CN1071289A - 吸收射频辐射的材料 - Google Patents

吸收射频辐射的材料 Download PDF

Info

Publication number
CN1071289A
CN1071289A CN92110742A CN92110742A CN1071289A CN 1071289 A CN1071289 A CN 1071289A CN 92110742 A CN92110742 A CN 92110742A CN 92110742 A CN92110742 A CN 92110742A CN 1071289 A CN1071289 A CN 1071289A
Authority
CN
China
Prior art keywords
amplifier
voltage difference
negative electrode
anode
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92110742A
Other languages
English (en)
Other versions
CN1035712C (zh
Inventor
A·H·皮克林
G·J·罗兰斯
R·赫平斯塔尔
E·S·索比尔拉兹基
G·T·克莱沃思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne UK Ltd
Original Assignee
EEV Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EEV Ltd filed Critical EEV Ltd
Publication of CN1071289A publication Critical patent/CN1071289A/zh
Application granted granted Critical
Publication of CN1035712C publication Critical patent/CN1035712C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/54Amplifiers using transit-time effect in tubes or semiconductor devices
    • H03F3/58Amplifiers using transit-time effect in tubes or semiconductor devices using travelling-wave tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/30Damping arrangements associated with slow-wave structures, e.g. for suppression of unwanted oscillations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/04Tubes having one or more resonators, without reflection of the electron stream, and in which the modulation produced in the modulator zone is mainly density modulation, e.g. Heaff tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
    • H01J2225/12Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Tubes (AREA)
  • Microwave Amplifiers (AREA)
  • Conductive Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种吸收射频辐射的材料,能隔开30至40千 伏的电压差,这种材料由掺有纯铁体微粒的硅橡胶制 成。
这种材料可用以减少放大器中的自激振荡。

