CN107122860A - Bump danger classes Forecasting Methodology based on grid search and extreme learning machine - Google Patents
Bump danger classes Forecasting Methodology based on grid search and extreme learning machine Download PDFInfo
- Publication number
- CN107122860A CN107122860A CN201710290857.5A CN201710290857A CN107122860A CN 107122860 A CN107122860 A CN 107122860A CN 201710290857 A CN201710290857 A CN 201710290857A CN 107122860 A CN107122860 A CN 107122860A
- Authority
- CN
- China
- Prior art keywords
- bump
- learning machine
- extreme learning
- influence factor
- danger classes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000004913 activation Effects 0.000 claims abstract description 33
- 210000002569 neuron Anatomy 0.000 claims abstract description 32
- 238000002790 cross-validation Methods 0.000 claims abstract description 10
- 230000006870 function Effects 0.000 claims description 36
- 239000003245 coal Substances 0.000 claims description 20
- 238000012549 training Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000005065 mining Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 239000011435 rock Substances 0.000 description 90
- 238000013398 bayesian method Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 3
- 238000011425 standardization method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Animal Husbandry (AREA)
- Biomedical Technology (AREA)
- Operations Research (AREA)
- Agronomy & Crop Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
- Quality & Reliability (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于冲击地压危险性等级预测技术领域,具体涉及一种基于网格搜索和极限学习机的冲击地压危险等级预测方法。The invention belongs to the technical field of rock burst risk level prediction, and in particular relates to a method for predicting the rock burst risk level based on a grid search and an extreme learning machine.
背景技术Background technique
冲击地压是一种常见的动力学现象,随着我国煤矿开采深度的增加,冲击地压发生的次数呈上升趋势,其破坏程度也越发严重,造成大量人员伤亡和财产损失,严重威胁煤矿的安全生产,因此有必要对冲击地压危险等级进行有效预测。Rock burst is a common dynamic phenomenon. With the increase of coal mining depth in my country, the number of occurrences of rock burst is on the rise, and its damage is becoming more and more serious, causing a large number of casualties and property losses, which seriously threatens the safety of coal mines. Therefore, it is necessary to effectively predict the hazard level of rock burst.
目前对冲击地压进行预测的方法有采用单一影响因素的钻屑法、含水率测定等方法,然而这些方法仅考虑单一影响因素,存在预测精度不高的问题,近来随着人工智能的发展,有很多学者采用新技术、新方法对冲击地压危险性等级进行预测,其中有人工神经网络方法、GA-ELM方法、Fisher判别分析法、SVM模型等等,上述方法取得了大量研究成果,但是由于冲击地压成因复杂,且冲击地压数据具有非线性、相关性等特征,因此有必要继续探索新的方法对冲击地压危险性等级进行预测。At present, methods for predicting rock burst include drilling cuttings method using a single influencing factor, water content measurement and other methods. However, these methods only consider a single influencing factor, and there is a problem of low prediction accuracy. Recently, with the development of artificial intelligence, Many scholars use new technologies and methods to predict the risk level of rock burst, including artificial neural network method, GA-ELM method, Fisher discriminant analysis method, SVM model, etc. The above methods have achieved a lot of research results, but Due to the complex causes of rock burst and the characteristics of non-linearity and correlation of rock burst data, it is necessary to continue to explore new methods to predict the risk level of rock burst.
极限学习机是一种单隐含层结构的新型学习算法,相比传统的单隐层前馈神经网络,具有学习速度快、泛化能力好、调节参数少等优点,目前的应用主要采用优化算法对极限学习机的输入权值和隐含层偏差进行优化,如朱志洁等采用遗传算法优化极限学习机的输入权值和隐含层偏差对冲击地压进行了预测,然而极限学习机的性能主要受隐含层神经元个数及激活函数的影响较大,且当隐含层神经元个数较多时需要优化的参数较多;此外丁华等采用遗传算法优选最佳隐层神经元个数,使用递进方式比选确定激励函数对采煤机功率进行了预测,然而由于对隐含层神经元数量进行寻优时已经固定了激活函数的类型,且输入层与隐含层的权值与隐含层阈值是随机产生的,因此难以保证运行结果的唯一性;此外在对极限学习机的参数进行训练过程时没有充分考虑模型的过拟合问题,因而无法保证模型的预测性能。The extreme learning machine is a new learning algorithm with a single hidden layer structure. Compared with the traditional single hidden layer feedforward neural network, it has the advantages of fast learning speed, good generalization ability, and fewer adjustment parameters. The current application mainly uses optimization The algorithm optimizes the input weights and hidden layer deviations of extreme learning machines. For example, Zhu Zhijie et al. used genetic algorithms to optimize the input weights and hidden layer deviations of extreme learning machines to predict rock burst. However, the performance of extreme learning machines It is mainly affected by the number of neurons in the hidden layer and the activation function, and when the number of neurons in the hidden layer is large, there are more parameters to be optimized; in addition, Ding Hua et al. use genetic algorithm to optimize the optimal number of neurons in the hidden layer. The power of the shearer is predicted by using a progressive comparison to determine the activation function. However, the type of activation function has been fixed when the number of neurons in the hidden layer is optimized, and the weights of the input layer and the hidden layer The values and hidden layer thresholds are randomly generated, so it is difficult to guarantee the uniqueness of the running results; in addition, the over-fitting problem of the model is not fully considered during the training process of the parameters of the extreme learning machine, so the predictive performance of the model cannot be guaranteed.
