CN107132429A - Noise measuring system and method - Google Patents
Noise measuring system and method Download PDFInfo
- Publication number
- CN107132429A CN107132429A CN201610110762.6A CN201610110762A CN107132429A CN 107132429 A CN107132429 A CN 107132429A CN 201610110762 A CN201610110762 A CN 201610110762A CN 107132429 A CN107132429 A CN 107132429A
- Authority
- CN
- China
- Prior art keywords
- noise
- test
- probe
- data
- mechanical arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/26—Measuring noise figure; Measuring signal-to-noise ratio
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
一种噪声测试方法,应用于测试控制装置,所述测试控制装置与一测试箱连接,所述测试箱内固定有机械手臂及待测装置,机械手臂上固定有拍摄装置及探棒/探针,所述测试控制方法包括:控制机械手臂移动以带动探棒对待测装置进行扫描以得到噪声数据;根据噪声数据确定噪声源区域;控制机械手臂移动以带动探针对所确定的噪声源区域进行扫描以得到辐射数据;及依据所述噪声数据及辐射数据进行电磁仿真以确定噪声原因及生成参考解与优化电路。本发明的噪声测试系统与方法,可自动控制所述机械臂带动所述探棒/探针进行扫描测试,并可根据所述探棒/探针扫描测试结果进行电磁仿真,以找到噪声原因及生成参考解。
A noise testing method, applied to a test control device, the test control device is connected to a test box, a mechanical arm and a device to be tested are fixed in the test box, and a photographing device and a probe/probe are fixed on the mechanical arm , the test control method includes: controlling the movement of the mechanical arm to drive the probe to scan the device under test to obtain noise data; determining the noise source area according to the noise data; controlling the movement of the mechanical arm to drive the probe to carry out the determined noise source area scanning to obtain radiation data; and performing electromagnetic simulation according to the noise data and radiation data to determine the cause of the noise, generate a reference solution and optimize the circuit. The noise testing system and method of the present invention can automatically control the mechanical arm to drive the probe/probe to perform a scanning test, and can perform electromagnetic simulation according to the scanning test results of the probe/probe to find the cause of the noise and Generate a reference solution.
Description
技术领域 technical field
本发明涉及一种噪声测试系统,特别涉及一种采用探针探棒测试噪声的噪声测试系统与方法。 The invention relates to a noise testing system, in particular to a noise testing system and method using a probe to test noise.
背景技术 Background technique
一般电磁干扰(Electro-Magnetic Interference, EMI)工程师在除错时通常要花费大量时间,利用近场测试工具找出噪声源,工程师首先得手拿近场探棒(测量H:磁场)慢慢的在待测物做扫描的动作,找出幅射较大的区域,然后再进一步使用近场探针(测量E:电场)去测量电路板上该区域的每个信号,去找出噪声源所在线路,同时还必须分析它是以何种方式幅射出来,是否有透过其他的组件幅射出来,比如线缆或是散热片等等,然后找出真正的噪声原因,接着工程师开始加一些对策,反复测试验证,最后找出对策。 General electromagnetic interference (Electro-Magnetic Interference, EMI) engineers usually spend a lot of time when debugging. They use near-field testing tools to find out the noise source. The object is scanned to find the area with large radiation, and then further use the near-field probe (measurement E: electric field) to measure each signal in this area on the circuit board to find out the line where the noise source is located. At the same time, it is necessary to analyze how it radiates out, whether it radiates through other components, such as cables or heat sinks, etc., and then find out the real cause of the noise, and then the engineer begins to add some countermeasures. Test and verify repeatedly, and finally find a countermeasure.
发明内容 Contents of the invention
有鉴于此,有必要提供一种噪声测试系统与方法,以解决上述问题。 In view of this, it is necessary to provide a noise testing system and method to solve the above problems.
一种噪声测试系统包括测试箱及测试控制装置,所述测试箱内固定有机械手臂及待测装置,机械手臂上固定有拍摄装置及探棒/探针,所述测试控制装置包括存储器和处理器,所述存储器存储有多个认证场景及多个指令集;所述处理器用于执行指令集以使得所述测试控制装置执行:控制机械手臂移动以带动探棒对待测装置进行扫描以得到噪声数据;根据噪声数据确定噪声源区域;控制机械手臂移动以带动探针对所确定的噪声源区域进行扫描以得到辐射数据;依据所述噪声数据及辐射数据进行电磁仿真以确定噪声原因及生成参考解与优化电路。 A noise testing system includes a test box and a test control device. A mechanical arm and a device to be tested are fixed in the test box. A photographing device and a probe/probe are fixed on the mechanical arm. The test control device includes a memory and a processing The memory stores a plurality of authentication scenarios and a plurality of instruction sets; the processor is used to execute the instruction set so that the test control device executes: controlling the movement of the mechanical arm to drive the probe to scan the device under test to obtain noise data; determine the noise source area according to the noise data; control the movement of the mechanical arm to drive the probe to scan the determined noise source area to obtain radiation data; perform electromagnetic simulation based on the noise data and radiation data to determine the cause of the noise and generate a reference Solve and optimize the circuit.
一种噪声测试方法,应用于测试控制装置,所述测试控制装置与一测试箱连接,所述测试箱内固定有机械手臂及待测装置,机械手臂上固定有拍摄装置及探棒/探针,所述测试控制方法包括:控制机械手臂移动以带动探棒对待测装置进行扫描以得到噪声数据;根据噪声数据确定噪声源区域;控制机械手臂移动以带动探针对所确定的噪声源区域进行扫描以得到辐射数据;及依据所述噪声数据及辐射数据进行电磁仿真以确定噪声原因及生成参考解与优化电路。 A noise testing method, applied to a test control device, the test control device is connected to a test box, a mechanical arm and a device to be tested are fixed in the test box, and a photographing device and a probe/probe are fixed on the mechanical arm , the test control method includes: controlling the movement of the mechanical arm to drive the probe to scan the device under test to obtain noise data; determining the noise source area according to the noise data; controlling the movement of the mechanical arm to drive the probe to carry out the determined noise source area scanning to obtain radiation data; and performing electromagnetic simulation according to the noise data and radiation data to determine the cause of the noise, generate a reference solution and optimize the circuit.