Description

本发明涉及一种吸收辐射的材料,以及用这种材料来阻止放大器中,特别是感性输出电子管放大器中的自激振荡。
图1示出了感性输出电子管放大器(以下称为IOT)的示意图。该放大器包括阴极1和阳极2,两者为栅极3所分隔,阳极2有一个孔2A穿过其中。
使用这种放大器时,在阴极1与阳极2之间通常加有30至40千伏的直流高压,同时在阴极1与栅极3间加上射频(RF)输入信号。阴极1、阳极2和栅极3围绕轴线6对称配置。阴极1发射出电子,电子朝阳极2的运动受到阴极1与栅极3之间相对电压的控制。于是,在阴极1与阳极2间产生电子束,该电子束与轴线6共轴,且被加在阴极1与栅极3之间的射频信号调制,这个经调制的电子束(往往称之为成捆电子束)中的大部分电子通过阳极2的孔2A。以后就用这个电子束来驱动放大器后面的各级。
第一谐振调谐电路4将阴极1与栅极3连接起来,第二谐振调谐电路5将阳极2与栅极3连接起来。习惯上,调谐电路4和5在图1中分别是用一个电感和一个电容并联起来表示的,尽管它们通常要比这种电路复杂得多。
第一谐振调谐电路包括一些可调节的元件,这些元件配置成使我们可以通过改变它们的值而将其谐振频率调节到所要求的放大器输出频率,然后欲放大的信号就耦合到该第一谐振调谐电路中,以便将其加到阴极1与栅极3之间。
另一方面,第二谐振调谐电路5由放大器的一些元件构成,使之以某一固定频率谐振。为防止第一和第二谐振调谐电路4和5之间相互干扰,配备了一些射频屏蔽板。但业已发现,第二谐振调谐电路5发射的在阳极2和栅极3之间形成的射频辐射在某些条件下仍然还会通过屏蔽板,并为第一谐振调谐电路4所吸收。这使处于第二谐振调谐电路谐振频率的射频电压出现在阴极1与栅极3之间,从而使电子束在该频率下被调制。这是自激振荡,而处于第二调谐电路5的谐振频率下的无用信号遮蔽了所要放大的信号,且会产生高得足以损坏放大器或使放大器不能工作的电压。
自激振荡通常是在较高工作频率下的一个较突出的问题,而且经常是设定IOT放大器最高工作频率的限制因素。
解决这个问题的一种方法是在两个谐振调谐电路之间采用能吸收射频辐射的材料,但过去发现,要取得最好的效果,这种材料必须能吸收射频辐射,而且能隔离开(hold    off)阳极与阴极之间的直流电压。
本发明旨在制造出这种材料,并提供使用这种材料来减少放大器中的自激振荡的方法。
本发明提供一种用以隔离开直流电压差、能吸收射频辐射的材料,该材料含有搀入许多纯铁体(ferrite)微粒的硅橡胶。
这种材料过去已经用作射频辐射吸收体,但现在知道,它还可用以隔离30-40千伏级的极高直流电压。
另一方面,本发明提供这样一种放大器,该放大器包括一个阴极和一个阳极,两者为一个栅极所隔开,并封闭在一个陶瓷外壳中,该陶瓷外壳周围围绕着一层搀入许多纯铁体微粒的硅橡胶。
现在仅以举例的方式参照附图说明实施本发明的一个放大器。附图中:
图1    示出了放大器的一部分;
图2    示出了应用本发明的一个放大器的剖面,精似的各部件都用同样的编号表示。
参看图2。图1中所示的IOT放大器结构包括阴极1、阳极2和栅极3,三者封闭在管形陶瓷外壳10中。图中只示出了半个结构,该结构围绕着轴线11旋转对称。为清楚起见,图中没有画出栅极3的支架和馈电装置,也没有画出阴极的灯丝。
两个导电金属板12和13封闭着圆柱形陶瓷外壳10两端,外壳10内部抽成真空。板12和13与外壳10之间的气密式密封件分别由焊接成的导电凸缘14和15形成。
板12和阴极1处于相同的电压下,板13与阳极2处于相同的电压下,因此,放大器工作时,在板12和13之间,以及在它们有关的凸缘14和15之间都分别有30至40千伏的电压差。
我们知道,来自第二调谐谐振电路5能引起自激振荡的射频辐射通过穿过陶瓷外壳10而逃逸出板12、13和陶瓷10所形成的包围圈。
过去都认为,减少射频辐射逃逸现象因而减少自激振荡倾向的最好方法是围绕陶瓷外壳周围设置损耗物质,但这一层损耗物质必须与凸缘14和15接触,这样才能将30至40千伏直流电压隔离开。过去不知道哪种材料具有能起这种作用所需的性能。
减少射频辐射逃逸的方法是用搀有许多纯铁体微粒的硅橡胶制成的基本上呈圆柱形的硅橡胶层16将圆柱形陶瓷外壳10包围起来。
适用的搀纯铁体的硅橡胶材料有Emerson和Cuming公司出品的Eccosorb    CF-S-4180。这种搀纯铁体的硅橡胶材料是在超高频(UHF)和微波范围内的高损耗物质,我们知道,这种高损耗物质能隔离开几十千伏级的极高直流电压。
橡胶层16仅仅基本上呈圆柱形,这是因为外表面16A有一系列平滑的波纹或起伏围绕橡胶层16的圆周延伸。这些波纹能防止尘埃堆积而形成横贯橡胶层16外表面16A的路径。这种尘埃形成的路径是我们不希望有的,因为它们可能成为电弧横贯表面16A的路径。
虽然图中所示的放大器部分指的是IOT放大器的一部分,但同样的结构也适用于象速调管之类的其它类型放大器的各部分,因而本发明同样适用于这类放大器。
除了上述在圆周上的波纹之外,上述外表面上可能会有任何其它许多周知的能减少尘埃堆积的轮廓,或者在某一特殊应用场合若尘埃堆积不是个问题的话,也可以是一个简单的圆柱形表面。

Claims (7)

1、一种吸收射频辐射的材料,用以隔离直流电压差,该材料包括搀以纯铁体微粒的硅橡胶。
2、如权利要求1所述的材料,其特征在于,用以隔离30至40千伏级的直流电压差。
3、一种放大器,包括一个阴极和一个阳极,两者为一个栅极所隔开,且封闭在一个陶瓷外壳中,其特征在于,陶瓷外壳周围围绕着一层搀有纯铁体微粒的硅橡胶。
4、如权利要求3所述的放大器,其特征在于,陶瓷外壳两端之间有直流电压差,该直流电压差用搀有纯铁体微粒的硅橡胶层隔离开。
5、如权利要求4所述的放大器,其特征在于,所述直流电压差在30至40千伏的范围。
6、如3至5任一权利要求所述的放大器,其特征在于,所述放大器为感性输出电子管放大器。
7、如3至5任一权利要求所述的放大器,其特征在于,所述放大器为速调管。
CN92110742A 1991-09-18 1992-09-17 感性输出电子管放大器 Expired - Fee Related CN1035712C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9119947A GB2259708B (en) 1991-09-18 1991-09-18 RF radiation absorbing material
GB9119947.1 1991-09-18

Publications (2)

Publication Number Publication Date
CN1071289A true CN1071289A (zh) 1993-04-21
CN1035712C CN1035712C (zh) 1997-08-20

Family

ID=10701618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92110742A Expired - Fee Related CN1035712C (zh) 1991-09-18 1992-09-17 感性输出电子管放大器

Country Status (9)

Country Link
US (1) US5691667A (zh)
EP (1) EP0604490B1 (zh)
JP (1) JPH06511105A (zh)
CN (1) CN1035712C (zh)
AU (1) AU2546992A (zh)
DE (1) DE69225898T2 (zh)
FI (1) FI941269A (zh)
GB (1) GB2259708B (zh)
WO (1) WO1993006632A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683960A (zh) * 2017-01-04 2017-05-17 西南交通大学 可调式磁控管阴极电缆微波泄漏防护装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572092A (en) * 1993-06-01 1996-11-05 Communications And Power Industries, Inc. High frequency vacuum tube with closely spaced cathode and non-emissive grid
GB9313265D0 (en) * 1993-06-28 1993-08-11 Eev Ltd Electron beam tubes
GB2308730B (en) * 1993-06-28 1997-12-03 Eev Ltd Electron beam tubes
DE4343423A1 (de) 1993-12-18 1995-06-22 Philips Patentverwaltung Elektronenstrahlröhre mit einem Eingangsresonatorhohlraum
GB9514005D0 (en) * 1995-07-10 1995-09-06 Eev Ltd Electron beam tubes
US6133786A (en) * 1998-04-03 2000-10-17 Litton Systems, Inc. Low impedance grid-anode interaction region for an inductive output amplifier
US6232721B1 (en) 2000-06-19 2001-05-15 Harris Corporation Inductive output tube (IOT) amplifier system
US6486783B1 (en) 2000-09-19 2002-11-26 Moore North America, Inc. RFID composite for mounting on or adjacent metal objects
AU2001272996A1 (en) * 2001-06-20 2003-12-22 Harris Corporation Inductive outputtube (10t) amplifier system
US20050230387A1 (en) * 2004-04-14 2005-10-20 Michael Regan Insulated RF suppressor for industrial magnetrons
US7145297B2 (en) 2004-11-04 2006-12-05 Communications & Power Industries, Inc. L-band inductive output tube

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923689A (en) * 1953-08-31 1960-02-02 Alvin R Saltzman Electromagnetic wave energy absorbing material
US3482419A (en) * 1966-01-03 1969-12-09 Texas Instruments Inc Process for fabricating hermetic glass seals
US3872247A (en) * 1971-05-20 1975-03-18 Robert W Saville Low cost of high fidelity high power variable class a amplifier-speaker combination
US3803507A (en) * 1971-09-23 1974-04-09 Solartron Electronic Group Input circuits for electrical instruments
JPS5625726B2 (zh) * 1973-08-08 1981-06-15
JPS5636163Y2 (zh) * 1976-08-19 1981-08-26
US4118671A (en) * 1977-02-15 1978-10-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Traveling wave tube circuit
JPS54124298A (en) * 1978-03-20 1979-09-27 Tdk Corp Material for radio wave absorber
JPS5493301A (en) * 1978-08-18 1979-07-24 Tdk Corp Construction body having preventive layer for electromagnetic wave reflection
JPS5536987A (en) * 1978-09-07 1980-03-14 Yokohama Rubber Co Ltd Radio wave absorber composition
DE3134034A1 (de) * 1981-08-28 1983-03-10 Gesellschaft für Schwerionenforschung mbH, 6100 Darmstadt "absorber"
US4494039A (en) * 1982-10-19 1985-01-15 The United States Of America As Represented By The Secretary Of The Navy Gyrotron traveling-wave device including quarter wavelength anti-reflective dielectric layer to enhance microwave absorption
JPH024871A (ja) * 1988-06-23 1990-01-09 Sharp Corp マイクロ波吸収発熱塗料
WO1990014712A1 (en) * 1989-05-24 1990-11-29 Motorola, Inc. Low current switched capacitor circuit
GB2243943B (en) * 1990-03-09 1994-02-09 Eev Ltd Electron beam tube arrangements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683960A (zh) * 2017-01-04 2017-05-17 西南交通大学 可调式磁控管阴极电缆微波泄漏防护装置
CN106683960B (zh) * 2017-01-04 2018-07-31 西南交通大学 可调式磁控管阴极电缆微波泄漏防护装置

Also Published As

Publication number Publication date
GB2259708A (en) 1993-03-24
FI941269A (fi) 1994-05-17
DE69225898D1 (de) 1998-07-16
CN1035712C (zh) 1997-08-20
WO1993006632A1 (en) 1993-04-01
EP0604490B1 (en) 1998-06-10
GB2259708B (en) 1995-05-10
GB9119947D0 (en) 1991-10-30
DE69225898T2 (de) 1998-11-05
AU2546992A (en) 1993-04-27
JPH06511105A (ja) 1994-12-08
EP0604490A1 (en) 1994-07-06
US5691667A (en) 1997-11-25
FI941269A0 (fi) 1994-03-17

Similar Documents

Publication Publication Date Title
CA1214272A (en) Density modulated electron beam tube with enhanced gain
CN1035712C (zh) 感性输出电子管放大器
US3315121A (en) Crossed-field electric discharge device
CA2124726C (en) High frequency vacuum tube with closely spaced cathode and non-emissive grid
US2673306A (en) Magnetron amplifier
Putz et al. Effective use of dispersion shaping in broadband helix TWT circuits
CA2267710C (en) Low impedance grid-anode interaction region for an inductive output amplifier
US6232721B1 (en) Inductive output tube (IOT) amplifier system
CN1059981C (zh) 电子束管
DE2223543C3 (de) Mehrkammerklystron
US2217417A (en) Electron discharge apparatus
US3255377A (en) Reverse magnetron with cathode support structure
US3479556A (en) Reverse magnetron having an output circuit employing mode absorbers in the internal cavity
US3594605A (en) Mode suppression means for a clover-leaf slow wave circuit
Jung 10 KW and up from a helix TWT?
Carter Review of RF power sources for particle accelerators
US6304033B1 (en) Electron beam tube having a DC power lead with a damping structure
EP0753879A2 (en) Inductive output tube arrangements
US2802141A (en) Electron discharge devices
EP0909017B1 (en) Oscillator arrangements
Greenough et al. Design of the final power amplifier stage for the 30 MHz TFTR FMIT RF sources
CN1152562C (zh) 电视调谐组件
GB2308730A (en) Electron beam tube
CA2392852A1 (en) Low impedance grid-anode interaction region for an inductive output amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee