刚石电极与铂黑电极电化学循环伏安特性的对比曲线。
图中,1、基底;2、金刚石/金刚石复合薄膜;3、钛蒸镀层;4、金蒸镀层;5、电极引线;6、温度探头;7、电导率探头;8、压力探头;9、电导池;10、壳体;11、等离子体发生器;12、氢气罐;13、甲烷罐;14、三甲基硼烷罐;15、样品台;16、真空腔;17、掺硼金刚石/非晶碳复合薄膜;18、热丝。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种金刚石基海水盐度传感器电极材料,具体实施方式如下:
实施例一:
掺硼金刚石薄膜电极材料制备,采用微波等离子体增强化学气相沉积法,如图2所示:
(1)以单晶硅作为沉积掺硼金刚石薄膜的基底1,硅的粗糙度为15nm,硅片基底厚度400μm。为实现高的形核密度,先将单晶硅晶片在含0.05wt%纳米金刚石颗粒(5nm大小)悬浮液中预处理30分钟;
(2)沉积过程在6000Pa的恒定气压下进行,反应温度为800℃,微波源发射微波功率为1800W,反应气体是甲烷和氢气组成的混合气体,并添加毒性较小的三甲基硼烷作为掺杂的硼源,实现掺硼纳米金刚石薄膜的生长。三种气体分别从甲烷瓶13、氢气瓶12和三甲基硼烷瓶14中通入反应室真空腔16内,样品台15上放置基底1。三甲基硼烷浓度为120ppm,沉积过程持续6小时,制备得到掺硼金刚石薄膜2的厚度为1μm;
(3)氢气、碳源、硼源的体积比分别为:98.5%:1.46%:0.04%。
(4)采用电子束蒸发-沉积法在掺硼金刚石薄膜表面依次沉积钛蒸镀层3和金蒸镀层4,钛蒸镀层3厚度为100nm,金蒸镀层4厚度为200nm。金蒸镀层4上伸出电极引线5,制得电极结构如图1所示。
实施例二:
掺硼金刚石/非晶碳复合薄膜电极材料制备,采用热丝化学气相沉积法,如图3所示:
(1)以单晶硅作为沉积金刚石复合薄膜的基底1,硅的粗糙度小于5nm,硅片基底厚度400μm;
(2)将单晶硅基底放入热丝化学气相沉积设备,以甲烷为碳源,三甲基硼烷为硼源,硼在混合气体中的质量浓度为2000ppm,将甲烷、氢气、三甲基硼烷的混合气体通入到反应室中,在热丝18作用下,反应温度600℃,反应时间8小时,在单晶硅基底1上制备得到厚度为1μm的掺硼金刚石/非晶碳复合薄膜17。
(3)采用磁控溅射法在掺硼金刚石薄膜表面依次沉积钛蒸镀层3和金蒸镀层4,钛蒸镀层3厚度为80nm,金蒸镀层4厚度为400nm。金蒸镀层4上伸出电极引线5,制得电极结构如图1所示。
采用上述实施例一和实施例二制得的电极分别制作海水盐度传感器,结构如图5所示,海水盐度传感器由电导率探头7、温度探头6、压力探头8、壳体10组成,电导率探头7内有电导池9,电导池9内放置三电极/四电极/七电极。
海水盐度传感器测量原理如图4所示:海水盐度传感器通过电导池内的电极监测海水盐度变化引起的电阻的变化,通过文氏桥振荡电路将电阻的变化转换为振荡频率的变化,通过频率检测电路获取振荡频率,利用振荡频率与电导率之间的关系,计算出电导率,再综合电导率、温度和压力计算出海水的盐度。
海水盐度传感器的性能:盐度测量范围为0~60ppt;温度范围为-2~60℃;压力范围为0~6000米;电导率测量精度不低于±0.005mS/cm,稳定工作时间不低于6个月,优于现有的海水盐度传感器。
将实施例一制得的掺硼纳米金刚石薄膜电极(BBD1)与铂黑电极(Pt)进行盐度传感性对比,将标准海水进行稀释,然后用两种电极进行检测,标准海水的稀释倍数越大,盐度值越小。如图6所示,从图中可以看出,实施例一制得的掺硼纳米金刚石薄膜电极(BBD1)电极响应特性要优于铂黑电极。
将实施例二制得的掺硼金刚石/非晶碳复合薄膜电极(BBD2)与铂黑电极(Pt)进行盐度传感性对比,将标准海水进行稀释,然后用两种电极进行检测,标准海水的稀释倍数越大,盐度值越小。如图7所示,从图中可以看出,实施例二制得的掺硼金刚石/非晶碳复合薄膜电极(BBD2)在稀释128倍的范围下仍保持较高的线性相关性,线性范围更宽。
将实施例一制得的掺硼纳米金刚石薄膜电极(BBD1)与铂黑电极(Pt)在0.5MNa2SO4溶液中进行电化学循环伏安特性对比,循环伏安曲线见图8。从图8中可以看出,掺硼纳米金刚石薄膜电极(BBD1)的电化学势窗比铂黑电极(Pt)宽,背景电流比铂黑电极(Pt)低。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种金刚石基海水盐度传感器电极材料,其特征在于,使用金刚石薄膜材料/金刚石复合薄膜材料作为海水盐度传感器的电极材料;所述金刚石薄膜材料包括掺硼多晶金刚石薄膜材料,所述金刚石复合薄膜材料包括金刚石/碳化物复合薄膜材料以及经过金属、有机物或无机物分子表面修饰或改性过的金刚石薄膜材料,所述表面修饰或改性包括在金刚石薄膜电极表面沉积或涂覆修饰材料的分子/团簇、优化金刚石薄膜电极表面微观结构。
2.根据权利要求1所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述海水盐度传感器的电极包括基底和位于基底上的金刚石薄膜/金刚石复合薄膜层,所述金刚石薄膜/金刚石复合薄膜层上设有电极引线,所述基底是金属、半导体或绝缘体。
3.根据权利要求2所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述金属、半导体或绝缘体为钛、硅、半导体石英、氧化铝陶瓷。
4.根据权利要求2所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述金刚石薄膜/金刚石复合薄膜层通过微波等离子体增强化学气相沉积法或热丝化学气相沉积法沉积在基底上。
5.根据权利要求1所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述海水盐度传感器的性能如下:盐度测量范围为0~60ppt;温度范围为-2~60℃;压力范围为0~6000米;电导率测量精度不低于±0.005mS/cm,稳定工作时间不低于6个月。
6.根据权利要求2所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述基底为半导体或绝缘体时,金刚石薄膜/金刚石复合薄膜层与电极引线之间还镀有钛蒸镀层和金蒸镀层,所述钛蒸镀层和金蒸镀层是采用电子束蒸发-沉积法或磁控溅射法在金刚石薄膜/金刚石复合薄膜层表面依次沉积制得;所述钛蒸镀层厚度为20~200nm,所述金蒸镀层厚度为20~500nm。
7.根据权利要求1所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述海水盐度传感器包括壳体、电导率探头、压力探头以及温度探头,所述电导率探头和压力探头安装在壳体上,所述电导率探头内设有电导池,电导池内放置三电极/四电极/七电极,所述电导池前端安装温度探头。
8.根据权利要求7所述的一种金刚石基海水盐度传感器电极材料,其特征在于,所述海水盐度传感器通过电导池内的电极监测海水盐度变化引起的电阻的变化,通过文氏桥振荡电路将电阻的变化转换为振荡频率的变化,通过频率检测电路获取振荡频率,利用振荡频率与电导率之间的关系,计算出电导率,再综合电导率、温度和压力计算出海水的盐度。
CN201710230848.7A 2017-04-11 2017-04-11 一种金刚石基海水盐度传感器电极材料 Active CN107142462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710230848.7A CN107142462B (zh) 2017-04-11 2017-04-11 一种金刚石基海水盐度传感器电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710230848.7A CN107142462B (zh) 2017-04-11 2017-04-11 一种金刚石基海水盐度传感器电极材料

Publications (2)

Publication Number Publication Date
CN107142462A CN107142462A (zh) 2017-09-08
CN107142462B true CN107142462B (zh) 2019-06-28

Family

ID=59773739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710230848.7A Active CN107142462B (zh) 2017-04-11 2017-04-11 一种金刚石基海水盐度传感器电极材料

Country Status (1)

Country Link
CN (1) CN107142462B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696511B (zh) * 2017-10-13 2023-08-08 山东省科学院海洋仪器仪表研究所 一种海水盐度传感器电导池的制备装置及制备方法
CN108169299B (zh) * 2018-01-12 2023-07-14 山东省科学院海洋仪器仪表研究所 一种基于mems技术的金刚石海水盐度传感器及其制作方法
CN109060900B (zh) * 2018-08-10 2020-07-10 华中科技大学 一种掺硼金刚石修饰的衰减全反射晶片、其制备及应用
CN110643972B (zh) * 2019-09-29 2021-04-09 哈尔滨工业大学 一种金纳米粒子修饰掺硼金刚石电极的制备方法及应用
CN111441033A (zh) * 2020-02-13 2020-07-24 上海征世科技有限公司 一种用钻石制成的手触摸控制开关及其制备方法
CN111232972B (zh) * 2020-03-19 2021-09-10 北京科技大学 一种高性能硼掺杂金刚石纳米线的制备方法
CN112763556B (zh) * 2020-12-07 2022-12-02 山东省科学院海洋仪器仪表研究所 一种多层膜结构的海洋探测器电极及其制备方法
CN112768709A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池
CN114717533B (zh) * 2022-02-25 2023-03-10 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955333A (zh) * 2005-10-26 2007-05-02 中国砂轮企业股份有限公司 钻石薄膜制造方法
CN101956178A (zh) * 2010-09-28 2011-01-26 浙江工业大学 一种硼掺杂纳米金刚石薄膜及制备方法
CN103695863A (zh) * 2013-12-09 2014-04-02 四川大学 一种掺硼金刚石膜/碳膜复合电极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955333A (zh) * 2005-10-26 2007-05-02 中国砂轮企业股份有限公司 钻石薄膜制造方法
CN101956178A (zh) * 2010-09-28 2011-01-26 浙江工业大学 一种硼掺杂纳米金刚石薄膜及制备方法
CN103695863A (zh) * 2013-12-09 2014-04-02 四川大学 一种掺硼金刚石膜/碳膜复合电极材料的制备方法

Also Published As

Publication number Publication date
CN107142462A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
CN107142462B (zh) 一种金刚石基海水盐度传感器电极材料
Mousavi et al. Poly (3, 4-ethylenedioxythiophene)(PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes
Wilson et al. Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes
Ping et al. Determination of trace heavy metals in milk using an ionic liquid and bismuth oxide nanoparticles modified carbon paste electrode
US20200284748A1 (en) Chlorine Species Sensing Using Pseudo-Graphite
EP2350631A1 (en) Boron-doped diamond
Harale et al. Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO 2 gas detection
Demir et al. Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method
Wang et al. Molecularly imprinted photoelectrochemical sensor for aflatoxin B1 detection based on organic/inorganic hybrid nanorod arrays
JP5694303B2 (ja) 電着金ナノ構造
Zhang et al. Porous GaN electrode for anodic stripping voltammetry of silver (I)
Zhang et al. TiO 2–graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb (ii) and Cd (ii) detection
Wang et al. Self-assembled graphene and copper nanoparticles composite sensor for nitrate determination
Roman et al. Monocrystalline silicon/polyaniline/horseradish peroxidase enzyme electrode obtained by the electrodeposition method for the electrochemical detection of glyphosate
Zhang et al. Effects of surface area on all-solid-stated pH sensor based on antimony electrode
Tsunozaki et al. Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes
Hamdi et al. Electrodeposition study of silver: Nucleation process and theoretical analysis
Pleskov et al. Benzene oxidation at diamond electrodes: Comparison of microcrystalline and nanocrystalline diamonds
CN109813776A (zh) 中等孔径多孔硅基氧化锌薄膜复合材料气敏传感器及其制备方法和应用
Pei et al. Development of a boron-doped diamond electrode for the simultaneous detection of Cd2+ and Pb2+ in water
Gong et al. Reusable boron-doped diamond electrodes for the semi-continuous detection of Tetrabromobisphenol a
Fernandes et al. Electrodeposition of PbS multilayers on Ag (111) by ECALE
JP5311501B2 (ja) ホウ素ドープダイヤモンド電極を用いたpHの測定方法及び装置
Spitsina et al. ZnO crystalline nanowires array for application in gas ionization sensor
Siddiqui et al. Nanocrystalline Diamond Electrodes: Enabling electrochemical microsensing applications with high reliability and stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 266200, Qingdao, Shandong, Qingdao, Qingdao, the core of the blue Silicon Valley, blue Silicon Valley business center, phase one, building No. 1.

Patentee after: Inst. of Marine Apparatus & Instruments, Shandong Prov. Academy of Sciences

Address before: 266071 Shandong city of Qingdao province Zhejiang City Road No. 28

Patentee before: Inst. of Marine Apparatus & Instruments, Shandong Prov. Academy of Sciences

CP02 Change in the address of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20210908

Address after: 266000 room H17, 5th floor, No. 880 Tong'an Road, Laoshan District, Qingdao, Shandong

Patentee after: Qingdao Puze Marine Technology Co.,Ltd.

Address before: 266200, Qingdao, Shandong, Qingdao, Qingdao, the core of the blue Silicon Valley, blue Silicon Valley business center, phase one, building No. 1.

Patentee before: INSTITUTE OF OCEANOGRAPHIC INSTRUMENTATION, SHANDONG ACADEMY OF SCIENCES

TR01 Transfer of patent right