本发明的噪声测试系统与方法,可自动控制所述机械臂带动所述探棒/探针进行扫描测试,并可根据所述探棒/探针扫描测试结果进行电磁仿真,以找到噪声原因及生成参考解。 The noise testing system and method of the present invention can automatically control the mechanical arm to drive the probe/probe to perform a scanning test, and can perform electromagnetic simulation according to the scanning test results of the probe/probe to find the cause of the noise and Generate a reference solution.
附图说明 Description of drawings
图1是本发明一较佳实施方式的噪声测试系统示意图。 Fig. 1 is a schematic diagram of a noise testing system in a preferred embodiment of the present invention.
图2是本发明一较佳实施方式的测试箱的内部结构图。 Fig. 2 is an internal structure diagram of a test box according to a preferred embodiment of the present invention.
图3是图2中测试箱体的旋转门的结构。 Fig. 3 is the structure of the revolving door of the test box in Fig. 2 .
图4是图2中机械臂的结构图。 Fig. 4 is a structural diagram of the mechanical arm in Fig. 2 .
图5是图2中的测试模块的立体图。 FIG. 5 is a perspective view of the test module in FIG. 2 .
图6是图2中的测试夹具的立体图。 FIG. 6 is a perspective view of the test fixture in FIG. 2 .
图7为本发明一较佳实施方式的测试控制装置的模块图。 FIG. 7 is a block diagram of a test control device in a preferred embodiment of the present invention.
图8为本发明一较佳实施方式的测试控制系统的方法流程图。 FIG. 8 is a flow chart of the method of the test control system in a preferred embodiment of the present invention.
图9为本发明一较佳实施方式的数据导入流程图。 Fig. 9 is a flow chart of data import in a preferred embodiment of the present invention.
图10为本发明一较佳实施方式的校正流程图。 Fig. 10 is a calibration flowchart of a preferred embodiment of the present invention.
图11为本发明一较佳实施方式的3D扫描流程图。 Fig. 11 is a flow chart of 3D scanning in a preferred embodiment of the present invention.
图12为本发明一较佳实施方式的机械手臂扫描流程图。 FIG. 12 is a flow chart of scanning a robot arm in a preferred embodiment of the present invention.
图13为本发明一较佳实施方式的电磁仿真流程图。 Fig. 13 is a flow chart of electromagnetic simulation in a preferred embodiment of the present invention.
主要元件符号说明 Description of main component symbols
如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 detailed description
请参阅图1所示,本发明提供一种噪声测试系统1000,所述测试系统1000可控制探棒探针自动进行测试,并根据探针探棒测试扫描数据进行电磁仿真以确定真正的噪声原因并提供可能的优化方案。 Please refer to Fig. 1, the present invention provides a noise test system 1000, the test system 1000 can control the probe probe to automatically test, and perform electromagnetic simulation according to the probe probe test scanning data to determine the real cause of the noise And provide possible optimization schemes.
所述噪声测试系统1000包括测试箱1与测试控制装置2。所述测试箱1用于采用探棒探针对待测装置(Equipment Under Test, EUT)进行扫描测试获取噪声扫描数据。所述测试控制装置2用于控制所述测试箱1进行测试并根据所述测试箱1的噪声扫描数据进行分析处理以确定噪声原因并获取可能的解决方案。在其他实施方式中,所述噪声测试系统1000还可包括一信号分析仪器3(例如一示波器)3,所述信号分析仪器3用于与所述测试箱1及所述测试控制装置2相连,用于接收来自所述测试箱1所探测得到的信号并通过所述示波器2输出,所述测试控制装置2可获取所述示波器2输出的波形进行进一步的分析处理。 The noise test system 1000 includes a test box 1 and a test control device 2 . The test box 1 is used to perform a scan test on a device under test (Equipment Under Test, EUT) using a probe probe to obtain noise scan data. The test control device 2 is used to control the test box 1 to perform a test and analyze and process the noise scanning data of the test box 1 to determine the cause of the noise and obtain a possible solution. In other implementation manners, the noise test system 1000 may further include a signal analysis instrument 3 (such as an oscilloscope) 3, the signal analysis instrument 3 is used to connect with the test box 1 and the test control device 2, For receiving the detected signal from the test box 1 and outputting it through the oscilloscope 2, the test control device 2 can obtain the waveform output by the oscilloscope 2 for further analysis and processing.
参阅图2所示,为本发明较佳实施方式的一种测试箱1的内部结构图。所述测试箱包括箱体10、旋转门12、机械手臂14、测试模块16、拍摄装置17及测试夹具18。所述箱体10大致为方形结构,所述箱体的材质含有吸波材料,从而可隔绝外界对箱体内的辐射干扰。所述旋转门12可旋转地设置在所述箱体10的一侧,并可相对所述箱体10在一开启位置和一关闭位置之间旋转,以开启或关闭所述箱体10。所述旋转门12可采用与所述箱体相同或类似的材料制成,当所述旋转门12处于关闭位置时,可隔绝外界的噪声干扰,亦即可避免外界环境对待测装置EUT110的测试造成干扰。所述拍摄装置17用于对所述待测装置110进行3D扫描。所述拍摄装置17可包括一个或多个摄像头,为便于描述,在如下实施例中,所述拍摄装置17包括一个摄像头。 Referring to FIG. 2 , it is an internal structure diagram of a test box 1 according to a preferred embodiment of the present invention. The test box includes a box body 10 , a revolving door 12 , a robot arm 14 , a test module 16 , a photographing device 17 and a test fixture 18 . The box body 10 has a roughly square structure, and the material of the box body contains a wave-absorbing material, so as to isolate radiation interference from the outside to the box body. The revolving door 12 is rotatably disposed on one side of the box body 10 , and can rotate relative to the box body 10 between an open position and a closed position to open or close the box body 10 . The revolving door 12 can be made of the same or similar material as the box body. When the revolving door 12 is in the closed position, it can isolate external noise interference, that is, it can avoid the test of the EUT110 in the external environment. cause disturbance. The photographing device 17 is used for 3D scanning the device under test 110 . The photographing device 17 may include one or more cameras. For ease of description, in the following embodiments, the photographing device 17 includes one camera.
