CN107133964B - 一种基于Kinect的抠像方法 - Google Patents
一种基于Kinect的抠像方法 Download PDFInfo
- Publication number
- CN107133964B CN107133964B CN201710403755.XA CN201710403755A CN107133964B CN 107133964 B CN107133964 B CN 107133964B CN 201710403755 A CN201710403755 A CN 201710403755A CN 107133964 B CN107133964 B CN 107133964B
- Authority
- CN
- China
- Prior art keywords
- image
- pixel
- kinect
- pixels
- foreground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 7
- 230000003628 erosive effect Effects 0.000 claims description 8
- 230000000877 morphologic effect Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000010339 dilation Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 12
- 230000000007 visual effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 241000760358 Enodes Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/149—Segmentation; Edge detection involving deformable models, e.g. active contour models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710403755.XA CN107133964B (zh) | 2017-06-01 | 2017-06-01 | 一种基于Kinect的抠像方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710403755.XA CN107133964B (zh) | 2017-06-01 | 2017-06-01 | 一种基于Kinect的抠像方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107133964A CN107133964A (zh) | 2017-09-05 |
CN107133964B true CN107133964B (zh) | 2020-04-24 |
Family
ID=59733411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710403755.XA Active CN107133964B (zh) | 2017-06-01 | 2017-06-01 | 一种基于Kinect的抠像方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107133964B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110136144B (zh) * | 2019-05-15 | 2021-03-16 | 北京华捷艾米科技有限公司 | 一种图像分割方法、装置及终端设备 |
CN110673741A (zh) * | 2019-11-07 | 2020-01-10 | 合肥探奥自动化有限公司 | 一种基于体感识别及抠像融合技术的互动装置 |
CN111223108A (zh) * | 2019-12-31 | 2020-06-02 | 上海影卓信息科技有限公司 | 基于背景幕抠图和融合的方法和系统 |
CN115082327A (zh) * | 2021-03-12 | 2022-09-20 | 中兴通讯股份有限公司 | 拍摄图像处理方法、装置、控制器及设备 |
CN113689364B (zh) * | 2021-10-27 | 2022-04-08 | 北京美摄网络科技有限公司 | 一种图像处理方法和装置 |
CN114267149B (zh) * | 2021-12-30 | 2024-09-06 | 浙江顶视智能科技有限公司 | 一种早期火灾检测预警方法和系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104935832A (zh) * | 2015-03-31 | 2015-09-23 | 浙江工商大学 | 针对带深度信息的视频抠像方法 |
CN105590312A (zh) * | 2014-11-12 | 2016-05-18 | 株式会社理光 | 前景图像分割方法和装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012039636A2 (en) * | 2010-09-24 | 2012-03-29 | Christian Soeller | "3d localisation microscopy and 4d localisation microscopy and tracking methods and systems" |
-
2017
- 2017-06-01 CN CN201710403755.XA patent/CN107133964B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105590312A (zh) * | 2014-11-12 | 2016-05-18 | 株式会社理光 | 前景图像分割方法和装置 |
CN104935832A (zh) * | 2015-03-31 | 2015-09-23 | 浙江工商大学 | 针对带深度信息的视频抠像方法 |
Non-Patent Citations (2)
Title |
---|
Color image guided locality regularized representation for Kinect depth holes filling;Hu Jinhui;《Proc of Visual Communications and Image Processing》;20131231;全文 * |
一种融合深度信息的彩色图像分割算法研究;冯祥群;《中国优秀硕士论文全文数据库》;20170215;第3章 * |
Also Published As
Publication number | Publication date |
---|---|
CN107133964A (zh) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107133964B (zh) | 一种基于Kinect的抠像方法 | |
Shen et al. | Automatic portrait segmentation for image stylization | |
CN111145209B (zh) | 一种医学图像分割方法、装置、设备及存储介质 | |
Jia et al. | Category-independent object-level saliency detection | |
Kumar et al. | Review on image segmentation techniques | |
Xu et al. | Learning-based shadow recognition and removal from monochromatic natural images | |
US9449253B2 (en) | Learning painting styles for painterly rendering | |
CN109636732A (zh) | 一种深度图像的空洞修复方法以及图像处理装置 | |
CN111738318A (zh) | 一种基于图神经网络的超大图像分类方法 | |
CN110930427B (zh) | 一种基于语义轮廓信息的图像分割方法、设备和存储介质 | |
CN101488224B (zh) | 基于相关性度量的特征点匹配方法 | |
WO2019071976A1 (zh) | 基于区域增长和眼动模型的全景图像显著性检测方法 | |
CN110633651A (zh) | 一种基于图像拼接的异常细胞自动识别方法 | |
WO2017181892A1 (zh) | 前景分割方法及装置 | |
CN104657980A (zh) | 一种改进的基于Meanshift的多通道图像分割算法 | |
CN103971367B (zh) | 水文资料图像分割方法 | |
CN109886170A (zh) | 一种钉螺智能检测识别与统计系统 | |
Vyavahare et al. | Segmentation using region growing algorithm based on CLAHE for medical images | |
Prasad et al. | Real-time object detection and tracking in an unknown environment | |
Yao et al. | A novel technique for analysing histogram equalized medical images using superpixels | |
CN111161348B (zh) | 一种基于单目相机的物体位姿估计方法、装置及设备 | |
Dewan et al. | A method for automatic segmentation of nuclei in phase-contrast images based on intensity, convexity and texture | |
Sheth et al. | Object saliency using a background prior | |
CN110276260B (zh) | 一种基于深度摄像头的商品检测方法 | |
Wang et al. | Global contrast of superpixels based salient region detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: Room 307, 309 and 311, Room 959, Jiayuan Road, Yuanhe Street, Xiangcheng District, Suzhou City, Jiangsu Province Applicant after: JIANGSU HUOMI INTERACTIVE TECHNOLOGY CO.,LTD. Address before: High tech Zone Suzhou city Jiangsu province 215000 Chuk Yuen Road No. 209 Applicant before: JIANGSU HUOMI INTERACTIVE TECHNOLOGY CO.,LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250224 Address after: Room 501-2432, Office Building, Development Zone, No. 8, Xingsheng South Road, Economic Development Zone, Miyun District, Beijing 101500 (Central Office Area of Economic Development Zone) Patentee after: Beijing Abacus Industrial Technology Co.,Ltd. Country or region after: China Address before: Room 307, 309, 311, Yuanhe Building, 959 Jiayuan Road, Yuanhe Street, Xiangcheng District, Suzhou City, Jiangsu Province, China 215131 Patentee before: JIANGSU HUOMI INTERACTIVE TECHNOLOGY CO.,LTD. Country or region before: China |