CN107124126A - The no phase-locked loop current control method and device of a kind of double fed induction generators - Google Patents

The no phase-locked loop current control method and device of a kind of double fed induction generators Download PDF

Info

Publication number
CN107124126A
CN107124126A CN201710205022.5A CN201710205022A CN107124126A CN 107124126 A CN107124126 A CN 107124126A CN 201710205022 A CN201710205022 A CN 201710205022A CN 107124126 A CN107124126 A CN 107124126A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710205022.5A
Other languages
Chinese (zh)
Other versions
CN107124126B (en
Inventor
程鹏
李庆
张金平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongdian Saipu Certification & Inspection (beijing) Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
Zhongdian Saipu Certification & Inspection (beijing) Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongdian Saipu Certification & Inspection (beijing) Co Ltd, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI filed Critical Zhongdian Saipu Certification & Inspection (beijing) Co Ltd
Priority to CN201710205022.5A priority Critical patent/CN107124126B/en
Publication of CN107124126A publication Critical patent/CN107124126A/en
Application granted granted Critical
Publication of CN107124126B publication Critical patent/CN107124126B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2103/00Controlling arrangements characterised by the type of generator
    • H02P2103/10Controlling arrangements characterised by the type of generator of the asynchronous type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The invention provides the no phase-locked loop current control method and device of a kind of double fed induction generators, methods described includes:Gather the parameter of double fed induction generators and carry out coordinate transform, obtain stator voltage vector UsαβWith stator current vector Isαβ;To stator voltage vector UsαβWith stator current vector IsαβCoordinate transform is carried out, stator voltage vector U is obtainedsdqWith stator current vector Isdq;Calculate the stator current vector I of double fed induction generatorssdqD, q axle instruction;Calculate the rotor voltage instruction U under virtual synchronous rotating coordinate systemrdq;U is instructed to rotor voltagerdqCoordinate transform is carried out, the rotor voltage instruction U under the static α β coordinate systems of two-phase is obtainedrαβ, and then generate one group of pwm signal the rotor current transformer of double fed induction generators is controlled.The technical scheme that the present invention is provided simplifies Control System Design and implementing procedure, enhances the adaptability that control system changes to generator parameter.

Description

The no phase-locked loop current control method and device of a kind of double fed induction generators
Technical field
The present invention relates to double-fed induction wind driven generator control field, and in particular to a kind of double fed induction generators without lock Phase circular current control method and device.
Background technology
As double-fed fan motor unit is in the extensive installation and application of wind power plant, double fed induction generators are sent out as whole unit The core cell of electric part, it runs has obtained primary study with control technology.At present, the control program of double fed induction generators Mainly there are two kinds:Vector controlled and direct Power Control.
Vector controlled, is typically implemented in synchronous rotating frame, and corresponding control is constructed by controlled device of rotor current Closed loop processed, by adjusting the excitation component and torque component of rotor current, so as to realize indirectly to double fed induction generators stator Export the control of active and reactive electric current.Wherein, rotor current command configuration but shows the strong dependency to generator parameter, But in actual motion, double fed induction generators parameter is in nonlinear change, it is difficult to obtain its accurate parameter, this will be to double Feedback influence generator exports active and reactive current strap to significantly affect.
Direct Power Control, initially uses hystersis controller and switch list issuer according to the error of active and reactive power Method produces rotor voltage instruction, and this structure eliminates current regulator and makes control structure greatly abbreviation, but due to converter The unfixed disadvantage of switching frequency, causes the negative effects such as current harmonics bandwidth, wave filter design difficulty.Therefore, Zhi.D W and Xu.L is in entitled Direct power control of DFIG with constant switching frequency and improved transient performance(IEEE Transactions on Energy Conversion, 2007,22(1):A kind of direct Power Control of permanent switching frequency is proposed in document 110-118.), the core of this method is The stator magnetic linkage or stator voltage phase angle obtained according to phaselocked loop carries out coordinate transform to the voltage, the electric current that measure, by having Work(, reactive power error can obtain corresponding excitation voltage instruction by pi regulator.In IEEE, IEC and the electric energy matter of China Measure in relevant criterion, corresponding quantitative target is all proposed to grid-connected current, but direct Power Control is due to lacking for electric current Closed loop regulation, it is difficult to control output current quality.
In addition, vector controlled, direct Power Control, general to extract electric network voltage phase angle, and conduct using phaselocked loop more The reference data of control system.However, at present there are some researches prove, phaselocked loop will cause current transformer to export negative impedance, and with The effect of intercoupling of power network positive impedance produces oscillatory occurences, and unstable phenomenon even occurs when serious.
Accordingly, it would be desirable to the no phase-locked loop current control method and device of a kind of double fed induction generators, to simplify control System design and implementing procedure, the adaptability that enhancing control system changes to generator parameter.
The content of the invention
The present invention provides a kind of no phase-locked loop current control method of double fed induction generators, and methods described includes following step Suddenly:
Step 1:The parameter of double fed induction generators is gathered, coordinate transform is carried out to the parameter, static alpha-beta coordinate is obtained Stator voltage vector U under systemsαβWith stator current vector Isαβ
Step 2:According to virtualphase parallactic angle θ0To stator voltage vector UsαβWith stator current vector IsαβCarry out coordinate transform, Obtain the stator voltage vector U under virtual synchronous rotating coordinate systemsdqWith stator current vector Isdq
Step 3:Calculate the stator current vector I of double fed induction generatorssdqD, q axle instruction;
Step 4:Value of feedback with actual measurement is instructed according to double fed induction generators stator current d, q axle, calculates virtual Rotor voltage instruction U under synchronous rotating framerdq
Step 5:U is instructed to rotor voltagerdqCoordinate inverse transformation is carried out, turning under the static alpha-beta coordinate system of rotor two-phase is obtained Sub- voltage instruction Urαβ
Step 6:U is instructed according to the rotor voltagerαβ, rotor change of the one group of pwm signal of generation to double fed induction generators Stream device is controlled.
The parameter that the step 1 is gathered includes the threephase stator voltage vector U of double fed induction generatorssabc, threephase stator Current phasor Isabc, rotor rotation angular rate ωrAnd rotor position angle θr
The step 1 is according to following formula to the threephase stator voltage vector UsabcWith threephase stator current phasor IsabcCarry out Coordinate transform:
Wherein:uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iAnd iRespectively stator Current phasor Isαβα axis components and beta -axis component, usa、usbAnd uscRespectively threephase stator voltage vector UsabcA axles, b axles and C-axis component, isa、isbAnd iscRespectively threephase stator current phasor IsabcA axles, b axles and c-axis component.
Virtualphase parallactic angle θ is calculated as follows in the step 20
θ0The π f of=∫ 20dt