进一步结合图3所示,所述箱体10的一侧设置有支撑轴124,支撑轴承122及旋转门驱动装置126,所述旋转门本体120转动地固定在所述支撑轴124上。所述旋转门驱动装置126可驱动所述支撑轴124旋转从而带动固定在所述支撑轴124上的旋转门本体120相对所述箱体10转动。在本实施例中,所述旋转门驱动装置126可为一气缸,在其他实施方式中,所述旋转门驱动装置126还可以是其他任何适宜的驱动装置,例如电机等。 Further referring to FIG. 3 , one side of the box body 10 is provided with a support shaft 124 , a support bearing 122 and a revolving door driving device 126 , and the revolving door body 120 is rotatably fixed on the support shaft 124 . The revolving door driving device 126 can drive the supporting shaft 124 to rotate so as to drive the revolving door body 120 fixed on the supporting shaft 124 to rotate relative to the box body 10 . In this embodiment, the revolving door driving device 126 can be an air cylinder. In other implementations, the revolving door driving device 126 can also be any other suitable driving device, such as a motor.
进一步结合图4所示,所述机械手臂14包括X轴手臂140,Y轴手臂142及Z轴手臂144。所述X轴手臂140、Y轴手臂142及Z轴手臂144可分别沿X轴、Y轴、Z轴运动,从而带动固定在所述机械手臂14上的测试模块16进行上下左右全方位移动以进行测试。每一机械手臂140、142、144均与一机械臂传动装置146相连接,所述机械臂传动装置146在机械手臂驱动装置(图未示)的驱动下带动所述机械手臂14做相应的运动。 Further referring to FIG. 4 , the robotic arm 14 includes an X-axis arm 140 , a Y-axis arm 142 and a Z-axis arm 144 . The X-axis arm 140, the Y-axis arm 142, and the Z-axis arm 144 can move along the X-axis, Y-axis, and Z-axis respectively, thereby driving the test module 16 fixed on the mechanical arm 14 to move up, down, left, and right in all directions. carry out testing. Each mechanical arm 140, 142, 144 is connected to a mechanical arm transmission device 146, and the mechanical arm transmission device 146 drives the mechanical arm 14 to perform corresponding movements under the drive of the mechanical arm driving device (not shown in the figure). .
请参阅图5所示,所述测试模块16包括探测模块160、连接杆167、第一驱动模块161及第二驱动模块162。所述探测模块160包括固定座163及探针/探棒165。所述固定座163设置有多个通孔164,每一通孔164用于容纳一探针/探棒于其内。所述连接杆167用于连接所述固定座163与所述第一驱动模块161,所述探针/探棒165上连接所述连接杆167的一端设置有连接器166,所述连接器166用于与所述连接杆167相连接,在所述第一驱动模块的驱动下,所述探针/探棒165可伸出所述固定座163以进行测试。 Please refer to FIG. 5 , the testing module 16 includes a detection module 160 , a connecting rod 167 , a first driving module 161 and a second driving module 162 . The detection module 160 includes a fixing seat 163 and a probe/probing rod 165 . The fixing seat 163 is provided with a plurality of through holes 164 , and each through hole 164 is used for accommodating a probe/probing rod therein. The connecting rod 167 is used to connect the fixing base 163 and the first driving module 161, and a connector 166 is provided at one end of the probe/probe 165 connected to the connecting rod 167, and the connector 166 Used to connect with the connecting rod 167 , driven by the first driving module, the probe/probe 165 can extend out of the fixing base 163 for testing.
所述第二驱动装置162用于驱动所述固定座旋转,从而可使得容纳在不同通孔164中的不同探针/探棒与所述探棒连接杆167连接,从而实现自动更换探针/探棒的目的。所述第一驱动模块161及所述第二驱动模块162可以为气缸、马达等具有驱动功能的设备。在本实施方式中,第一驱动模块161为一笔型气缸,所述第二驱动模块162。 The second driving device 162 is used to drive the fixed seat to rotate, so that different probes/probes accommodated in different through holes 164 can be connected to the probe connecting rod 167, thereby realizing automatic replacement of probes/probes. The purpose of the probe. The first driving module 161 and the second driving module 162 may be devices with driving functions such as cylinders and motors. In this embodiment, the first driving module 161 is a pen-shaped cylinder, and the second driving module 162 is.
请参阅图6所示,为本发明一较佳实施方式之测试夹具18的结构图。所述测试夹具18用于固定待测装置110于所述探针/探棒165下方,以便所述探针/探棒165进行测试扫描。所述测试夹具18包括对称设置的两固定部180,翻转驱动部182及两连接部184。所述固定部180固定于所述箱体10内部,所述两连接部184分别将所述待测装置110相对的两端连接至对应的固定部180。所述翻转驱动部180可驱动所述连接部184沿着图中所示箭头方向翻转从而带动所述待测装置110随之翻转。所述待测装置110可在0至180度之间以任意角度翻转,从而使得所述测试模块16能对所述待测装置110的背面及多个不同角度进行测试。 Please refer to FIG. 6 , which is a structural diagram of a test fixture 18 according to a preferred embodiment of the present invention. The test fixture 18 is used to fix the device under test 110 under the probe/probe 165 so that the probe/probe 165 can perform a test scan. The test fixture 18 includes two symmetrical fixing parts 180 , an overturning driving part 182 and two connecting parts 184 . The fixing part 180 is fixed inside the box body 10 , and the two connecting parts 184 respectively connect opposite ends of the device under test 110 to the corresponding fixing parts 180 . The overturn driving part 180 can drive the connecting part 184 to overturn along the direction of the arrow shown in the figure, so as to drive the device under test 110 to overturn accordingly. The device under test 110 can be turned over at any angle between 0 and 180 degrees, so that the testing module 16 can test the back of the device under test 110 and multiple different angles.
请参阅图7所示,为本发明较佳实施方式的一种测试控制装置2的模块图。在该实施例中,所述测试控制装置2可包括,但不限于,存储器22、处理器22及显示器26。存储器22可为所述测试控制装置2的内部存储单元,例如,硬盘或内存,也可为插接式存储装置,例如:插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)。所述存储器22也可既包括内部存储单元也包括插接式存储装置。所述处理器24可为一中央处理器(Central Processing Unit, CPU),微处理器或其他数据处理芯片。 Please refer to FIG. 7 , which is a block diagram of a test control device 2 in a preferred embodiment of the present invention. In this embodiment, the test control device 2 may include, but not limited to, a memory 22 , a processor 22 and a display 26 . The memory 22 can be an internal storage unit of the test control device 2, such as a hard disk or a memory, and can also be a plug-in storage device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card, flash memory card (Flash Card). The memory 22 may also include both an internal storage unit and a plug-in storage device. Described processor 24 can be a central processing unit (Central Processing Unit, CPU), microprocessor or other data processing chips.
测试控制系统20安装并运行于所述测试控制装置2中。在本实施例中,所述的测试控制系统20包括,但不仅限于,重置校正模块202、数据导入模块204,3D扫描模块206、机械手臂探测模块208、电磁仿真模块210。本发明所称的功能模块是指一种能够被测试控制装置2的处理器24所执行并且能够完成固定功能的一系列程序指令段,其存储于所述测试控制装置2的存储器22中。 The test control system 20 is installed and operated in the test control device 2 . In this embodiment, the test control system 20 includes, but not limited to, a reset correction module 202 , a data import module 204 , a 3D scanning module 206 , a robotic arm detection module 208 , and an electromagnetic simulation module 210 . The function module referred to in the present invention refers to a series of program instruction segments that can be executed by the processor 24 of the test control device 2 and can complete fixed functions, which are stored in the memory 22 of the test control device 2 .
所述重置校正模块202用于控制所述拍摄装置17的摄像头角度及所述机械手臂14在进行测量前进行定位校正,以使得所述拍摄装置17扫描所得到的图片更精准,所述机械手臂14能更准确无误地移动到目的位置。 The reset correction module 202 is used to control the angle of the camera of the photographing device 17 and the position correction of the mechanical arm 14 before taking measurements, so that the pictures scanned by the photographing device 17 are more accurate. The arm 14 can be moved to the target position more accurately.
所述数据导入模块204用于导入参考数据,所述参考数据包括,但不限于,噪声频率、待测装置的3D图、电路图、电路板文件等数据文件。 The data import module 204 is used to import reference data, which includes, but is not limited to, data files such as noise frequency, 3D diagram of the device under test, circuit diagram, and circuit board file.
所述3D扫描模块206用于控制所述拍摄装置17对待测装置110进行3D扫描以获取所述待测装置的三维坐标网格图。 The 3D scanning module 206 is used to control the photographing device 17 to perform 3D scanning on the device under test 110 to obtain a three-dimensional coordinate grid map of the device under test.
所述机械手臂探测模块208用于控制所述机械手臂14进行移动以使得固定在所述机械手臂14上的测试模块16上的探棒/探针165对所述待测装置110进行探测扫描以得到所述待测装置110不同部位的噪声数据。 The manipulator detection module 208 is used to control the movement of the manipulator 14 so that the probe/probe 165 fixed on the test module 16 on the manipulator 14 performs a detection scan on the device under test 110 to Noise data of different parts of the device under test 110 are obtained.
所述电磁仿真模块210用于根据导入的数据及扫描得到的噪声数据进行电磁仿真,以判断噪声来源及原因,并提供可能的优化方案。 The electromagnetic simulation module 210 is used to perform electromagnetic simulation according to the imported data and the noise data obtained by scanning, so as to determine the source and cause of the noise, and provide possible optimization solutions.
请参阅图8所示,为本发明较佳实施方式的一种测试控制方法400的流程图。该测试控制方法可被图7中的测试控制装置2所执行。流程起始于步骤402,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 8 , which is a flowchart of a test control method 400 in a preferred embodiment of the present invention. The test control method can be executed by the test control device 2 in FIG. 7 . The process starts at step 402. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤402,所述数据导入模块204基于用户的选择导入参考数据,所述参考数据包括,但不限于,噪声频率、待测装置的3D图、电路图、电路板文件等数据文件。可以理解的是,所述参考数据也可以是预先存储在所述测试控制装置2的存储器22中,此时,该数据导入步骤可省略。 Step 402, the data import module 204 imports reference data based on the user's selection, and the reference data includes, but is not limited to, data files such as noise frequency, 3D diagram of the device under test, circuit diagram, and circuit board file. It can be understood that the reference data may also be pre-stored in the memory 22 of the test control device 2, and in this case, the data importing step may be omitted.
步骤404,所述重置校正模块202控制所述拍摄装置17及所述机械手臂进行校正,校正的详细流程图参图10所示。可以理解,所述步骤402与所述步骤404可调换顺序。 Step 404 , the reset calibration module 202 controls the photographing device 17 and the robotic arm to perform calibration, and the detailed flowchart of the calibration is shown in FIG. 10 . It can be understood that the order of step 402 and step 404 can be exchanged.
步骤406,所述3D扫描模块206控制所述拍摄装置17对所述待测装置110进行3D扫描,并将扫描所得的三维坐标网格图结合参考数据做定位。具体地,所扫描得到的3D坐标网格图与所述参考数据中的电路图或电路板图进行对齐匹配,从而得到电路图或电路板图中的元器件或线路的三维坐标位置数据。具体地,可参考图11所示。 Step 406 , the 3D scanning module 206 controls the photographing device 17 to perform 3D scanning on the device under test 110 , and combines the scanned 3D coordinate grid map with reference data for positioning. Specifically, the scanned 3D coordinate grid diagram is aligned and matched with the circuit diagram or circuit board diagram in the reference data, so as to obtain the three-dimensional coordinate position data of components or lines in the circuit diagram or circuit board diagram. Specifically, reference may be made to what is shown in FIG. 11 .
步骤408,所述机械手臂探测模块208控制所述机械手臂14对所述待测装置110进行近场探测扫描以获得所述待测装置110的噪声扫描数据。具体的可参考图12所示。 Step 408 , the robot arm detection module 208 controls the robot arm 14 to perform a near-field detection scan on the device under test 110 to obtain noise scan data of the device under test 110 . For details, refer to FIG. 12 .
步骤410,所述机械手臂探测模块208从所述测试箱1读取所扫描得到的噪声数据,并根据所述噪声数据确定所述待测装置110上噪声较强的区域。在其他实施方式中,所述噪声数据还可输出至所述信号分析仪器3,以更直观地显示所扫描得到的噪声数据。 Step 410 , the robotic arm detection module 208 reads the scanned noise data from the test box 1 , and determines a region with strong noise on the device under test 110 according to the noise data. In other implementation manners, the noise data can also be output to the signal analysis instrument 3 to display the scanned noise data more intuitively.
步骤412,所述机械手臂探测模块208还用于根据该区域的电路图等参考数据确定该噪声较强区域内可能有问题的线路和探测点。 In step 412, the robot arm detection module 208 is further configured to determine possible problematic lines and detection points in the area with strong noise according to the reference data such as the circuit diagram of the area.
步骤414,所述机械手臂探测模块208再根据所确定的可能有问题的线路和探测点控制探针对该可能有问题的线路和探测点进行进一步的扫描测量得到辐射数据。类似于所述噪声数据,所述辐射数据亦可输出至所述信号分析仪器3以更直观地显示所得到的辐射数据。 Step 414 , the robotic arm detection module 208 controls the probe to further scan and measure the potentially problematic lines and detection points according to the determined possible problematic lines and detection points to obtain radiation data. Similar to the noise data, the radiation data can also be output to the signal analysis instrument 3 to display the obtained radiation data more intuitively.
步骤416,所述机械手臂探测模块208根据该辐射数据确定辐射源线路。 Step 416, the robot arm detection module 208 determines the radiation source line according to the radiation data.
步骤418,所述电磁仿真模块210根据所述近场扫描所得的噪声数据,锁定噪声源区域进行电磁仿真,以辅助确定噪声源区域。 Step 418 , the electromagnetic simulation module 210 locks the noise source area and performs electromagnetic simulation according to the noise data obtained by the near-field scanning, so as to assist in determining the noise source area.
步骤420,所述电磁仿真模块210基于用户操作或预定规则设置电磁仿真参数。所述电磁仿真参数可包括,但不限于,PCB迭构、物理参数、元器件特性、材料属性,输入电压源、电流源等参数。 Step 420, the electromagnetic simulation module 210 sets electromagnetic simulation parameters based on user operations or predetermined rules. The electromagnetic simulation parameters may include, but are not limited to, PCB stackup, physical parameters, component characteristics, material properties, input voltage source, current source and other parameters.
步骤422,所述电磁仿真模块210根据设置的电磁仿真参数、步骤418仿真的结果及辐射源线路进行进一步的PCB电路及系统仿真。 Step 422 , the electromagnetic simulation module 210 performs further PCB circuit and system simulation according to the set electromagnetic simulation parameters, the simulation result of step 418 and the radiation source circuit.
步骤424,所述电磁仿真模块210根据仿真数据及信号完整性,找出可能的耦合路径。 Step 424, the electromagnetic simulation module 210 finds possible coupling paths according to the simulation data and signal integrity.
步骤426,所述机械手臂探测模块208控制所述机械手臂14持探针对所确定的耦合路径进行量测得到进一步的辐射数据。 Step 426 , the robotic arm detection module 208 controls the robotic arm 14 to hold a probe to measure the determined coupling path to obtain further radiation data.
步骤428,所述电磁仿真模块210确定真正的噪声来源及原因。 Step 428, the electromagnetic simulation module 210 determines the real noise source and reason.
步骤430,所述电磁仿真模块210生成参考解并优化电路。具体地,所述电磁仿真模块210可变更电路设置及相关参数,并进行仿真确定可能的噪声数据,确定较小噪声对应的电路即为参考解,根据需求在参考解中选择其中一个来优化电路。 Step 430, the electromagnetic simulation module 210 generates a reference solution and optimizes the circuit. Specifically, the electromagnetic simulation module 210 can change the circuit settings and related parameters, and perform simulation to determine possible noise data, determine that the circuit corresponding to the smaller noise is the reference solution, and select one of the reference solutions to optimize the circuit according to requirements .
请参阅图9所示,为本发明较佳实施方式的一种数据导入方法500的流程图。该数据导入方法可被图7中的测试控制装置2所执行并可应用于图8所示的流程中需要数据导入的步骤。流程起始于步骤502,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 9 , which is a flowchart of a data import method 500 in a preferred embodiment of the present invention. The data importing method can be executed by the test control device 2 in FIG. 7 and can be applied to steps requiring data importing in the process shown in FIG. 8 . The process starts at step 502. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤502,所述数据导入模块204根据用户选择或输入确定数据导入路径。所述数据路径可以是所述测试控制装置2的本地存储路径,还可以是网络存储路径,例如FTP或互联网的云存储路径等。 In step 502, the data import module 204 determines a data import path according to user selection or input. The data path may be a local storage path of the test control device 2, or a network storage path, such as an FTP or Internet cloud storage path.
步骤504,所述数据导入模块504确定待导入的数据的类型,具体地,可根据数据文件的后缀名进行判断。 Step 504, the data import module 504 determines the type of data to be imported, specifically, it can be judged according to the suffix name of the data file.
步骤506,所述数据导入模块506判断待导入的数据是否符合读取规则。所述读取规则为预定的规则,例如,可为文件大小、文件类型、文件命名等文件属性值。 Step 506, the data import module 506 judges whether the data to be imported conforms to the read rule. The read rule is a predetermined rule, for example, it may be file attribute values such as file size, file type, and file name.
步骤508,所述数据导入模块508根据导入的数据生成对应的图,并通过所述测试控制装置2的显示器26显示出来。在一些实施例中,当显示的图不是所需要的图时,可重复步骤502至步骤506重新导入。 Step 508 , the data import module 508 generates a corresponding graph according to the imported data, and displays it on the display 26 of the test control device 2 . In some embodiments, when the displayed graph is not the desired graph, steps 502 to 506 can be repeated to re-import.
步骤510,所述数据导入模块508提示导入完成。具体地,可通过弹出文字信息或指示灯或扬声器等方式输出该提示信息。 Step 510, the data import module 508 prompts that the import is complete. Specifically, the prompt information may be output by means of popping up a text message, an indicator light, or a loudspeaker.
步骤512,若欲导入的文件不符合所述读取规则,所述数据导入模块204提示导入错误。所述提示信息可采用类似提示导入完成的方式。 Step 512, if the file to be imported does not comply with the reading rule, the data import module 204 prompts an import error. The prompt information may be in a manner similar to prompting that the import is completed.
请参阅图10所示,为本发明较佳实施方式的一种重置校正方法600的流程图。该重置校正方法600可被图7中的测试控制装置2所执行并可应用于图8所示的流程中需要重置校正的步骤。流程起始于步骤602,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 10 , which is a flowchart of a reset calibration method 600 according to a preferred embodiment of the present invention. The reset calibration method 600 can be executed by the test control device 2 shown in FIG. 7 and can be applied to steps requiring reset calibration in the process shown in FIG. 8 . The process starts at step 602. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤602,所述重置校正模块202控制所述拍摄装置17调节摄像头角度,在其他实施例中,所述摄像头角度可根据用户自定义的角度值进行调整。在其他实施例中,所述重置校正模块202还可以根据用户操作设置摄像头的拍摄参数,例如,亮度、延迟、模式、快门速度等。 In step 602, the reset correction module 202 controls the photographing device 17 to adjust the camera angle. In other embodiments, the camera angle can be adjusted according to a user-defined angle value. In other embodiments, the reset correction module 202 may also set shooting parameters of the camera, such as brightness, delay, mode, shutter speed, etc., according to user operations.
步骤604,所述重置校正模块204控制所述摄像头中心点对准指定的中心点。在一些实施例中,所述指定的中心点可为待测装置的几何中心点。 Step 604, the reset correction module 204 controls the center point of the camera to align with the designated center point. In some embodiments, the specified center point may be the geometric center point of the device under test.
步骤606,所述重置校正模块204将所述摄像头所拍摄的图片与预设的图片进行比对。所述预设的图片可以是预先存储在所述测试控制装置2的存储器22中的,也可以是通过所述数据导入模块204导入的。 Step 606, the reset correction module 204 compares the picture taken by the camera with the preset picture. The preset picture may be pre-stored in the memory 22 of the test control device 2 , or imported through the data import module 204 .
步骤608,所述重置校正模块202判断所述拍摄装置17所拍摄的图片与所述预设的图片的重合率是否超过了预定比率,例如75%。所述预定的比率可根据用户需求设定为任意适宜的值,例如80%,82%,78%等。若所述重合率超过了预定比率,则流程进入步骤610,否则,流程返回步骤602。 Step 608 , the reset correction module 202 determines whether the overlapping rate of the picture taken by the shooting device 17 and the preset picture exceeds a predetermined ratio, for example, 75%. The predetermined ratio can be set to any appropriate value according to user requirements, such as 80%, 82%, 78% and so on. If the overlapping ratio exceeds the predetermined ratio, the process goes to step 610 , otherwise, the process returns to step 602 .
步骤610,所述重置校正模块202判断所述摄像头校正完成,并发出提示信息以提示用户摄像头校正完成。 Step 610, the reset calibration module 202 judges that the camera calibration is completed, and sends a prompt message to remind the user that the camera calibration is completed.
步骤612,所述重置校正模块202根据所拍摄的3D图片生成坐标网格图。 Step 612, the reset correction module 202 generates a coordinate grid map according to the captured 3D picture.
步骤614,所述重置校正模块202根据用户操作设置探棒初始位置。所设定的位置可为三维网格图上的三维坐标值。 Step 614, the reset correction module 202 sets the initial position of the probe according to the user operation. The set position may be a three-dimensional coordinate value on the three-dimensional grid map.
步骤616,所述重置校正模块202控制所述探棒移动到预定的初始位置。 Step 616, the reset correction module 202 controls the probe to move to a predetermined initial position.
步骤618,所述重置校正模块202记录并保存所述初始位置坐标值。 Step 618, the reset correction module 202 records and saves the coordinate value of the initial position.
步骤620,所述重置校正模块202设置所述探针初始位置,并移动所述探针移动到所述初始位置。 Step 620, the reset calibration module 202 sets the initial position of the probe, and moves the probe to the initial position.
步骤622,所述重置校正模块202保存记录所述初始位置的坐标值。 Step 622, the reset correction module 202 saves and records the coordinate value of the initial position.
步骤624,所述重置校正模块202提示所述体携手校正完成。 In step 624, the reset calibration module 202 prompts the body hand calibration to be completed.
请参阅图11所示,为本发明较佳实施方式的一种扫描方法700的流程图。该扫描方法700可被图7中的测试控制装置2所执行并可应用于图8所示的流程中需要3D扫描的步骤。流程起始于步骤702,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 11 , which is a flowchart of a scanning method 700 in a preferred embodiment of the present invention. The scanning method 700 can be executed by the test control device 2 in FIG. 7 and can be applied to steps requiring 3D scanning in the process shown in FIG. 8 . The process starts at step 702. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤702,所述3D扫描模块206根据用户操作设置所述拍摄装置扫描参数。所述扫描参数包括,但不限于,快门速度、亮度、模式等。 Step 702, the 3D scanning module 206 sets scanning parameters of the camera according to user operations. The scan parameters include, but are not limited to, shutter speed, brightness, mode, and the like.
步骤704,所述3D扫描模块704根据所设置的扫描参数控制所述拍摄装置17进行3D扫描生成带网格的坐标图。 Step 704 , the 3D scanning module 704 controls the photographing device 17 to perform 3D scanning according to the set scanning parameters to generate a coordinate map with a grid.
步骤706,所述3D扫描模块704将所得到的带网格的坐标图进行设置、标注,并与导入的图进行对其。所述导入的图包括所述待测装置110的电路图、电路板图等。在其他实施例中,所述导入的图也可以是预先保存在所述测试控制装置2的存储器中的图。 Step 706, the 3D scanning module 704 sets and marks the obtained coordinate map with grids, and aligns it with the imported map. The imported diagram includes a circuit diagram, a circuit board diagram, and the like of the device under test 110 . In other embodiments, the imported map may also be a map pre-stored in the memory of the test control device 2 .
步骤708,所述3D扫描模块704将所述带网格的坐标图与所述导入的图进行图层重迭,生成复合图。根据所述复合图,可获得所述待测装置110的电路板及其线路在坐标图上的坐标。 Step 708 , the 3D scanning module 704 overlaps the coordinate map with the grid with the imported map to generate a composite map. According to the composite diagram, the coordinates of the circuit board and its circuit of the device under test 110 on the coordinate diagram can be obtained.
请参阅图12所示,为本发明较佳实施方式的一种探棒/探针扫描方法800的流程图。该探棒/探针扫描方法800可被图7中的测试控制装置2所执行并可应用于图8所示的流程中需要探棒/探针扫描的步骤。流程起始于步骤802,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 12 , which is a flowchart of a probe/probe scanning method 800 according to a preferred embodiment of the present invention. The probe/probe scanning method 800 can be executed by the test control device 2 in FIG. 7 and can be applied to the steps requiring probe/probe scanning in the process shown in FIG. 8 . The process starts at step 802. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤802,所述机械手臂探测模块208根据用户操作判断是探棒扫描还是探针扫描。如果是探棒扫描,则流程进入步骤804,否则,流程进入步骤810。 Step 802 , the robotic arm detection module 208 judges whether it is a probe scan or a probe scan according to a user operation. If it is a probe scan, the flow goes to step 804 , otherwise, the flow goes to step 810 .
步骤804,所述机械手臂探测模块208根据用户操作设置机械手臂的扫描参数。所述扫描参数包括,但不限于,扫描频率、扫描密度及扫描范围。 In step 804, the robotic arm detection module 208 sets scanning parameters of the robotic arm according to user operations. The scanning parameters include, but are not limited to, scanning frequency, scanning density and scanning range.
步骤806,所述机械手臂探测模块208根据所设置的扫描参数进行探测扫描。 Step 806, the robotic arm detection module 208 performs a detection scan according to the set scanning parameters.
步骤808,所述机械手臂探测模块208从所述测试箱1读取探测扫描所得的噪声数据,并根据探测扫描的数据生成场强图,在所述显示器26上显示。 Step 808 , the robotic arm detection module 208 reads the noise data obtained from the detection scan from the test box 1 , and generates a field strength map according to the detection scan data, and displays it on the display 26 .
步骤810,所述机械手臂探测模块208根据用户操作设置扫描参数,所设置的探针扫描参数包括,扫描频率、密度及范围。 Step 810, the robotic arm detection module 208 sets scanning parameters according to user operations, and the set probe scanning parameters include scanning frequency, density and range.
步骤812,根据所设置的扫描范围选择探测点。 Step 812, selecting detection points according to the set scanning range.
步骤814,所述机械手臂探测模块208对选择的探测点根据设置的探针扫描参数进行扫描以生成辐射数据并记录。 Step 814 , the robotic arm detection module 208 scans the selected detection points according to the set probe scanning parameters to generate and record radiation data.
请参阅图13所示,为本发明较佳实施方式的一种电磁仿真方法900的流程图。该电磁仿真方法900可被图7中的测试控制装置2所执行并可应用于图8所示的流程中需要电磁仿真的步骤。流程起始于步骤902,根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。 Please refer to FIG. 13 , which is a flowchart of an electromagnetic simulation method 900 in a preferred embodiment of the present invention. The electromagnetic simulation method 900 can be executed by the test control device 2 in FIG. 7 and can be applied to steps requiring electromagnetic simulation in the process shown in FIG. 8 . The process starts at step 902. According to different requirements, the order of the steps in the flow chart can be changed, and some steps can be omitted or combined.
步骤902,所述电磁仿真模块210读取所述3D扫描模块206生成的复合图及相关文件,所述相关文件包括但不限于,电路图、电路板文件、扫描得到的噪声数据等。 Step 902 , the electromagnetic simulation module 210 reads the composite diagram and related files generated by the 3D scanning module 206 , and the related files include but not limited to circuit diagrams, circuit board files, noise data obtained by scanning, and the like.
904,所述电磁仿真模块210根据用户操作设置电磁仿真参数,所述电磁仿真参数包括,但不限于,电路板迭构、物理参数、元器件特性、材料属性、输入电压源、电流源等参数。 904. The electromagnetic simulation module 210 sets electromagnetic simulation parameters according to user operations, and the electromagnetic simulation parameters include, but are not limited to, circuit board stacking, physical parameters, component characteristics, material properties, input voltage source, current source and other parameters .
步骤906,所述电磁仿真模块210从仿真模型提取关键网络参数,所述关键网络参数包括信号完整度(Signal Integrity, SI)及电源完整度(Power Supply Integrity, PI)。其中PI包括Z参数,即阻抗参数。若为SI参数,则进入步骤910,若为PI参数,则进入步骤914。 Step 906 , the electromagnetic simulation module 210 extracts key network parameters from the simulation model, and the key network parameters include Signal Integrity (SI) and Power Supply Integrity (PI). Among them, PI includes the Z parameter, that is, the impedance parameter. If it is an SI parameter, go to step 910, and if it is a PI parameter, go to step 914.
步骤910,所述电磁仿真模块210根据设置的电磁仿真参数及扫描得到的噪声数据进行电路仿真,以判断电路设计线路是否合理。 Step 910, the electromagnetic simulation module 210 performs circuit simulation according to the set electromagnetic simulation parameters and the noise data obtained by scanning, so as to judge whether the circuit design is reasonable.
步骤912,所述电磁仿真模块210将仿真分析过程中产生的分析信号转为频域信号。 Step 912, the electromagnetic simulation module 210 converts the analysis signal generated during the simulation analysis process into a frequency domain signal.
步骤914,所述电磁仿真模块210根据设置的电磁仿真参数及扫描得到的噪声数据进行同步开关噪声(Simultaneous Switch Noise,SSN)仿真。所述SSN仿真是电源完整性仿真的一种仿真,用于判断电源分配系统的设计在时域中是否满足要求。 Step 914, the electromagnetic simulation module 210 performs simultaneous switching noise (Simultaneous Switch Noise, SSN) simulation according to the set electromagnetic simulation parameters and the noise data obtained by scanning. The SSN simulation is a kind of power integrity simulation, which is used to judge whether the design of the power distribution system meets the requirements in the time domain.
步骤914,根据仿真结果判断当前电路设计是否符合设计需求,如符合,则流程结束,如不符合,则返回步骤904重新设置仿真参数知道仿真结果显示符合设计需求,从而得到参考解及优化电路设计方案。 Step 914, judge whether the current circuit design meets the design requirements according to the simulation results, if yes, the process ends, if not, return to step 904 to reset the simulation parameters until the simulation results show that the design requirements are met, so as to obtain a reference solution and optimize the circuit design plan.
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements can be made without departing from the spirit and scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610110762.6A CN107132429A (en) | 2016-02-29 | 2016-02-29 | Noise measuring system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610110762.6A CN107132429A (en) | 2016-02-29 | 2016-02-29 | Noise measuring system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107132429A true CN107132429A (en) | 2017-09-05 |
Family
ID=59721059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610110762.6A Pending CN107132429A (en) | 2016-02-29 | 2016-02-29 | Noise measuring system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107132429A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108843554A (en) * | 2018-06-26 | 2018-11-20 | 南京理工大学 | A kind of noise-measuring system based on two degrees of freedom mechanical arm |
CN113492406A (en) * | 2021-07-19 | 2021-10-12 | 中国人民解放军92578部队 | Cabin noise sound pressure automatic detection method |
-
2016
- 2016-02-29 CN CN201610110762.6A patent/CN107132429A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108843554A (en) * | 2018-06-26 | 2018-11-20 | 南京理工大学 | A kind of noise-measuring system based on two degrees of freedom mechanical arm |
CN108843554B (en) * | 2018-06-26 | 2020-12-25 | 南京理工大学 | Noise measuring device based on two-degree-of-freedom mechanical arm |
CN113492406A (en) * | 2021-07-19 | 2021-10-12 | 中国人民解放军92578部队 | Cabin noise sound pressure automatic detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10325057B2 (en) | Using computer-aided design layout in scanning system | |
WO2019033282A1 (en) | Positioning system and building method therefor | |
He et al. | The development of an EM-field probing system for manual near-field scanning | |
US10241159B2 (en) | Devices and methods for determining a magnetic field | |
CN109814434A (en) | Control the calibration method and device of program | |
CN107290653A (en) | PCB detection means and method is recognized based on wideband magnetic induction channel characteristics | |
WO2024260205A1 (en) | Object detection method and apparatus, and device, three-dimensional scanning system and storage medium | |
CN107132429A (en) | Noise measuring system and method | |
US12135353B2 (en) | Indirect acquisition of a signal from a device under test | |
US10408894B2 (en) | Devices and methods for determining a magnetic field | |
Baudry et al. | Near-field techniques for detecting EMI sources | |
CN107132428A (en) | Noise measuring system and method | |
KR20110063734A (en) | Method and apparatus for multi-dimensional testing of electronic instruments based on unidirectional probes | |
US9335384B2 (en) | Adjustable magnetic probe for efficient near field scanning | |
KR102425162B1 (en) | Substrate inspection device | |
US11965736B2 (en) | Measurement routine motion represented by 3D virtual model | |
TWI412754B (en) | System and method for testing a characteristic impedance of a part | |
He et al. | Optical tracking based EM-field probing system for EMC near field manual scanning | |
CN114839482A (en) | Power frequency withstand voltage breakdown position positioning method and device of low-voltage comprehensive distribution box | |
TWI441018B (en) | System and method for testing a motherboard | |
He | The development of near field probing systems for EMC near field visualization and EMI source localization | |
US20120116734A1 (en) | Method of characterizing an electrical defect affecting an electronic circuit, related device and information recording medium | |
JP2021143921A (en) | Evaluation system and evaluation equipment | |
CN109341598A (en) | Rudder face corner test macro | |
US20130031498A1 (en) | Machine Vision Based Automatic Maximal Clamp Measurement Tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170905 |
|
WD01 | Invention patent application deemed withdrawn after publication |