发明内容Contents of the invention
针对现有技术的不足,本发明提出一种基于网格搜索和极限学习机的冲击地压危险等级预测方法。Aiming at the deficiencies of the prior art, the present invention proposes a method for predicting the hazard level of rock burst based on grid search and extreme learning machine.
一种基于网格搜索和极限学习机的冲击地压危险等级预测方法,包括以下步骤:A method for predicting the hazard level of rock burst based on grid search and extreme learning machine, comprising the following steps:
步骤1:获取采煤矿井中不同位置处的已知冲击地压监测数据、已知冲击地压的影响因素数据Z=[z1,z2,......,zp]T、待预测冲击地压的影响因素数据Z′=[z′1,z′2,......,z′p]T,并根据冲击地压震级强度分类标准对已知冲击地压监测数据进行分类,得到与冲击地压影响因素数据对应的冲击地压危险等级,其中,zi为第i类已知冲击地压的影响因素数据,z′i为第i类待预测冲击地压的影响因素数据,i=1,2,...,p,p为冲击地压影响因素个数;Step 1: Obtain the known monitoring data of rock burst at different locations in the coal mine, the data of known influencing factors of rock burst Z=[z 1 , z 2 ,..., z p ] T , The impact factor data Z′=[z′ 1 , z′ 2 ,…,z′ p ] T to be predicted, and the known rockburst is monitored according to the magnitude and intensity classification standard Classify the data to obtain the rock burst hazard level corresponding to the rock burst influencing factor data, where z i is the known influencing factor data of the i-th type of rock burst, and z′ i is the i-th type of rock burst to be predicted Influencing factor data, i=1, 2, ..., p, p is the number of influencing factors of rock burst;
所述冲击地压影响因素包括:煤层厚度、煤层倾角、埋深、瓦斯浓度和影响冲击地压的状态参量;The rock burst influencing factors include: coal seam thickness, coal seam dip angle, buried depth, gas concentration and state parameters affecting rock burst;
所述影响冲击地压的状态参量包括地质构造情况、煤层倾角变化、煤层厚度变化、顶板管理、卸压状态、响煤炮声。The state parameters affecting rock burst include geological structure, coal seam dip angle change, coal seam thickness change, roof management, pressure relief state, and sound of coal guns.
步骤2:采用zscore标准化方法对已知冲击地压的影响因素数据Z=[z1,z2,......,zp]T和待预测冲击地压的影响因素数据Z′=[z′1,z′2,......,z′p]T进行标准化处理,得到标准化后的已知冲击地压的影响因素数据X=[x1,x2,......,xp]T和标准化后的待预测冲击地压的影响因素数据X′=[x′1,x′2,……,x′p]T;Step 2: Use the zscore standardization method to analyze the data Z = [z 1 , z 2 , . [z′ 1 , z′ 2 , ......, z′ p ] T is standardized, and the normalized known impact factor data of rock burst X=[x 1 , x 2 , … ..., x p ] T and the data X′=[x′ 1 , x′ 2 ,……, x′ p ] T of the impact factor data X′=[x′ 1 , x′ p ] T to be predicted;
步骤3:将标准化后的已知冲击地压的影响因素数据X=[x1,x2,......,xp]T及其对应的冲击地压危险等级作为训练样本集;Step 3: Take the standardized known impact factor data of rock burst X=[x 1 , x 2 , . . . , x p ] T and its corresponding risk level of rock burst as a training sample set;
步骤4:将训练样本集中的标准化后的已知冲击地压的影响因素数据作为极限学习机的输入,将训练样本集中对应的冲击地压危险等级作为极限学习机的输出,采用网格搜索法优化极限学习机的隐含层神经元个数和激活函数的类型组合,根据每个网格节点建立相应极限学习机,对每个模型采用十折交叉验证法确定相应网格节点的预测准确率,选择预测准确率最高的节点确定极限学习机的隐含层神经元个数和激活函数的类型,建立冲击地压危险等级预测模型;Step 4: Take the standardized and known impact factor data of rock burst in the training sample set as the input of the extreme learning machine, and use the corresponding rock burst hazard level in the training sample set as the output of the extreme learning machine, and use the grid search method Optimize the combination of the number of neurons in the hidden layer of the extreme learning machine and the type of activation function, establish a corresponding extreme learning machine according to each grid node, and use the ten-fold cross-validation method for each model to determine the prediction accuracy of the corresponding grid node , select the node with the highest prediction accuracy to determine the number of hidden layer neurons and the type of activation function of the extreme learning machine, and establish a prediction model for rock burst hazard level;
步骤4.1:设定网格搜索法的间隔,根据冲击地压影响因素个数设置隐含层神经元个数区间,对激活函数的类型进行赋值,设定网格搜索法的行数为隐含层神经元个数的最大值,设定网格搜索法的列数为激活函数类型赋值的最大值,建立搜索网格;Step 4.1: Set the interval of the grid search method, set the interval of the number of neurons in the hidden layer according to the number of impact factors of rock burst, assign a value to the type of activation function, and set the number of rows of the grid search method as hidden The maximum value of the number of neurons in the layer, the number of columns of the grid search method is set to the maximum value assigned to the activation function type, and the search grid is established;
所述激活函数类型的赋值为1~3的整数,分别表示为sigmoid函数、sin函数、hardlim函数。The assignment of the activation function type is an integer of 1 to 3, represented as a sigmoid function, a sin function, and a hardlim function, respectively.
步骤4.2:将节点所在的行数作为极限学习机的隐含层神经元个数,将节点所在的列数对应的激活函数类型作为极限学习机的激活函数类型,将训练样本集中的标准化后的已知冲击地压的影响因素数据作为极限学习机的输入,将训练样本集中对应的冲击地压危险等级作为极限学习机的输出,建立极限学习机,采用十折交叉验证法,计算当前节点建立的极限学习机的预测准确率;Step 4.2: Use the number of rows where the nodes are located as the number of neurons in the hidden layer of the extreme learning machine, use the type of activation function corresponding to the number of columns where the nodes are located as the type of activation function of the extreme learning machine, and use the standardized neurons in the training sample set as The known influencing factors of rock burst are used as the input of the extreme learning machine, and the corresponding rock burst hazard level in the training sample set is used as the output of the extreme learning machine, and the extreme learning machine is established, and the current node is established by using the ten-fold cross-validation method. The prediction accuracy of the extreme learning machine;
步骤4.3:判断当前是否搜索到最大节点数,若是,执行步骤4.4,否则,搜索下一个节点,返回步骤4.2;Step 4.3: Determine whether the maximum number of nodes is currently searched, if so, perform step 4.4, otherwise, search for the next node, and return to step 4.2;
步骤4.4:选取根据所有节点建立的极限学习机中预测准确率最大的模型对应的节点作为搜索结果,根据该节点对应的隐含层神经元个数和激活函数类型建立极限学习机模型,得到冲击地压危险性等级预测模型;Step 4.4: Select the node corresponding to the model with the highest prediction accuracy in the extreme learning machine established based on all nodes as the search result, establish the extreme learning machine model according to the number of hidden layer neurons and activation function type corresponding to the node, and obtain the impact Prediction model of ground pressure hazard level;
步骤5:对冲击地压危险性等级进行预测,将标准化后的待预测冲击地压的影响因素数据X′=[x′1,x′2,......,x′p]T输入冲击地压危险等级预测模型,得到冲击地压危险等级预测值。Step 5: To predict the risk level of rock burst, the normalized data of influencing factors of rock burst to be predicted X′=[x′ 1 , x′ 2 , …, x′ p ] T Input the prediction model of rock burst hazard level to obtain the predicted value of rock burst hazard level.
本发明的有益效果:Beneficial effects of the present invention:
本发明提出一种基于网格搜索和极限学习机的冲击地压危险等级预测方法,由于冲击地压发生的机理复杂,影响因素较多,本发明方法采用zscore方法对影响因素数据进行标准化消除了不同量纲对模型的影响;极限学习机的性能受隐含层神经元个数及激活函数类型的影响较大,采用网格搜索法结合十折交叉验证对极限学习机中隐含层神经元个数及激活函数类型进行了组合优化,该方法简便易行,同时保证了模型具有良好的泛化性能。The present invention proposes a method for predicting the risk level of rock burst based on grid search and extreme learning machine. Since the mechanism of rock burst is complex and there are many influencing factors, the method of the present invention adopts the zscore method to standardize the data of the influencing factors and eliminates The influence of different dimensions on the model; the performance of the extreme learning machine is greatly affected by the number of hidden layer neurons and the type of activation function. The grid search method combined with ten-fold cross-validation is used to analyze the hidden layer neurons in the extreme learning machine. The number and type of activation function are combined and optimized. This method is simple and easy to implement, and at the same time ensures that the model has good generalization performance.
附图说明Description of drawings
图1为本发明具体实施方式中基于网格搜索和极限学习机的冲击地压危险等级预测方法的流程图。Fig. 1 is a flow chart of the method for predicting the hazard level of rock burst based on grid search and extreme learning machine in a specific embodiment of the present invention.
具体实施方式detailed description
下面结合附图对本发明具体实施方式加以详细的说明。The specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种基于网格搜索和极限学习机的冲击地压危险等级预测方法,如图1所示,包括以下步骤:A prediction method of rock burst hazard level based on grid search and extreme learning machine, as shown in Figure 1, includes the following steps:
步骤1:获取采煤矿井中不同位置处的已知冲击地压监测数据、已知冲击地压的影响因素数据Z=[z1,z2,......,zp]T、待预测冲击地压的影响因素数据Z′=[z′1,z′2,......,z′p]T,并根据冲击地压震级强度分类标准对已知冲击地压监测数据进行分类,得到与冲击地压影响因素数据对应的冲击地压危险等级,其中,zi为第i类已知冲击地压的影响因素数据,z′i为第i类待预测冲击地压的影响因素数据,i=1,2,…,p,p为冲击地压影响因素个数。Step 1: Obtain the known monitoring data of rock burst at different locations in the coal mine, the data of known influencing factors of rock burst Z=[z 1 , z 2 ,..., z p ] T , The impact factor data Z′=[z′ 1 , z′ 2 ,…,z′ p ] T to be predicted, and the known rockburst is monitored according to the magnitude and intensity classification standard Classify the data to obtain the rock burst hazard level corresponding to the rock burst influencing factor data, where z i is the known influencing factor data of the i-th type of rock burst, and z′ i is the i-th type of rock burst to be predicted Influencing factor data, i=1, 2, ..., p, p is the number of influencing factors of rock burst.
本实施方式中,冲击地压影响因素包括:煤层厚度z1、煤层倾角z2、埋深z3、瓦斯浓度z4和影响冲击地压的状态参量。In this embodiment, the influencing factors of rock burst include: coal seam thickness z 1 , coal seam inclination z 2 , buried depth z 3 , gas concentration z 4 and state parameters affecting rock burst.
影响冲击地压的状态参量包括地质构造情况z5、煤层倾角变化z6、煤层厚度变化z7、顶板管理z8、卸压状态z9、响煤炮声z10。State parameters affecting rock burst include geological structure z 5 , coal seam dip angle change z 6 , coal seam thickness change z 7 , roof management z 8 , pressure relief state z 9 , and sound of coal cannon z 10 .
对影响冲击地压的状态参量进行赋值:根据影响冲击地压的状态参量的不同状态设定其对应赋值,将各影响冲击地压的状态参量赋值为整数值,如表1所示:Assign values to the state parameters that affect rock burst: set the corresponding assignments according to the different states of the state parameters that affect rock burst, and assign the state parameters that affect rock burst to integer values, as shown in Table 1:
表1 各影响冲击地压的状态参量赋值Table 1 Assignment of state parameters affecting rock burst
本实施方式中根据冲击地压震级强度分类标准对冲击地压监测数据进行分类,得到冲击地压危险等级为4级,分别是等级1:微冲击,等级2:弱冲击,等级3:中等冲击,等级4:强冲击。In this embodiment, the rock burst monitoring data is classified according to the rock burst magnitude intensity classification standard, and the rock burst hazard level is obtained as 4 levels, which are level 1: micro impact, level 2: weak impact, and level 3: moderate impact , Level 4: Strong impact.
本实施方式中,获取砚石台煤矿不同位置处的冲击地压监测数据及相应的影响因素数据,冲击地压的危险等级及相应影响因素数据如表2所示,其中前26组数据中的影响因素数据作为已知冲击地压的影响因素数据,相应冲击地压数据作为已知冲击地压危险等级,后10组数据中的影响因素数据作为待预测冲击地压的影响因素数据。In this embodiment, the rock burst monitoring data and corresponding influencing factor data at different locations in the Yanshitai Coal Mine are obtained. The risk level of rock burst and the corresponding influencing factor data are shown in Table 2, wherein the first 26 sets of data The data of influencing factors is used as the data of influencing factors of known rockburst, the corresponding data of rockburst is used as the risk level of known rockburst, and the data of influencing factors in the last 10 sets of data are used as the data of influencing factors of rockburst to be predicted.
表2 砚石台煤矿不同位置处的冲击地压的影响因素数据及对应的冲击地压危险等级Table 2 Data of influencing factors of rock burst at different locations in Yanshitai Coal Mine and corresponding rock burst hazard levels
步骤2:采用zscore标准化方法对已知冲击地压的影响因素数据Z=[z1,z2,......,zp]T和待预测冲击地压的影响因素数据Z′=[z′1,z′2,......,z′p]T进行标准化处理,得到标准化后的已知冲击地压的影响因素数据X=[x1,x2,......,xp]T和标准化后的待预测冲击地压的影响因素数据X′=[x′1,x′2,……,x′p]T。Step 2: Use the zscore standardization method to analyze the data Z = [z 1 , z 2 , . [z′ 1 , z′ 2 , ......, z′ p ] T is standardized, and the normalized known impact factor data of rock burst X=[x 1 , x 2 , … ..., x p ] T and the standardized impact factor data X′=[x′ 1 , x′ 2 , . . . , x′ p ] T to be predicted.
本实施方式中,采用zscore标准化方法对冲击地压的影响因素数据进行标准化处理的公式如式(1)所示:In this embodiment, the formula for standardizing the impact factor data of rock burst using the zscore standardization method is shown in formula (1):
其中,xij为标准化后的第i类冲击地压影响因素数据的第j个值,μi为第i类冲击地压影响因素数据的均值,σi为第i类冲击地压影响因素数据的标准差,zii为采集到的第i类冲击地压影响因素数据的第j个值,j=1,2,…,N,N=36为冲击地压影响因素数据总数。Among them, x ij is the jth value of the i-th type rock burst influencing factor data after normalization, μ i is the mean value of the i-th type rock burst influencing factor data, and σ i is the i-th type rock burst influencing factor data The standard deviation of , z ii is the jth value of the collected i-th type rock burst influencing factor data, j=1, 2,..., N, N=36 is the total number of rock burst influencing factor data.
本实施方式中,对表2中36组影响因素数据进行标准化,其中前26组影响因素数据标准化后的构成X,后10组影响因素数据标准化后构成X′。In this embodiment, the 36 groups of influencing factor data in Table 2 are standardized, wherein the first 26 groups of influencing factor data constitute X after normalization, and the last 10 groups of influencing factor data constitute X' after normalization.
步骤3:将标准化后的已知冲击地压的影响因素数据X=[x1,x2,......,xp]T及其对应的冲击地压危险等级作为训练样本集。Step 3: The standardized known impact factor data of rock burst X = [x 1 , x 2 , .
步骤4:将训练样本集中的标准化后的已知冲击地压的影响因素数据作为极限学习机的输入,将训练样本集中对应的冲击地压危险等级作为极限学习机的输出,采用网格搜索法优化极限学习机的隐含层神经元个数和激活函数的类型组合,根据每个网格节点建立相应极限学习机,对每个模型采用十折交叉验证法确定相应网格节点的预测准确率,选择预测准确率最高的节点确定极限学习机的隐含层神经元个数和激活函数的类型,建立冲击地压危险等级预测模型。Step 4: Take the standardized and known impact factor data of rock burst in the training sample set as the input of the extreme learning machine, and use the corresponding rock burst hazard level in the training sample set as the output of the extreme learning machine, and use the grid search method Optimize the combination of the number of neurons in the hidden layer of the extreme learning machine and the type of activation function, establish a corresponding extreme learning machine according to each grid node, and use the ten-fold cross-validation method for each model to determine the prediction accuracy of the corresponding grid node , select the node with the highest prediction accuracy to determine the number of hidden layer neurons and the type of activation function of the extreme learning machine, and establish a prediction model of rock burst hazard level.
步骤4.1:设定网格搜索法的间隔,根据冲击地压影响因素个数设置隐含层神经元个数区间,对激活函数的类型进行赋值,设定网格搜索法的行数为隐含层神经元个数的最大值,设定网格搜索法的列数为激活函数类型赋值的最大值,建立搜索网格。Step 4.1: Set the interval of the grid search method, set the interval of the number of neurons in the hidden layer according to the number of impact factors of rock burst, assign a value to the type of activation function, and set the number of rows of the grid search method as hidden The maximum number of layer neurons, set the number of columns of the grid search method to the maximum value assigned by the activation function type, and establish a search grid.
本实施方式中,设定网格搜索法的间隔为1,根据冲击地压影响因素个数设置隐含层神经元个数区间为[1,100],激活函数的类型赋值为1~3的整数,分别表示为sigmoid函数、sin函数、hardlim函数,本实施例中令sigmoid函数取值为1、sin函数取值为2、hardlim函数取值为3。In this embodiment, the interval of the grid search method is set to 1, the number of neurons in the hidden layer is set to [1, 100] according to the number of factors affecting rock burst, and the type of activation function is assigned a value of 1 to 3. The integers are respectively represented as sigmoid function, sin function, and hardlim function. In this embodiment, the value of the sigmoid function is 1, the value of the sin function is 2, and the value of the hardlim function is 3.
本实施方式中设定网格搜索法的行数设置为100行,设定网格搜索法的列数为3列。In this embodiment, the number of rows of the grid search method is set to 100 rows, and the number of columns of the grid search method is set to 3 columns.
步骤4.2:将节点所在的行数作为极限学习机的隐含层神经元个数,将节点所在的列数对应的激活函数类型作为极限学习机的激活函数类型,将训练样本集中的标准化后的已知冲击地压的影响因素数据作为极限学习机的输入,将训练样本集中对应的冲击地压危险等级作为极限学习机的输出,建立极限学习机,采用十折交叉验证法,计算当前节点建立的极限学习机的预测准确率。Step 4.2: Use the number of rows where the nodes are located as the number of neurons in the hidden layer of the extreme learning machine, use the type of activation function corresponding to the number of columns where the nodes are located as the type of activation function of the extreme learning machine, and use the standardized neurons in the training sample set as The known influencing factors of rock burst are used as the input of the extreme learning machine, and the corresponding rock burst hazard level in the training sample set is used as the output of the extreme learning machine, and the extreme learning machine is established, and the current node is established by using the ten-fold cross-validation method. The prediction accuracy of the extreme learning machine.
本实施方式中,采用十折交叉验证法,将训练样本集中的标准化后的已知冲击地压的影响因素数据分成十份,轮流将其中9份作为训练数据,1份作为测试数据,作为极限学习机的输入,经过十次运算,计算十次预测结果与训练样本集中对应的冲击地压危险等级的准确率,将该预测准确率作为相应网格节点的评价指标。In this embodiment, the ten-fold cross-validation method is used to divide the standardized known impact factor data of rock burst in the training sample set into ten parts, and 9 parts of them are used as training data, 1 part as test data, and 1 part as limit data in turn. The input of the learning machine, after ten calculations, calculates the accuracy rate of the ten prediction results and the corresponding rock burst hazard level in the training sample set, and takes the prediction accuracy rate as the evaluation index of the corresponding grid node.
步骤4.3:判断当前是否搜索到最大节点数,若是,执行步骤4.4,否则,搜索下一个节点,返回步骤4.2。Step 4.3: Determine whether the maximum number of nodes is currently searched, if so, perform step 4.4, otherwise, search for the next node, and return to step 4.2.
本实施方式中,最大节点数为97行、1列。In this embodiment, the maximum number of nodes is 97 rows and 1 column.
步骤4.4:选取根据所有节点建立的极限学习机中预测准确率最大的模型对应的节点作为搜索结果,根据该节点对应的隐含层神经元个数和激活函数类型建立极限学习机模型,得到冲击地压危险性等级预测模型。Step 4.4: Select the node corresponding to the model with the highest prediction accuracy in the extreme learning machine established based on all nodes as the search result, establish the extreme learning machine model according to the number of hidden layer neurons and activation function type corresponding to the node, and obtain the impact Prediction model of ground pressure hazard level.
本实施方式中,冲击地压危险等级预测模型为三层结构,如式(2)所示:In this embodiment, the prediction model of rock burst hazard level has a three-layer structure, as shown in formula (2):
其中,M为隐含层神经元个数,v=1,2,…,M,ωv为输入层与隐含层的连接权值、βv为隐含层与输出层的连接权值,bv为隐含层神经元的阈值,g(*)为优化得到的极限学习机的激活函数,ok为冲击地压危险等级的预测类别,xk输入的训练样本集中第k个标准化后的冲击地压影响因素数据,k=1,2,…,N。Among them, M is the number of neurons in the hidden layer, v=1, 2, ..., M, ω v is the connection weight between the input layer and the hidden layer, and β v is the connection weight between the hidden layer and the output layer, b v is the threshold value of neurons in the hidden layer, g(*) is the activation function of the optimized extreme learning machine, o k is the prediction category of rock burst hazard level, x k is the kth normalized input training sample set The impact factor data of rock burst, k=1, 2,...,N.
本实施方式中,得到最优节点为97行、1列,即隐含层神经元的个数为97,激活函数的类型为sigmoid函数,得到极限学习机模型的部分输入层与隐含层的权值及隐含层阈值b如表3所不:In this embodiment, the optimal node is 97 rows and 1 column, that is, the number of neurons in the hidden layer is 97, and the type of activation function is a sigmoid function, and the partial input layer and hidden layer of the extreme learning machine model are obtained. The weight and hidden layer threshold b are shown in Table 3:
表3 极限学习机模型的部分输入层与隐含层的权值及隐含层阈值bTable 3 Weights of some input layers and hidden layers and hidden layer threshold b of the extreme learning machine model
根据该节点对应参数建立极限学习机模型,经过十折交叉验证模型的正确识别率为0.84615。The extreme learning machine model was established according to the corresponding parameters of the node, and the correct recognition rate of the model after ten-fold cross-validation was 0.84615.
本实施方式中,为了与所提方法进行比较,分别采用朴素贝叶斯方法及AdaboostM1方法建立冲击地压危险等级预测模型,经过十折交叉验证,模型的正确识别率分别为0.7692、0.6154,均低于0.84615,表明根据本方法建立的冲击地压预测模型具有更优的性能。In this embodiment, in order to compare with the proposed method, the naive Bayesian method and the AdaboostM1 method are used to establish the prediction model of rock burst hazard level. It is lower than 0.84615, indicating that the rock burst prediction model established by this method has better performance.
步骤5:对冲击地压危险性等级进行预测,将标准化后的待预测冲击地压的影响因素数据X′=[x′1,x′2,......,x′p]T输入冲击地压危险等级预测模型,得到冲击地压危险等级预测值。Step 5: To predict the risk level of rock burst, the normalized data of influencing factors of rock burst to be predicted X′=[x′ 1 , x′ 2 , …, x′ p ] T Input the prediction model of rock burst hazard level to obtain the predicted value of rock burst hazard level.
采用本发明方法、朴素贝叶斯方法及AdaboostM1方法根据表2中后10组影响因素数据标准化后的数据对相应冲击地压危险性等级进行预测,预测结果如表4所示:Adopt method of the present invention, naive Bayesian method and AdaboostM1 method to predict corresponding rockburst risk level according to the data after standardization of last 10 groups of influence factor data in table 2, prediction result is as shown in table 4:
表4 预测结果Table 4 Prediction results
从表中可见采用本文方法建立的预测模型准确预测了数据中的9组冲击地压危险等级,仅将第10组数据的中等冲击地压误判为弱冲击地压,而朴素贝叶斯方法及AdaboostM1方法均准确预测了其中8组等级,其中朴素贝叶斯方法将第2组及第7组的中等冲击地压误判为强冲击地压,AdaboostM1方法则分别将第4组的微冲击地压、第7组的中等冲击地压误判为强冲击地压。It can be seen from the table that the prediction model established by the method in this paper can accurately predict the hazard levels of 9 groups of rockbursts in the data, and only misjudge the moderate rockburst of the 10th group of data as weak rockbursts, while the Naive Bayesian method Both the AdaboostM1 method and the AdaboostM1 method accurately predicted the grades of 8 groups. The Naive Bayesian method misjudged the medium rock burst in the second group and the seventh group as a strong rock burst, and the AdaboostM1 method respectively judged the micro rock burst in the fourth group The moderate rockburst in group 7 was misjudged as strong rockburst.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710290857.5A CN107122860B (en) | 2017-04-28 | 2017-04-28 | Prediction method of rock burst danger level based on grid search and extreme learning machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710290857.5A CN107122860B (en) | 2017-04-28 | 2017-04-28 | Prediction method of rock burst danger level based on grid search and extreme learning machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107122860A true CN107122860A (en) | 2017-09-01 |
CN107122860B CN107122860B (en) | 2020-01-07 |
Family
ID=59725143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710290857.5A Expired - Fee Related CN107122860B (en) | 2017-04-28 | 2017-04-28 | Prediction method of rock burst danger level based on grid search and extreme learning machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107122860B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110630330A (en) * | 2019-09-23 | 2019-12-31 | 辽宁工程技术大学 | A Classification and Judgment Method of Rockburst Based on Energy Release Subject |
CN111325461A (en) * | 2020-02-18 | 2020-06-23 | 山东科技大学 | Real-time assessment method of coal seam impact risk based on vibration monitoring technology |
CN111764963A (en) * | 2020-07-06 | 2020-10-13 | 中国矿业大学(北京) | Rock burst prediction method based on fast-RCNN |
CN113009077A (en) * | 2021-02-18 | 2021-06-22 | 南方电网数字电网研究院有限公司 | Gas detection method, gas detection device, electronic apparatus, and storage medium |
CN113298299A (en) * | 2021-05-13 | 2021-08-24 | 华北科技学院(中国煤矿安全技术培训中心) | BP neural network-based coal bed impact risk intelligent evaluation method |
CN113469342A (en) * | 2021-07-08 | 2021-10-01 | 北京科技大学 | Rock burst early warning method based on deep learning microseismic monitoring data |
CN113901939A (en) * | 2021-10-21 | 2022-01-07 | 黑龙江科技大学 | Rock burst danger level prediction method based on fuzzy correction, storage medium and equipment |
CN114877925A (en) * | 2022-03-31 | 2022-08-09 | 上海交通大学 | Comprehensive energy system sensor fault diagnosis method based on extreme learning machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103256073A (en) * | 2013-04-28 | 2013-08-21 | 中国矿业大学 | Underground coal mine impact mine pressure partition grading prediction method |
CN105785471A (en) * | 2016-02-14 | 2016-07-20 | 辽宁工程技术大学 | Impact danger evaluation method of mine pre-exploiting coal seam |
-
2017
- 2017-04-28 CN CN201710290857.5A patent/CN107122860B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103256073A (en) * | 2013-04-28 | 2013-08-21 | 中国矿业大学 | Underground coal mine impact mine pressure partition grading prediction method |
CN105785471A (en) * | 2016-02-14 | 2016-07-20 | 辽宁工程技术大学 | Impact danger evaluation method of mine pre-exploiting coal seam |
Non-Patent Citations (4)
Title |
---|
HUANG GUANGBIN 等: "《Optimizationmethodbasedextremelearningmachineforclassification》", 《ELSEVIER:NEUROCOMPUTING》 * |
S. BALASUNDARAM • DEEPAK GUPTA: "《On optimization based extreme learning machine in primal for regression and classification by functional iterative method》", 《INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS》 * |
朱志洁等: "《基于GA-ELM的冲击地压危险性预测研究》", 《中国安全生产科学技术》 * |
李烨等: "《基于改进GS-SVM的煤矿冲击地压预测研究》", 《世界科技研究与发展》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110630330A (en) * | 2019-09-23 | 2019-12-31 | 辽宁工程技术大学 | A Classification and Judgment Method of Rockburst Based on Energy Release Subject |
CN111325461A (en) * | 2020-02-18 | 2020-06-23 | 山东科技大学 | Real-time assessment method of coal seam impact risk based on vibration monitoring technology |
CN111325461B (en) * | 2020-02-18 | 2022-03-08 | 山东科技大学 | Real-time evaluation method for coal seam impact risk based on vibration monitoring technology |
CN111764963A (en) * | 2020-07-06 | 2020-10-13 | 中国矿业大学(北京) | Rock burst prediction method based on fast-RCNN |
CN113009077A (en) * | 2021-02-18 | 2021-06-22 | 南方电网数字电网研究院有限公司 | Gas detection method, gas detection device, electronic apparatus, and storage medium |
CN113298299A (en) * | 2021-05-13 | 2021-08-24 | 华北科技学院(中国煤矿安全技术培训中心) | BP neural network-based coal bed impact risk intelligent evaluation method |
CN113469342A (en) * | 2021-07-08 | 2021-10-01 | 北京科技大学 | Rock burst early warning method based on deep learning microseismic monitoring data |
CN113901939A (en) * | 2021-10-21 | 2022-01-07 | 黑龙江科技大学 | Rock burst danger level prediction method based on fuzzy correction, storage medium and equipment |
CN113901939B (en) * | 2021-10-21 | 2022-07-01 | 黑龙江科技大学 | Rock burst danger level prediction method based on fuzzy correction, storage medium and equipment |
CN114877925A (en) * | 2022-03-31 | 2022-08-09 | 上海交通大学 | Comprehensive energy system sensor fault diagnosis method based on extreme learning machine |
CN114877925B (en) * | 2022-03-31 | 2023-08-22 | 上海交通大学 | A sensor fault diagnosis method for integrated energy system based on extreme learning machine |
Also Published As
Publication number | Publication date |
---|---|
CN107122860B (en) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107122860A (en) | Bump danger classes Forecasting Methodology based on grid search and extreme learning machine | |
CN109948841B (en) | A deep learning-based prediction method for the distribution of remaining oil in waterflooding oilfields | |
CN112529341B (en) | A Prediction Method of Drilling Loss Probability Based on Naive Bayesian Algorithm | |
CN111985610B (en) | Oil pumping well pump efficiency prediction system and method based on time sequence data | |
CN103617147A (en) | Method for identifying mine water-inrush source | |
CN110441500A (en) | A kind of predicting model for dissolved gas in transformer oil method based on shot and long term memory network | |
CN110619353A (en) | Multi-scale logging curve automatic identification method based on deep learning | |
CN108280289B (en) | Prediction method of rock burst danger level based on local weighted C4.5 algorithm | |
CN114818076B (en) | Machine learning-based fault closed hydrocarbon column height evaluation method | |
CN107609671A (en) | A kind of Short-Term Load Forecasting Method based on composite factor evaluation model | |
CN108229811A (en) | A kind of method for evaluating fracture and vug carbonate reservoir flood effectiveness | |
Zhang et al. | Geological Type Recognition by Machine Learning on In‐Situ Data of EPB Tunnel Boring Machines | |
CN103967478A (en) | Method for identifying vertical well flow patterns based on conducting probe | |
CN111275252A (en) | Blasting peak value speed prediction method, device and medium based on RGA-BPNNG | |
CN117574251A (en) | LNG large-scale storage tank working condition anomaly detection method based on dynamic PSO optimization SVM | |
Lu et al. | Physics guided neural network: Remaining useful life prediction of rolling bearings using long short-term memory network through dynamic weighting of degradation process | |
CN114491511B (en) | A network intrusion detection method based on variational autoencoder and deep echo state | |
CN110807511A (en) | Rough Set Theory-Recurrent Neural Network Model Structure | |
CN113946790B (en) | Method, system, equipment and terminal for predicting height of water diversion fracture zone | |
Gong et al. | Prediction and evaluation of coal mine coal bump based on improved deep neural network | |
CN115033591A (en) | An intelligent detection method, system, storage medium and computer equipment for abnormality of electricity bill data | |
Zhou et al. | Application of BP neural network in efficiency prediction of oilfield mechanized mining system | |
CN116050285B (en) | Method and system for predicting grease consumption of shield tail seal of mud-water balance shield machine | |
CN117556298A (en) | A rockburst intensity prediction method based on Bayesian optimization and Stacking integration algorithm | |
CN116955966A (en) | Method for judging water-rich grade of mine roof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200107 |