Wherein:f0=50Hz is fixed rotation angular frequency, virtualphase parallactic angle θ0Be be 20 milliseconds in the cycle, the saw that amplitude is 2 π Tooth ripple signal.
The step 2 is as the following formula to stator voltage vector UsαβWith stator current vector IsαβCarry out coordinate transform:
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, isdAnd isqRespectively stator Current phasor IsdqD axis components and q axis components, uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iAnd iRespectively stator current vector Isαβα axis components and beta -axis component, θ0For virtualphase parallactic angle.
The stator current I of double fed induction generators is calculated as follows in the step 3sdqD axles and q axles instruction isd.refWith isq.ref
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, Ps.refAnd Qs.refFor double-fed Influence generator stator active and reactive power is instructed.
The step 4 calculates rotor voltage instruction U with regulating error decoupling compensation algorithmrdq, comprise the following steps:
Step 4-1:With the d axles and the instruction i of q axles of double fed induction generators stator currentsd.refAnd isq.refIt is individually subtracted The d axles and q axis components i of the stator current of actual measurementsdAnd isq, calculate the error signal of double fed induction generators stator current ΔisdWith Δ isq
Step 4-2:According to the error signal Δ i of double fed induction generators stator currentsdWith Δ isq, calculate virtual synchronous Voltage-regulation vector v' under rotating coordinate systemrdq
Step 4-3:To voltage-regulation vector v'rdqVoltage decoupling compensation is carried out, is obtained under virtual synchronous rotating coordinate system Rotor voltage instructs Urdq
The step 4-2 voltage-regulation vectors v'rdqIn the component and the component v' of q axles of d axlesrdAnd v'rqIt is shown below:
Wherein:KpFor proportionality coefficient, KiFor integral coefficient, ω0=2 π f0=100 π are virtual angular velocity of rotation, and s is general to draw Laplacian operater.
Rotor voltage instruction Us of the step 4-3 according to following formulardqTo voltage-regulation vector v'rdqCarry out decoupling benefit Repay:
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, erdAnd erqRespectively voltage Decouple vector erdqD axis components and q axis components, ψsdAnd ψsqRespectively stator voltage vector ψsdqD axis components and q axis components, v'rdAnd v'rqRespectively voltage-regulation vector v'rdqD axis components and q axis components, urdAnd urqRespectively rotor voltage instruction Urdq D axis components and q axis components, LrFor the inductor rotor of double fed induction generators, LmIt is mutual for the rotor of double fed induction generators Sense, ωrThe angular rate rotated for double fed induction generators rotor.
Described step 5 instructs U according to following formula to double fed induction generators rotor voltagerdqCarry out coordinate transform:
Wherein:urdAnd urqRespectively rotor voltage instruction UrdqD axis components and q axis components, uAnd uRespectively rotor Voltage instruction Urαβα axis components and beta -axis component.
The present invention provides a kind of no phase-locked loop current control device of double fed induction generators, and described device includes:Collection Module, the parameter for gathering double fed induction generators;
First coordinate transformation module, for the threephase stator voltage vector U to collectionsabcWith threephase stator current phasor IsabcCoordinate transform is carried out, the stator voltage vector U under the static alpha-beta coordinate system of two-phase is obtainedsαβWith stator current vector Isαβ
Second coordinate transformation module, for stator voltage vector UsαβWith stator current vector IsαβCarry out coordinate transform, Obtain the stator voltage vector U under virtual synchronous rotating coordinate systemsdqWith stator current vector Isdq
Stator current command configuration module, the stator current I for calculating double fed induction generatorssdqD axles and q axles refer to Make isd.refAnd isq.ref
Rotor voltage instructs configuration module, for calculating the instruction of the rotor voltage under virtual synchronous rotating coordinate system Urdq
3rd coordinate transformation module, for instructing U to double fed induction generators rotor voltagerdqCoordinate transform is carried out, is obtained Rotor voltage instruction U under the static alpha-beta coordinate system of two-phaserαβ
Space vector adjustment module, for instructing U according to the rotor voltagerαβGenerate one group of pwm signal.
First coordinate transformation module is connected with the second coordinate transformation module;
The stator current command configuration module, rotor voltage instruction configuration module, the 3rd coordinate transformation module and space Vector adjustment module is sequentially connected.
The rotor voltage instruction configuration module includes stator current closed loop adjustment module and stator current decoupling compensation mould Block.
With immediate prior art ratio, the technical scheme that the present invention is provided has the advantages that:
The technical scheme that the present invention is provided, can remove to set up line voltage synchronizing signal angle, extract positive sequence fundamental frequency voltages Amplitude is the phaselocked loop link of target, Control System Design and implementing procedure is simplified, while closed-loop current control loop In it is unrelated with generator parameter, enhance the adaptability that control system changes to generator parameter.
Brief description of the drawings
Fig. 1 is the no phase-locked loop current control device block diagram of double fed induction generators of the present invention;
Wherein, 1:Double fed induction generators, 2:Voltage sensor module, 3:Current sensor module, 4:Two level voltages Source type 3-phase power converter module, 5:Photoelectric encoder, 6:Clarke conversion modules, 7:Parker conversion modules, 8:Increment type is accumulated Divide device, 9:Stator current command configuration module, 10:Stator current closed loop adjustment module, 11:Stator current decoupling compensation module, 12:Parker inverse transform blocks, 13:Space vector adjustment module, 14:Virtualphase parallactic angle configuration module;
Fig. 2 is double fed induction generators simulation result figure;
Wherein, (a) double fed induction generators threephase stator current simulations result figure, (b) is double fed induction generators three-phase Rotor current simulation result figure, (c) is the active power and reactive power simulation result figure of double fed induction generators, and (d) is void Intend stator current d axis components and its corresponding error simulation result figure in synchronous rotating frame, (e) is that virtual synchronous rotates seat Stator current q axis components and its corresponding error simulation result figure in mark system.
Embodiment
The invention will now be described in further detail with reference to the accompanying drawings:
A kind of no phase-locked loop current control method of double fed induction generators of the present invention, methods described comprises the following steps:
Step 1:The parameter of double fed induction generators is gathered, coordinate transform is carried out to the parameter, the static alpha-beta of two-phase is obtained Stator voltage vector U under coordinate systemsαβWith stator current vector Isαβ
Step 2:To stator voltage vector UsαβWith stator current vector IsαβCoordinate transform is carried out, virtual synchronous rotation is obtained Stator voltage vector U under coordinate systemsdqWith stator current vector Isdq
Step 3:According to stator voltage vector Usdq, double fed induction generators active-power PsWith output reactive power Qs, meter Calculate the stator current vector I of double fed induction generatorssdqD, q axle instruction;
Step 4:Value of feedback with actual measurement is instructed according to double fed induction generators stator current d, q axle, calculates virtual Rotor voltage instruction U under synchronous rotating framerdq
Step 5:According to rotor position angle θrWith virtualphase parallactic angle θ0U is instructed to rotor voltagerdqCoordinate transform is carried out, is obtained Rotor voltage instruction U under the static alpha-beta coordinate system of two-phaserαβ
Step 6:U is instructed according to the rotor voltagerαβ, one group of pwm signal is obtained to double-fed by SVPWM technical constructions The rotor current transformer of influence generator is controlled.
The parameter that the step 1 is gathered includes the threephase stator voltage vector U of double fed induction generatorssabc, threephase stator Current phasor Isabc, rotor rotation angular rate ωrAnd rotor position angle θr
Double fed induction generators simulation result figure is illustrated in figure 2, wherein figure (a) is double fed induction generators threephase stator Electric current IsabcSimulation result figure, figure (b) is double fed induction generators three-phase rotor current simulation result figure, and figure (c) is double-fed sense Answer the active-power P of generators(100%-50%-70%-50%-100%, negative sign represents output) and reactive power Qs(0%- 20%-40%-20%-0%, negative sign represents output) simulation result figure.
The step 1 is according to following formula to the threephase stator voltage vector UsabcWith threephase stator current phasor IsabcCarry out Clarke is converted:
Wherein:uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iAnd iRespectively stator Current phasor Isαβα axis components and beta -axis component, usa、usbAnd uscRespectively threephase stator voltage vector UsabcA axles, b axles and C-axis component, isa、isbAnd iscRespectively threephase stator current phasor IsabcA axles, b axles and c-axis component.
The numerical value that the step 2 is obtained by fixed 50Hz frequency integrators obtains virtualphase parallactic angle θ with respect to 2 π remainders0, Virtualphase parallactic angle θ0Be be 20 milliseconds in the cycle, the sawtooth signal that amplitude is 2 π, be shown below:
θ0The π f of=∫ 20dt
Wherein:f0=50Hz is fixed rotation angular frequency.
The step 2 is according to following formula to stator voltage vector UsαβWith stator current vector IsαβCarry out Park conversion:
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, isdAnd isqRespectively stator Current phasor IsdqD axis components and q axis components, uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iAnd iRespectively stator current vector Isαβα axis components and beta -axis component, θ0For virtualphase parallactic angle.
The step 3 calculates the stator current I of double fed induction generators according to following formulasdqD axles and q axles instruction isd.refWith isq.ref
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, Ps.refAnd Qs.refFor double-fed Influence generator stator active and reactive power is instructed.
The step 4 calculates rotor voltage by regulating error decoupling compensation algorithm and instructs Urdq, step is as follows:
Step 4-1:D axles and q axles the instruction i of double fed induction generators stator currentsd.refAnd isq.refReality is individually subtracted The stator current vector I of measurementsdqD axles and q axis components isdAnd isq, obtain the error letter of double fed induction generators stator current Number Δ isdWith Δ isq
Step 4-2:According to the error signal Δ i of double fed induction generators stator currentsdWith Δ isq, calculate virtual synchronous Voltage-regulation vector v' under rotating coordinate systemrdq
Step 4-3:To voltage-regulation vector v'rdqVoltage decoupling compensation is carried out, is obtained under virtual synchronous rotating coordinate system Rotor voltage instructs Urdq
Double fed induction generators simulation result figure is illustrated in figure 2, wherein, figure (d) is in virtual synchronous rotating coordinate system Stator current d axis components and its corresponding error simulation result figure, figure (e) are stator current q in virtual synchronous rotating coordinate system Axis component and its corresponding error simulation result figure.
The step 4-2 is according to following formula to stator current error signal delta isdWith Δ isqCarry out complex coefficient proportional, integral tune Section:
Wherein:v'rdAnd v'rqRespectively voltage-regulation vector v'rdqD axis components and q axis components, KpFor proportionality coefficient, Ki For integral coefficient, ω0=2 π f0=100 π are virtual angular velocity of rotation, and s is Laplace operator.
The step 4-3 is according to following formula to voltage-regulation vector v'rdqCarry out decoupling compensation:
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, erdAnd erqRespectively voltage Decouple vector erdqD axis components and q axis components, ψsdAnd ψsqRespectively stator voltage vector ψsdqD axis components and q axis components, v'rdAnd v'rqRespectively voltage-regulation vector v'rdqD axis components and q axis components, urdAnd urqRespectively rotor voltage instruction Urdq D axis components and q axis components, LrFor the inductor rotor of double fed induction generators, LmIt is mutual for the rotor of double fed induction generators Sense, ωrThe angular rate rotated for double fed induction generators rotor.
Described step 5 instructs U according to following formula to double fed induction generators rotor voltagerdqCarry out Park inverse transformations:
Wherein:urdAnd urqRespectively rotor voltage instruction UrdqD axis components and q axis components, uAnd uRespectively rotor Voltage instruction Urαβα axis components and beta -axis component.
The present invention provides a kind of no phase-locked loop current control device of double fed induction generators, as shown in figure 1, described device Including:Acquisition module, the parameter for gathering double fed induction generators;
Clarke conversion modules 6, carry out Clarke conversion for the parameter to collection, obtain the static alpha-beta coordinate system of two-phase Under stator voltage vector UsαβWith stator current vector Isαβ
Parker conversion modules 7, for stator voltage vector UsαβWith stator current vector IsαβPark conversion is carried out, is obtained Stator voltage vector U under to virtual synchronous rotating coordinate systemsdqWith stator current vector Isdq
Stator current command configuration module 9, the stator current I for calculating double fed induction generatorssdqD axles and q axles refer to Make isd.refAnd isq.ref
Rotor voltage instructs configuration module, for calculating the instruction of the rotor voltage under virtual synchronous rotating coordinate system Urdq
Parker inverse transform blocks 12, for instructing U to double fed induction generators rotor voltagerdqPark inverse transformations are carried out, Obtain the rotor voltage instruction U under the static alpha-beta coordinate system of two-phaserαβ
Space vector adjustment module 13, for instructing U according to the rotor voltagerαβGenerate one group of pwm signal.
The Clarke conversion modules 6 are connected with Parker conversion modules 7;
The stator current command configuration module 9, rotor voltage instruction configuration module, Parker inverse transform blocks 12 and sky Between vector adjustment module 13 be sequentially connected.
The rotor voltage instruction configuration module includes stator current closed loop adjustment module 10 and stator current decoupling compensation Module 11.
Stator current closed loop adjustment module 10, for the error signal Δ i to double fed induction generators stator currentsdAnd Δ isqComplex coefficient proportional, integral regulation is carried out, the voltage-regulation vector v' under virtual synchronous rotating coordinate system is obtainedrdq
Stator current decoupling compensation module 11, for voltage-regulation vector v'rdqCarry out decoupling compensation;
The power level voltage source type 3-phase power converter 4 of space vector adjustment module 13 and two is connected, space vector regulation mould One group of pwm signal S that block 13 is generateda、SbAnd ScFor being controlled to two power level voltage source type 3-phase power converters 4;
The Parker conversion modules 7 are connected with virtualphase parallactic angle configuration module 14, the virtualphase parallactic angle configuration module 14 are used to calculate virtualphase parallactic angle θ0
Described device includes the angular rate ω that photoelectric encoder module 5 is used to measure rotor rotationr, photoelectric encoder mould Block 5 generates rotor position angle θ with being used forrIncrement type integrator 8 connect, the increment type integrator 8 and Parker inverse transformations Module 12 is connected.
The Clarke conversion modules 6 are respectively with being that voltage sensor module 2 and current sensor module 3 are connected;
The voltage sensor module 2 includes three voltage sensors, and it is three electricity that the current sensor module 3, which includes, Flow sensor.
Finally it should be noted that:Above example is merely to illustrate technical scheme rather than to its protection domain Limitation, although the application is described in detail with reference to above-described embodiment, those of ordinary skill in the art should Understand:Those skilled in the art read after the application the embodiment of application can still be carried out a variety of changes, modification or Person's equivalent substitution, but these changes, modification or equivalent substitution, are applying within pending claims.

Claims (13)

1. the no phase-locked loop current control method of a kind of double fed induction generators, it is characterised in that methods described includes following step Suddenly:
Step 1:The parameter of double fed induction generators is gathered, coordinate transform is carried out to the parameter, obtained under static alpha-beta coordinate system Stator voltage vector UsαβWith stator current vector Isαβ
Step 2:According to virtualphase parallactic angle θ0To stator voltage vector UsαβWith stator current vector IsαβCoordinate transform is carried out, is obtained Stator voltage vector U under virtual synchronous rotating coordinate systemsdqWith stator current vector Isdq
Step 3:Calculate the stator current vector I of double fed induction generatorssdqD, q axle instruction;
Step 4:Value of feedback with actual measurement is instructed according to double fed induction generators stator current d, q axle, virtual synchronous is calculated Rotor voltage instruction U under rotating coordinate systemrdq
Step 5:U is instructed to rotor voltagerdqCoordinate inverse transformation is carried out, the rotor electricity under the static alpha-beta coordinate system of rotor two-phase is obtained Pressure instruction Urαβ
Step 6:U is instructed according to the rotor voltagerαβ, rotor current transformer of the one group of pwm signal of generation to double fed induction generators It is controlled.
2. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that described The parameter that step 1 is gathered includes the threephase stator voltage vector U of double fed induction generatorssabc, threephase stator current phasor Isabc、 The angular rate ω of rotor rotationrAnd rotor position angle θr
3. the no phase-locked loop current control method of double fed induction generators according to claim 2, it is characterised in that described Step 1 is according to following formula to the threephase stator voltage vector UsabcWith threephase stator current phasor IsabcCarry out coordinate transform:
<mrow> <msub> <mi>U</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>b</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>b</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iAnd iRespectively stator current Vector Isαβα axis components and beta -axis component, usa、usbAnd uscRespectively threephase stator voltage vector UsabcA axles, b axles and c-axis Component, isa、isbAnd iscRespectively threephase stator current phasor IsabcA axles, b axles and c-axis component.
4. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that described Virtualphase parallactic angle θ is calculated as follows in step 20
θ0The π f of=∫ 20dt
Wherein:f0=50Hz is fixed rotation angular frequency, virtualphase parallactic angle θ0Be be 20 milliseconds in the cycle, the sawtooth waveforms that amplitude is 2 π Signal.
5. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that described Step 2 is as the following formula to stator voltage vector UsαβWith stator current vector IsαβCarry out coordinate transform:
<mrow> <msub> <mi>U</mi> <mrow> <mi>s</mi> <mi>d</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> 1
<mrow> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>d</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, isdAnd isqRespectively stator current Vector IsdqD axis components and q axis components, uAnd uRespectively stator voltage vector Usαβα axis components and beta -axis component, iWith iRespectively stator current vector Isαβα axis components and beta -axis component, θ0For virtualphase parallactic angle.
6. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that described The stator current I of double fed induction generators is calculated as follows in step 3sdqD axles and q axles instruction isd.refAnd isq.ref
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>d</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0.667</mn> <mfrac> <mrow> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>q</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0.667</mn> <mfrac> <mrow> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, Ps.refAnd Qs.refFor double-fed induction Generator unit stator active and reactive power is instructed.
7. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that described Step 4 calculates rotor voltage instruction U with regulating error decoupling compensation algorithmrdq, comprise the following steps:
Step 4-1:With the d axles and the instruction i of q axles of double fed induction generators stator currentsd.refAnd isq.refReality is individually subtracted The d axles and q axis components i of the stator current of measurementsdAnd isq, calculate the error signal Δ i of double fed induction generators stator currentsd With Δ isq
Step 4-2:According to the error signal Δ i of double fed induction generators stator currentsdWith Δ isq, calculate virtual synchronous rotation and sit Voltage-regulation vector v' under mark systemrdq
Step 4-3:To voltage-regulation vector v'rdqVoltage decoupling compensation is carried out, the rotor under virtual synchronous rotating coordinate system is obtained Voltage instruction Urdq
8. the no phase-locked loop current control method of double fed induction generators according to claim 7, it is characterised in that described Step 4-2 voltage-regulation vectors v'rdqIn the component and the component v' of q axles of d axlesrdAnd v'rqIt is shown below:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;i</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;i</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;i</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;i</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow>
<mrow> <msub> <mi>C</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>K</mi> <mi>i</mi> </msub> <mi>s</mi> </mfrac> </mrow>
<mrow> <msub> <mi>C</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>p</mi> </msub> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mrow> <mi>s</mi> </mfrac> </mrow>
Wherein:KpFor proportionality coefficient, KiFor integral coefficient, ω0=2 π f0=100 π are virtual angular velocity of rotation, and s is Laplce Operator.
9. the no phase-locked loop current control method of double fed induction generators according to claim 7, it is characterised in that described Rotor voltage instruction Us of the step 4-3 according to following formulardqTo voltage-regulation vector v'rdqCarry out decoupling compensation:
<mrow> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>d</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>e</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>r</mi> </msub> <msub> <mi>L</mi> <mi>m</mi> </msub> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>&amp;psi;</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:usdAnd usqRespectively stator voltage vector UsdqD axis components and q axis components, erdAnd erqRespectively voltage decoupling Vector erdqD axis components and q axis components, ψsdAnd ψsqRespectively stator voltage vector ψsdqD axis components and q axis components, v'rd And v'rqRespectively voltage-regulation vector v'rdqD axis components and q axis components, urdAnd urqRespectively rotor voltage instruction UrdqD Axis component and q axis components, LrFor the inductor rotor of double fed induction generators, LmFor the rotor mutual inductance of double fed induction generators, ωrThe angular rate rotated for double fed induction generators rotor.
10. the no phase-locked loop current control method of double fed induction generators according to claim 1, it is characterised in that institute The step 5 stated instructs U according to following formula to double fed induction generators rotor voltagerdqCarry out coordinate transform:
<mrow> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>&amp;alpha;</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>&amp;alpha;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>&amp;beta;</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein:urdAnd urqRespectively rotor voltage instruction UrdqD axis components and q axis components, uAnd uRespectively rotor voltage Instruct Urαβα axis components and beta -axis component.
11. the no phase-locked loop current control device of a kind of double fed induction generators, it is characterised in that described device includes:Collection Module, the parameter for gathering double fed induction generators;
First coordinate transformation module, for the threephase stator voltage vector U to collectionsabcWith threephase stator current phasor IsabcEnter Row coordinate transform, obtains the stator voltage vector U under the static alpha-beta coordinate system of two-phasesαβWith stator current vector Isαβ
Second coordinate transformation module, for stator voltage vector UsαβWith stator current vector IsαβCoordinate transform is carried out, is obtained Stator voltage vector U under virtual synchronous rotating coordinate systemsdqWith stator current vector Isdq
Stator current command configuration module, the stator current I for calculating double fed induction generatorssdqD axles and q axles instruction isd.refAnd isq.ref
Rotor voltage instructs configuration module, for calculating the instruction of the rotor voltage under virtual synchronous rotating coordinate system Urdq
3rd coordinate transformation module, for instructing U to double fed induction generators rotor voltagerdqCoordinate transform is carried out, two-phase is obtained Rotor voltage instruction U under static alpha-beta coordinate systemrαβ
Space vector adjustment module, for instructing U according to the rotor voltagerαβGenerate one group of pwm signal.
12. no phase-locked loop current control device as claimed in claim 11, it is characterised in that
First coordinate transformation module is connected with the second coordinate transformation module;
The stator current command configuration module, rotor voltage instruction configuration module, the 3rd coordinate transformation module and space vector Adjustment module is sequentially connected.
13. the no phase-locked loop current control device of double fed induction generators as claimed in claim 11, it is characterised in that described Rotor voltage instruction configuration module includes stator current closed loop adjustment module and stator current decoupling compensation module.
CN201710205022.5A 2017-03-31 2017-03-31 Phase-loop-free current control method and device for doubly-fed induction generator Active CN107124126B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710205022.5A CN107124126B (en) 2017-03-31 2017-03-31 Phase-loop-free current control method and device for doubly-fed induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710205022.5A CN107124126B (en) 2017-03-31 2017-03-31 Phase-loop-free current control method and device for doubly-fed induction generator

Publications (2)

Publication Number Publication Date
CN107124126A true CN107124126A (en) 2017-09-01
CN107124126B CN107124126B (en) 2021-09-03

Family

ID=59718296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710205022.5A Active CN107124126B (en) 2017-03-31 2017-03-31 Phase-loop-free current control method and device for doubly-fed induction generator

Country Status (1)

Country Link
CN (1) CN107124126B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256805A (en) * 2018-10-19 2019-01-22 上海电力学院 Virtual synchronous generator power decoupling method based on single rotation angle virtual power
CN109917170A (en) * 2019-04-04 2019-06-21 西南交通大学 A kind of dq electric current detecting method of Pulse rectifier no phase-locked loop
CN111510034A (en) * 2020-05-15 2020-08-07 华北电力大学 Method and device for controlling power of doubly-fed induction motor without phase-locked loop
CN111654062A (en) * 2020-08-04 2020-09-11 中国电力科学研究院有限公司 Virtual synchronization control method and system of double-fed wind generating set
CN111917126A (en) * 2020-07-06 2020-11-10 浙江大学 DFIG unbalanced power grid voltage compensation method based on phase-locked loop-free self-synchronization control
CN112383252A (en) * 2020-10-30 2021-02-19 华北电力科学研究院有限责任公司 Per unit method and device for double-fed generator set excitation control system
EP4012918A1 (en) * 2020-12-10 2022-06-15 General Electric Renovables España S.L. System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine to provide grid-forming control thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085354A1 (en) * 2007-09-28 2009-04-02 General Electric Company System and method for controlling torque ripples in synchronous machines
CN101521481A (en) * 2009-04-07 2009-09-02 浙江大学 Asymmetry coordination direct power control method of double-fed asynchronous wind power generation system
CN104079226A (en) * 2014-05-23 2014-10-01 浙江大学 Method for controlling DFIG without phase-locked ring under synchronous coordinate system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085354A1 (en) * 2007-09-28 2009-04-02 General Electric Company System and method for controlling torque ripples in synchronous machines
CN101521481A (en) * 2009-04-07 2009-09-02 浙江大学 Asymmetry coordination direct power control method of double-fed asynchronous wind power generation system
CN104079226A (en) * 2014-05-23 2014-10-01 浙江大学 Method for controlling DFIG without phase-locked ring under synchronous coordinate system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG CHENG: "Direct Stator Current Vector Control Strategy of DFIG Without Phase-Locked Loop During Network Unbalance", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256805A (en) * 2018-10-19 2019-01-22 上海电力学院 Virtual synchronous generator power decoupling method based on single rotation angle virtual power
CN109256805B (en) * 2018-10-19 2021-11-19 上海电力学院 Virtual synchronous generator power decoupling method based on single rotation angle virtual power
CN109917170A (en) * 2019-04-04 2019-06-21 西南交通大学 A kind of dq electric current detecting method of Pulse rectifier no phase-locked loop
CN109917170B (en) * 2019-04-04 2020-03-10 西南交通大学 Method for detecting dq current of single-phase pulse rectifier without phase-locked loop
CN111510034A (en) * 2020-05-15 2020-08-07 华北电力大学 Method and device for controlling power of doubly-fed induction motor without phase-locked loop
CN111917126A (en) * 2020-07-06 2020-11-10 浙江大学 DFIG unbalanced power grid voltage compensation method based on phase-locked loop-free self-synchronization control
CN111654062A (en) * 2020-08-04 2020-09-11 中国电力科学研究院有限公司 Virtual synchronization control method and system of double-fed wind generating set
CN112383252A (en) * 2020-10-30 2021-02-19 华北电力科学研究院有限责任公司 Per unit method and device for double-fed generator set excitation control system
EP4012918A1 (en) * 2020-12-10 2022-06-15 General Electric Renovables España S.L. System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine to provide grid-forming control thereof
US11671039B2 (en) 2020-12-10 2023-06-06 General Electric Renovables Espana, S.L. System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine to provide grid-forming control thereof

Also Published As

Publication number Publication date
CN107124126B (en) 2021-09-03

Similar Documents

Publication Publication Date Title
CN107124126A (en) The no phase-locked loop current control method and device of a kind of double fed induction generators
CN103441726B (en) Based on the double three-phase permanent-magnetic motor vector control method of ratio resonant regulator
CN100527595C (en) Current non-delay control method of AC excitation double-fed asynchronous wind power generator rotor
CN104218613B (en) The symmetrical high voltage fail traversing control method of double-fed wind power system
CN104579060B (en) The indirect power control method of cage-type rotor brushless dual-feedback wind power generator
CN104852652B (en) Synchronous wind driven generator closed-loop vector control method and system
CN104868497A (en) Non-flux observation doubly-fed induction generator low voltage ride-through control method and system
CN106300411B (en) A kind of voltage source inverter control method of virtual synchronous coordinate system Current Decoupling
CN103281025B (en) DFIG (Double-Fed Induction Generator) system control method based on resonance sliding mode
CN111917126B (en) DFIG unbalanced power grid voltage compensation method based on phase-locked loop-free self-synchronization control
CN103208817B (en) Second-order slip form-based method for controlling doubly-fed wind generator (DFIG)
CN105099320B (en) Method and device for controlling output active power of permanent magnet direct-drive wind driven generator
CN106452235B (en) Brushless dual-feed motor stand alone generating system excitation control method under asymmetric load
CN106410844B (en) A kind of improved double fed induction generators low voltage traversing control method
CN105552951B (en) A kind of DFIG system control methods based on repetition sliding formwork
CN105515040B (en) A kind of DFIG control methods based on sliding formwork+repetition
CN106208770B (en) The voltage source inverter control method of no phase-locked loop under a kind of virtual synchronous rotating coordinate system
CN104333283A (en) Doubly-fed motor stator current robust control method based on loop shaping
CN103904970A (en) Method for controlling PWM converter on electric generator side of nine-phase permanent magnetic wind power generating system
CN106982021B (en) Method and device for controlling stator current of grid-connected double-fed induction generator
CN115935879A (en) Modeling method and device for electromechanical transient six-order mathematical model of distributed phase modulator
CN110289629B (en) DFIG virtual synchronization control method based on expanded power under unbalanced power grid
CN106385050A (en) Doubly-fed induction generator low-voltage ride-through control system
CN110970916B (en) Control method of grid-connected power generation system of internal feedback generator
CN110970904B (en) Reactive power control method of internal feedback generator grid-connected power generation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant