CN107140626B - 一种三维石墨烯材料的低温热成型方法 - Google Patents

一种三维石墨烯材料的低温热成型方法 Download PDF

Info

Publication number
CN107140626B
CN107140626B CN201710374721.2A CN201710374721A CN107140626B CN 107140626 B CN107140626 B CN 107140626B CN 201710374721 A CN201710374721 A CN 201710374721A CN 107140626 B CN107140626 B CN 107140626B
Authority
CN
China
Prior art keywords
dimensional grapheme
low temperature
mixed liquor
assembly
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710374721.2A
Other languages
English (en)
Other versions
CN107140626A (zh
Inventor
王帅
张哲野
徐沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710374721.2A priority Critical patent/CN107140626B/zh
Publication of CN107140626A publication Critical patent/CN107140626A/zh
Application granted granted Critical
Publication of CN107140626B publication Critical patent/CN107140626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种三维石墨烯材料的制备方法,包括如下步骤:(1)利用氧化剥离的方法制备浓度为1~20mg/mL的氧化石墨烯溶液;(2)将步骤(1)所述氧化石墨烯溶液与还原性聚合单体混合得到混合液,其中所述还原性聚合单体在所述混合液中的体积分数为0.5~5%;然后将该混合液在60~80℃反应1~12小时,冷却到室温,即可获得三维石墨烯组装体;(3)将步骤(2)所述三维石墨烯组装体进行冷冻干燥,即得到三维石墨烯材料。通过对关键反应物及其反应条件的选择和优化,控制氧化石墨烯的还原程度,实现了低温、简单、易于操作且适合大规模生产的方式制备三维石墨烯及其功能材料。

Description

一种三维石墨烯材料的低温热成型方法
技术领域
本发明属于三维石墨烯制备技术领域,更具体地,涉及一种三维石墨烯材料或其功能材料的低温热成型方法及其产品。
背景技术
石墨烯是碳原子以sp2杂化体系紧密堆积而成的蜂窝状二维晶格结构碳纳米材料,由于其具有优异的电学,力学和热学性质而被广泛应用于催化,传感,能源存储和柔性电子器件等领域。将二维石墨烯片层进行三维组装可以实现纳米材料内嵌到宏观器件中,从而可拓宽石墨烯的应用范围。而在三维石墨烯研究和应用中的一个主要难题是石墨烯片层容易相互聚集,导致其比表面积降低,继而使其性能和应用范围受到很大局限。
目前合成三维石墨烯的方法主要有化学气相沉积法(CVD)和水热法,但是采用CVD方法生长需要高温热解碳氢化合物(≈1000℃)和特殊的设备,条件苛刻,难以实现三维石墨烯的大批量生产,而传统的水热法虽然能够在较低的温度下(≈180℃)实现三维石墨烯的制备,但是受制于水热反应釜的大小,也难以实现大规模的生产。同时水热制备得到的三维石墨烯材料在体积上相比于反应前的溶液会发生严重的收缩,石墨烯片层会发生严重的堆积。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种三维石墨烯材料的低温热成型方法,其目的在于通过对关键反应物及其反应条件的选择和优化,控制氧化石墨烯的还原程度,实现低温、简单、易于操作且适合大规模生产的方式制备三维石墨烯及其功能材料,由此解决现有技术三维石墨烯材料制备方法复杂、反应条件苛刻、不适合大规模生产,同时反应温度高导致三维石墨烯体积收缩、片层堆积的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种三维石墨烯材料的制备方法,包括如下步骤:
(1)利用氧化剥离的方法制备浓度为1~20mg/mL的氧化石墨烯溶液;
(2)将步骤(1)所述氧化石墨烯溶液与还原性聚合单体混合得到混合液,其中所述还原性聚合单体在所述混合液中的体积分数为0.5~5%;然后将该混合液在60~80℃反应2~12小时,冷却到室温,即可获得三维石墨烯组装体;
(3)将步骤(2)所述三维石墨烯组装体进行冷冻干燥,即得到三维石墨烯材料。
优选地,步骤(1)所述氧化石墨烯的浓度为2~20mg/mL。
优选地,步骤(2)所述还原性聚合单体为吡咯、苯胺或3,4-二氧乙烯噻吩中的一种或多种。
优选地,步骤(2)所述还原性聚合单体在所述混合液中的体积分数为1~3%。
优选地,步骤(2)所述反应温度为70~80℃,反应时间为4~9小时。
优选地,步骤(2)所述混合液中还包括功能性纳米材料。
优选地,所述功能性纳米材料为碳纳米管、纳米硅或纳米二氧化钛。
优选地,步骤(2)所述混合液被注入模具中。
优选地,所述模具为毛细管、培养皿、烧杯或烘焙模具。
按照本发明的另一个方面,提供了一种三维石墨烯材料,按照所述的制备方法制备得到。
按照本发明的另一个方面,提供了一种所述的三维石墨烯材料的应用,应用于超级电容器电极材料或锂离子电池电极材料。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果。
(1)本发明通过采用合适的聚合单体以及优化选择该聚合单体的添加量,并在低温条件下还原组装氧化石墨烯,控制氧化石墨烯的还原程度,使得三维石墨烯组装体的体积相对于初始氧化石墨烯和还原剂的混合液的体积几乎没有发生收缩,从而使制备得到的三维石墨烯材料或其功能材料片层之间堆积程度低,比表面积大。
(2)本发明通过采用不同的模具,可以制备得到不同形态的三维石墨烯材料,包括三维多孔的石墨烯薄膜、纤维等组装体材料。
(3)本发明三维石墨烯材料的低温热成型方法,通过在氧化石墨烯和聚合单体中同时加入功能性纳米材料,制备得到的三维石墨烯材料为三维石墨烯功能材料。
(4)本发明三维石墨烯及其功能材料低温热成型方法中,原材料氧化石墨烯来源非常广泛,成本低,可以大量生产;另外本发明三维石墨烯及其功能材料的制备方法条件温和、操作简便且环境友善,低温下即可成型得到大块体积不收缩的石墨烯组装体,适用于宏量制备三维石墨烯材料。
(5)本发明通过控制还原性聚合单体的添加量、反应温度以及时间,使得本发明石墨烯表面原位生长的还原性聚合单体的聚合物厚度较小,只有0.6~0.8nm,最终获得的三维石墨烯材料实质是由一层层二维的石墨烯/聚合物叠加而成,由二维的石墨烯/聚合物组装而成的三维石墨烯材料表面裸露的活性位点更多,比表面积更大,用作电极材料时,电化学性能更优异。
(6)本发明通过低温热成型得到的三维石墨烯及其功能材料具有高的比表面积、多孔、质量轻,具有一定的机械强度等优异的性能,并且该材料用于超级电容器电极材料又兼具容量大,循环寿命长,效率高等优点。同时本发明制备的三维石墨烯功能组装体复合材料还可用在锂离子电池电极材料,燃料电池,光电传感等领域。
附图说明
图1是实施例1的氧化石墨烯@吡咯混合液低温热成型得到的三维石墨烯组装体的实物图片;
图2是实施例1制备得到的三维石墨烯组装体的扫描电子显微镜图片;
图3是实施例1制备得到的三维石墨烯组装体的透射电子显微镜图片,插图为对应的选区电子衍射花样图;
图4是实施例1制备得到的三维石墨烯组装体的原子力显微镜图片;
图5是实施例1的氧化石墨烯和三维石墨烯组装体的红外光谱图;
图6实施例2制备得到的三维石墨烯薄膜的实物图片;
图7是实施例3制备得到的三维石墨烯纤维的实物图片;
图8是实施例4制备得到的三维石墨烯HUST图标的实物图片;
图9是实施例5用氧化石墨烯@噻吩作为反应液获得的三维石墨烯组装体的透射电子显微镜图片,插图为对应的原子力显微镜图片;
图10是实施例7三维石墨烯组装体作为超级电容器电极的循环伏安曲线;
图11是实施例9三维石墨烯/二氧化钛功能组装体的透射电子显微镜图片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的三维石墨烯材料或三维石墨烯基功能材料的低温热成型方法,包括如下步骤:
(1)利用氧化剥离的方法(Hummers法)制备浓度为1~20mg/mL的氧化石墨烯溶液;氧化石墨烯的浓度太低,制备得到的石墨烯组装体体积收缩相对严重,本发明优选为氧化石墨烯初始浓度优选为2~20mg/mL。
(2)将步骤(1)所述氧化石墨烯溶液与还原性聚合单体混合得到混合液,其中所述还原性聚合单体在所述混合液中的体积分数为0.5~5%;然后将该混合液在60~80℃反应2~12小时,冷却到室温,即可获得三维石墨烯组装体。
在反应过程中该聚合单体会直接还原氧化石墨烯为石墨烯,并在石墨烯的表面上原位沉积生长为聚合单体的薄膜,形成三维组装体。同时,本发明通过控制该聚合单体的添加量,并选择在相对较低的温度以及合适的反应时间下进行氧化石墨烯的还原反应,从而得以控制氧化石墨烯的还原程度,最终使得在本发明的反应条件下,制备得到的石墨烯三维组装体的体积与初始氧化石墨烯和聚合单体混合的总体积相比,几乎没有收缩。
另外,本发明通过控制还原性聚合单体的添加量、反应温度以及时间,使得本发明石墨烯表面原位生长的还原性聚合单体的聚合物厚度较小,只有0.6~0.8nm,最终获得的三维石墨烯材料实质是由一层层二维的石墨烯/聚合物叠加而成,由二维的石墨烯/聚合物组装而成的三维石墨烯材料表面裸露的活性位点更多,比表面积更大,用作电极材料时,电化学性能更优异。
本发明的还原性聚合单体可以为吡咯、苯胺或3,4-二氧乙烯噻吩中的一种或多种,另外该还原性聚合单体在混合液中的体积分数优选为1~3%。反应温度优选为70~80℃,反应时间优选为3~8小时,低温热成型得到的组装体体积收缩最小。
步骤(2)的混合液同时加入功能性纳米材料,比如碳纳米管、纳米硅或纳米二氧化钛时,采用该方法可以热成型得到三维多孔的石墨烯功能材料。
当将步骤(2)的混合液注入模具中,比如毛细管、培养皿、烧杯或烘焙模具等,由于本发明的低温热成型方法能够保证组装体体积几乎不收缩,因此可以根据模具的形状制备出不同形态的三维多孔石墨烯材料,包括三维多孔的石墨烯薄膜、石墨烯纤维、石墨烯组装体等等。
(3)将步骤(2)所述三维石墨烯组装体进行冷冻干燥,即得到三维石墨烯材料。
按照上述方法制备得到的三维石墨烯材料或功能材料,由于其具有高的比表面积、多孔、质量轻,具有一定的机械强度,将其应用于超级电容器电极材料或锂离子电池电极材料时,兼具容量大、循环寿命长、效率高等优点。
以下为实施例:
实施例1
首先优选采用氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,其具体过程如下:取5g天然鳞片石墨粉,将其与115mL浓硫酸和2.5g的硝酸钠在冰浴条件下搅拌混合,然后缓慢向溶液中加入15.0g高锰酸钾,搅拌2小时后,将温度升至35度,继续搅拌2小时后,缓慢加入230mL的去离子水,然后将温度进一步升至95度,并维持30分钟,接着向溶液中加入约500mL的去离子水,温度调节至常温,加入12.5mL的过氧化氢溶液,将溶液抽滤得到固体,依次用稀盐酸和去离子水离心洗涤,即可得到氧化石墨烯溶液。
将获得氧化石墨烯溶液定容为质量浓度5.0mg/mL,在烧杯中取2000mL氧化石墨烯溶液并加入20mL的吡咯单体,混合均匀,整体体系的反应温度被控制在80℃,反应时间为8小时,反应结束后取出柱形组装体,并用去离子水清洗表面和透析,其具体的实物图片可参见附图1。可以看出,组装体的体积相比于反应液的体积几乎没有收缩,保证了材料的高比表面积。通过亚甲基蓝分子的吸附实验可以测出该材料的比表面积高达665m2g-1
接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的柱形石墨烯组装体材料,其具体的扫描电子显微镜图片可参见附图2。在此反应过程中吡咯单体会直接还原氧化石墨烯,并在石墨烯的表面上沉积生长为聚吡咯薄膜,形成三维组装体,其具体的透射电子显微镜图和原子力显微镜图可参见附图3和4。从图3中可以看到石墨烯呈舒展的二维结构,选区电子衍射花样表明石墨烯晶化程度高且近乎单层结构,而从图4中可以看到石墨烯片层的厚度约为2.6nm,大于氧化石墨烯片层的厚度(1.3nm),说明在石墨烯片层上生长上了厚度约为0.65nm的聚吡咯薄膜,证实了该三维石墨烯组装体是由二维结构构成。三维石墨烯材料的红外光谱图(见附图5)也可以说明聚吡咯的形成。具体而言,相比于氧化石墨烯材料,三维石墨烯组装体材料在1037和1559cm-1出现的新峰对应于吡咯分子环中C-H键的面内振动和对称伸缩模型,说明了聚吡咯在三维石墨烯组装体中的形成。
实施例2
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度3.0mg/mL。取5mL溶液并加入0.2mL的吡咯单体,混合均匀,然后将混合液注入培养皿中,整体体系的反应温度被控制在70℃,反应时间为12小时,反应结束后取出三维组装体薄膜,并用去离子水清洗表面和透析,其具体的光学图片可参见附图6。接着,将薄膜置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯组装体薄膜材料,该薄膜的厚度可以通过注入的混合液的体积来调控。
实施例3
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度10.0mg/mL。取2mL溶液并加入0.1mL的吡咯单体,混合均匀,然后将混合液注入毛细管中,整体体系的反应温度被控制在75℃,反应时间为2小时,反应结束后用吸耳球取吹出三维组装体纤维,并用去离子水清洗表面和透析,其具体的实物图片可参见附图7。接着,将纤维置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯组装体纤维。纤维的直径可以通过毛细管的直径来调控。
实施例4
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度20.0mg/mL。取20mL溶液并加入0.8mL的吡咯单体,混合均匀,然后将混合液注入到具有HUST图标的聚四氟乙烯凹槽模具中,整体体系的反应温度被控制在80℃,反应时间为6小时,反应结束取出具有HUST图标形状的三维组装,并用去离子水清洗表面和透析,其具体的实物图片可参见附图8。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得具有HUST图标形状的三维多孔石墨烯组装体。由于反应过程中体积几乎不收缩,因此组装体的形状可以通过选择不同形状的烘焙模具来调控。
实施例5
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度2.0mg/mL,在烧杯中取100mL氧化石墨烯溶液并加入2mL 3,4-二氧乙烯噻吩单体,调节溶液的pH值并混合均匀,整体体系的反应温度被控制在80℃,反应时间为6小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯组装体材料,组装体的大小可以通过烧杯的大小以及注入混合液的体积来调控。在此反应过程中3,4-二氧乙烯噻吩单体会直接还原氧化石墨烯,并在石墨烯的表面上沉积生长为聚3,4-二氧乙烯噻吩薄膜,形成三维组装体,其具体的透射电子显微镜图和原子力显微镜图可参见附图9。具体而言,该石墨烯片层的厚度约为2.7nm,大于氧化石墨烯片层的厚度(1.3nm),说明在石墨烯片层上生长上了聚3,4-二氧乙烯噻吩薄膜。
实施例6
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度2.5mg/mL,在烧杯中取100mL氧化石墨烯溶液并加入3mL苯胺单体,调节溶液的pH值并混合均匀,整体体系的反应温度被控制在75℃,反应时间为4小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯组装体材料,组装体的大小可以通过烧杯的大小以及注入混合液的体积来调控。
实施例7
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度1.0mg/mL,在烧杯中取80mL氧化石墨烯溶液并加入2mL吡咯单体,混合均匀,整体体系的反应温度被控制在80℃,反应时间为6.5小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将获得三维石墨烯凝胶直接切片并压在镀有金膜的柔性塑料薄膜上,用氢氧化钾溶液作为电解质,中间用隔膜隔开,即可组装成三明治结构的柔性超级电容器,其具体的电化学性能如图10所示的循环伏安曲线。可以看出曲线几乎呈矩形,对称且面积大,说明了该材料良好的电化学电容性能。
实施例8
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度1.8mg/mL,在烧杯中取120mL氧化石墨烯溶液并加入3.5mL吡咯单体,接着向溶液中加入200mg的碳纳米管并混合均匀,整体体系的反应温度被控制在75℃,反应时间为4.5小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯/碳纳米管功能组装体材料。组装体的大小可以通过烧杯的大小以及注入混合液的体积来调控。该功能组装体在超级电容器等领域将有着良好的应用前景。
实施例9
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度2.6mg/mL,在烧杯中取200mL氧化石墨烯溶液并加入6mL吡咯单体,接着向溶液中加入2.0g的二氧化钛纳米粒子并混合均匀,整体体系的反应温度被控制在80℃,反应时间为5.5小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯/二氧化钛功能组装体材料,其具体的透射电子显微镜图可参见附图11。可以看出二氧化钛纳米粒子均匀的负载在石墨烯片层上。组装体的大小可以通过烧杯的大小以及注入混合液的体积来调控。该功能组装体在光电传感等领域将有着良好的应用前景。
实施例10
采用实施例1的氧化剥离法(Hummers法)来制备氧化石墨烯水溶液,将获得的氧化石墨烯溶液定容为质量浓度3mg/mL,在烧杯中取150mL氧化石墨烯溶液并加入5mL吡咯单体,接着向溶液中加入2.5g的硅纳米粒子并混合均匀,整体体系的反应温度被控制在70℃,反应时间为9小时,反应结束后取出组装体,并用去离子水清洗表面和透析。接着,将组装体置于冷冻干燥机中进行冷冻干燥,即可获得三维多孔的石墨烯/硅功能组装体材料,组装体的大小可以通过烧杯的大小以及注入混合液的体积来调控。该功能组装体在锂离子电池等领域中将有着良好的应用前景。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种三维石墨烯材料的低温热成型方法,其特征在于,包括如下步骤:
(1)利用氧化剥离的方法制备浓度为1~20mg/mL的氧化石墨烯溶液;
(2)将步骤(1)所述氧化石墨烯溶液与还原性聚合单体混合得到混合液,其中所述还原性聚合单体在所述混合液中的体积分数为0.5~5%;所述混合液被注入模具中,然后将该混合液在60~80℃反应2~12小时,冷却到室温,即可获得三维石墨烯组装体;
(3)将步骤(2)所述三维石墨烯组装体进行冷冻干燥,即得到三维石墨烯材料;所述三维石墨烯材料是由一层层二维的石墨烯/还原性聚合单体的聚合物叠加而成。
2.如权利要求1所述的低温热成型方法,其特征在于,步骤(1)所述氧化石墨烯的浓度为2~20mg/mL。
3.如权利要求1所述的低温热成型方法,其特征在于,步骤(2)所述还原性聚合单体为吡咯、苯胺或3,4-二氧乙烯噻吩中的一种或多种。
4.如权利要求1所述的低温热成型方法,其特征在于,步骤(2)所述还原性聚合单体在所述混合液中的体积分数为1~3%。
5.如权利要求1所述的低温热成型方法,其特征在于,步骤(2)所述反应温度为70~80℃,反应时间为4~9小时。
6.如权利要求1所述的低温热成型方法,其特征在于,步骤(2)所述混合液中还包括功能性纳米材料,所述功能性纳米材料为碳纳米管、纳米硅或纳米二氧化钛。
7.如权利要求1所述的低温热成型方法,其特征在于,所述模具为毛细管、培养皿、烧杯或烘焙模具。
8.一种三维石墨烯材料,其特征在于,按照如权利要求1~7任意一项所述的低温热成型方法制备得到。
9.一种如权利要求8所述的三维石墨烯材料的应用,其特征在于,应用于超级电容器电极材料或锂离子电池电极材料。
CN201710374721.2A 2017-05-24 2017-05-24 一种三维石墨烯材料的低温热成型方法 Active CN107140626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710374721.2A CN107140626B (zh) 2017-05-24 2017-05-24 一种三维石墨烯材料的低温热成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710374721.2A CN107140626B (zh) 2017-05-24 2017-05-24 一种三维石墨烯材料的低温热成型方法

Publications (2)

Publication Number Publication Date
CN107140626A CN107140626A (zh) 2017-09-08
CN107140626B true CN107140626B (zh) 2019-05-31

Family

ID=59780175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710374721.2A Active CN107140626B (zh) 2017-05-24 2017-05-24 一种三维石墨烯材料的低温热成型方法

Country Status (1)

Country Link
CN (1) CN107140626B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201801480D0 (en) 2018-01-30 2018-03-14 Anaphite Ltd Process for producing composite material
CN109036877B (zh) * 2018-07-10 2020-07-31 扬州大学 多孔型石墨烯/过渡金属硫属化合物薄膜的制备方法
CN109925980B (zh) * 2019-03-13 2022-02-01 太原理工大学 一种氮掺杂碳微球石墨烯复合气凝胶的制备方法
CN111847429B (zh) * 2019-04-28 2023-03-21 深圳光启岗达创新科技有限公司 三维石墨烯吸波材料的制备方法及应用
CN110767960B (zh) * 2019-11-15 2021-01-01 广东轻工职业技术学院 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用
CN112071654A (zh) * 2020-09-09 2020-12-11 江苏科技大学 一种三维结构导电聚合物基复合电极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826543A (zh) * 2012-09-19 2012-12-19 北京理工大学 一种泡沫状三维石墨烯的制备方法
CN103257156A (zh) * 2013-05-15 2013-08-21 苏州大学 一种基于还原氧化石墨烯的气体传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826543A (zh) * 2012-09-19 2012-12-19 北京理工大学 一种泡沫状三维石墨烯的制备方法
CN103257156A (zh) * 2013-05-15 2013-08-21 苏州大学 一种基于还原氧化石墨烯的气体传感器及其制备方法

Also Published As

Publication number Publication date
CN107140626A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
CN107140626B (zh) 一种三维石墨烯材料的低温热成型方法
Cui et al. Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K+ storage performance
Kou et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li–S batteries
Zhao et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications
Dang et al. Direct dissolution of cellulose in NaOH/urea/α-lipoic acid aqueous solution to fabricate all biomass-based nitrogen, sulfur dual-doped hierarchical porous carbon aerogels for supercapacitors
Zhang et al. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor
Xiang et al. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects
Song et al. Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors
Hu et al. Silicon-conductive nanopaper for Li-ion batteries
Shang et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor
Evers et al. New approaches for high energy density lithium–sulfur battery cathodes
Zhang et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery
Vilatela et al. Tough electrodes: carbon nanotube fibers as the ultimate current collectors/active material for energy management devices
CN103459011B (zh) 交联碳纳米管网络
Wei et al. Peanut-shell-like porous carbon from nitrogen-containing poly-N-phenylethanolamine for high-performance supercapacitor
Yang et al. Electrodeposition of Co (OH) 2 improving carbonized melamine foam performance for compressible supercapacitor application
Wang et al. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors
Xia et al. An eco-friendly microorganism method to activate biomass for cathode materials for high-performance lithium–sulfur batteries
Awang et al. A review on advancement and future perspective of 3D hierarchical porous aerogels based on electrospun polymer nanofibers for electrochemical energy storage application
Chen et al. Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes
CN107275116B (zh) 一种氮掺杂有序多孔高导电石墨烯纤维及其制备方法与应用
Lei et al. Highly nitrogen-doped three-dimensional carbon fibers network with superior sodium storage capacity
Cheng et al. Interconnected nanoflake network derived from a natural resource for high-performance lithium-ion batteries
Bhaway et al. Hierarchical electrospun and cooperatively assembled nanoporous Ni/NiO/MnO x/carbon nanofiber composites for lithium ion battery anodes
Tang et al. Quasi 2D mesoporous carbon microbelts derived from fullerene crystals as an electrode material for electrochemical supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant