CN107119201A - 一种利用金属玻璃细化铝合金的方法 - Google Patents

一种利用金属玻璃细化铝合金的方法 Download PDF

Info

Publication number
CN107119201A
CN107119201A CN201710356698.4A CN201710356698A CN107119201A CN 107119201 A CN107119201 A CN 107119201A CN 201710356698 A CN201710356698 A CN 201710356698A CN 107119201 A CN107119201 A CN 107119201A
Authority
CN
China
Prior art keywords
alloy
aluminium alloy
crucible
amorphous
glassy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710356698.4A
Other languages
English (en)
Inventor
邱丰
姜启川
朱琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710356698.4A priority Critical patent/CN107119201A/zh
Publication of CN107119201A publication Critical patent/CN107119201A/zh
Priority to CN201711172475.9A priority patent/CN107937743B/zh
Priority to CN201711173688.3A priority patent/CN107904421A/zh
Priority to CN201711173012.4A priority patent/CN107904418A/zh
Priority to CN201711173713.8A priority patent/CN107904422A/zh
Priority to CN201711173015.8A priority patent/CN107904419A/zh
Priority to CN201711416021.1A priority patent/CN107937747A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种利用金属玻璃细化铝合金的方法,涉及铝合金加工领域,包括金属玻璃的制备、非晶条带的制备、未细化铝合金的制备及铝合金细化四个步骤,采用本发明的技术方案,步骤合理、细化效率高,大幅提高铝合金强韧性,且孕育高效、成本低廉,具有巨大的工业应用潜力和价值。

Description

一种利用金属玻璃细化铝合金的方法
技术领域
本发明涉及铝合金加工领域,具体涉及一种利用金属玻璃细化铝合金的方法。
背景技术
当今,随着航空航天、汽车、国防等高科技领域的高速发展,不仅要求结构材料轻量化,而且对其综合性能的要求也越来越高。铝合金是非常重要的结构材料和轻量化材料。随着科技和工业的发展,对轻质高强高韧铝合金结构材料的需求日益增大。无论是铸造铝合金还是变形铝合金都需要经过从熔体凝固形成铸态组织的过程。凝固组织直接影响后续的加工工序的效率和成本,最终关系产品在使用过程中的质量、寿命及全服役周期的成本等。因此,以液态和凝固组织调控为起点的组织调控是金属材料性能优化和强化的重要途径,同时贯穿合金设计、加工和制备的全流程。合金凝固组织的结构特征来源于晶体相从熔体中形核长大的过程,因此,凝固组织调控的重点是如何有目的的控制晶体相在熔体中的形核和长大。影响晶体相形核的方式主要是在熔体中添加形核孕育剂或者细化剂,促进熔体中的异质形核。在铸造铝合金生产过程中,铸态组织粗大,需要经孕育处理细化微观组织并提高综合力学性能。孕育处理技术不仅可以显著的提高铸造铝合金力学性能,还会对变形铝合金的塑性成型组织产生重要积极影响,从而满足对高性能铝合金的需求。
目前主流铝合金的孕育剂如:Al-Ti-B、Al-Ti-C、Al-Ti-C-B等孕育剂都含Ti元素,在对铝合金中含硅量大于4%的合金孕育(变质)处理时,Ti元素会与Si元素发生反应生成TiSi、TiSi2和Ti5Si3等相而产生毒化作用,组织细化效率大幅降低,Al-B变质剂对于不含Ti元素的Al-Si合金体系细化组织效果优异,但是在合金中Ti杂质含量高于0.04%时即发生如Al-Ti-B等变质剂一样的毒化作用,对合金体系适用范围窄,并且对铝合金的纯净度要求极高,适用范围有限。其他变质剂或者孕育剂如:Al-Sr、Al-Ce、Al-La等含有稀土成本较高,并且对Al-Si合金组织细化效果不显著。因此,急需开发一种适用于多种铝合金,尤其是适用于含Si量高于4%的Al-Si系合金孕育所需的,低成本、高效的铝合金孕育剂孕育细化铝合金的方法。
发明内容
本发明所要解决的问题是提供一种利用金属玻璃细化铝合金的方法。
本发明的目的可以通过以下技术方案实现:
一种利用金属玻璃细化铝合金的方法,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数大于等于5,每次熔炼2-4min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为1-3min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金;
上述孕育处理后的铝合金组织和力学性能均得到了优化:
a、在最佳的孕育工艺下(孕育剂添加量0.2wt.%,孕育时间1min),晶粒尺寸由原来的800-1000μm减小到了大约200μm,减小了近4倍;
b、在最佳的孕育工艺下(孕育剂添加量0.2wt.%,孕育时间1min),合金的屈服强度、抗拉强度和断裂应变由未孕育合金的170.33MPa、289.05MPa和13.70%,分别提高到了221.16MPa、338.14MPa和16.68%,分别比未孕育合金提高了29.84%、16.98%和21.75%。
优选的,所述铜模具的尺寸为7mm,所用金属模的尺寸为200mm×150mm×12mm。
优选的,所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃料棒放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在0.9-1.1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1-2mm,厚35-45μm非晶条带。
优选的,所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
优选的,所述步骤四中的保温时间为1min。
优选的,所述步骤四中非晶条带的质量百分比为0.2wt.%。
本发明的技术方案,利用金属玻璃即非晶合金的亚稳态结构和非晶晶化的物理特性,使用非晶合金作为孕育剂进行细化,非晶合金在孕育过程中成本比稀土变质剂低,大幅提高铝合金强韧性,且孕育高效、成本低廉,具有巨大的工业应用潜力和价值。
附图说明
图1是未孕育Al-Si-Mg合金的低倍铸态组织晶相图;
图2是Zr55Cu30Al10Ni5非晶0.1wt.%添加量和1min孕育时间孕育Al-Si-Mg合金的低倍铸态组织晶相图;
图3是Zr55Cu30Al10Ni5非晶0.1wt.%添加量和3min孕育时间孕育Al-Si-Mg合金的低倍铸态组织晶相图;
图4是Zr55Cu30Al10Ni5非晶0.2wt.%添加量和1min孕育时间孕育Al-Si-Mg合金的低倍铸态组织晶相图;
图5是Zr55Cu30Al10Ni5非晶0.2wt.%添加量和3min孕育时间孕育Al-Si-Mg合金的低倍铸态组织晶相图;
图6是未孕育Al-Si-Mg合金的高倍铸态组织晶相图;
图7是Zr55Cu30Al10Ni5非晶0.1wt.%添加量和1min孕育时间孕育Al-Si-Mg合金的高倍铸态组织晶相图;
图8是Zr55Cu30Al10Ni5非晶0.1wt.%添加量和3min孕育时间孕育Al-Si-Mg合金的高倍铸态组织晶相图;
图9是Zr55Cu30Al10Ni5非晶0.2wt.%添加量和1min孕育时间孕育Al-Si-Mg合金的高倍铸态组织晶相图;
图10是Zr55Cu30Al10Ni5非晶0.2wt.%添加量和3min孕育时间孕育Al-Si-Mg合金的高倍铸态组织晶相图;
图11是为Zr55Cu30Al10Ni5非晶合金孕育亚共晶Al-Si-Mg合金的拉伸试验数据表;
图12是未孕育合金和不同添加量的Zr55Cu30Al10Ni5非晶合金孕育处理不同时间亚共晶Al-Si-Mg合金的室温工程应力应变曲线图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1:
一种利用金属玻璃细化铝合金的方法,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数为5次,每次熔炼3min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为1min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金。
其中,所述铜模具的尺寸为7mm,所用金属模的尺寸为200mm×150mm×12mm。
其中,所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃料棒放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1mm,厚40μm非晶条带。
其中,所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
其中,所述步骤四中非晶条带的质量百分比为0.1wt.%。
Zr55Cu30Al10Ni5料棒对铝合金具有短时孕育效果更佳的作用,在添加0.1wt.%孕育细化1min处理铝合金时得到较好的力学性能,细化前的铝合金其屈服强度、抗拉强度和断裂应变分别为170.33MPa、289.05MPa和13.70%,细化后的铝合金其屈服强度、抗拉强度和断裂应变分别为218.62MPa、311.94MPa和16.32%,屈服强度、抗拉强度和断裂应变分别提高了28.35%、7.92%和19.12%。
实施例2:
一种利用金属玻璃细化铝合金的方法,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数为5次,每次熔炼3min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为3min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金。
其中,所述铜模具的直径为7mm,所用金属模的尺寸为200mm×150mm×12mm。
其中,所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃料棒放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1mm,厚40μm非晶条带。
其中,所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
其中,所述步骤四中非晶条带的质量百分比为0.1wt.%。
Zr55Cu30Al10Ni5料棒对铝合金具有短时孕育效果更佳的作用,在添加0.1wt.%孕育细化3min处理铝合金时得到较好的力学性能,细化前的铝合金其屈服强度、抗拉强度和断裂应变分别为170.33MPa、289.05MPa和13.70%,细化后的铝合金其屈服强度、抗拉强度和断裂应变分别为203.40MPa、302.74MPa和16.17%,屈服强度、抗拉强度和断裂应变分别提高了19.42%、4.74%和18.03%。
实施例3:
一种利用金属玻璃细化铝合金的方法,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数为5次,每次熔炼3min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为1min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金。
其中,所述铜模具的直径为7mm,所用金属模的尺寸为200mm×150mm×12mm。
其中,所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃料棒放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1mm,厚40μm非晶条带。
其中,所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
其中,所述步骤四中非晶条带的质量百分比为0.2wt.%。
Zr55Cu30Al10Ni5料棒对铝合金具有短时孕育效果更佳的作用,在添加0.2wt.%孕育细化1min处理铝合金时得到最佳的力学性能,细化前的铝合金其屈服强度、抗拉强度和断裂应变分别为170.33MPa、289.05MPa和13.70%,细化后的铝合金其屈服强度、抗拉强度和断裂应变分别为221.16MPa、338.14MPa和16.68%,屈服强度、抗拉强度和断裂应变分别提高了29.84%、16.98%和21.75%。
实施例4:
一种利用金属玻璃细化铝合金的方法,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数为5次,每次熔炼3min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为3min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金。
其中,所述铜模具的直径为7mm,所用金属模的尺寸为200mm×150mm×12mm。
其中,所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃料棒放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1mm,厚40μm非晶条带。
其中,所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
其中,所述步骤四中非晶条带的质量百分比为0.2wt.%。
Zr55Cu30Al10Ni5料棒对铝合金具有短时孕育效果更佳的作用,在添加0.2wt.%孕育细化3min处理铝合金时得到较好的力学性能,细化前的铝合金其屈服强度、抗拉强度和断裂应变分别为170.33MPa、289.05MPa和13.70%,细化后的铝合金其屈服强度、抗拉强度和断裂应变分别为216.33MPa、327.70MPa和14.65%,屈服强度、抗拉强度和断裂应变分别提高了27.01%、13.37%和12.09%。
图1-图5为添加不同含量的Zr55Cu30Al10Ni5非晶合金以及不同孕育时间处理亚共晶Al-7Si-0.3Mg合金的低倍铸态组织图。由图3可以看出,对比未孕育合金,添加不同量的Zr55Cu30Al10Ni5非晶合金在不同的孕育时间处理下,其对亚共晶Al-Si-Mg合金的组织影响都非常明显。如图1可以看出,未孕育处理合金主要由α-Al枝晶和共晶Si组成,其中α-Al枝晶尺寸大小以及分布都非常的不均匀,较粗大的α-Al枝晶尺寸大概在800-1000μm不等,枝晶非常发达,枝晶化非常严重。当添加0.1wt.%Zr系非晶孕育1min时,如图2所示,亚共晶Al-Si-Mg合金中的α-Al枝晶尺寸、形态以及分布都明显发生变化,由原来的尺寸大小不一且分布不均转变为较细小、尺寸差异不大且分布均匀的α-Al枝晶,且无粗大的α-Al枝晶分布在合金组织中,其尺寸低于400μm,表明添加0.1wt.%Zr系非晶对亚共晶Al-Si-Mg合金中的α-Al枝晶具有明显的细化效果。图3为添加0.1wt%Zr系非晶孕育3min的铸态组织图,由图可以看出,相比图2孕育1min,在孕育3min时,合金中的α-Al枝晶已经开始长大,变得更加的细长,且数量增多,枝晶化开始加剧。但也并未有出现尺寸较大且分布不均的粗大枝晶。由此可以得出,添加0.1wt.%Zr系非晶合金在孕育3min时其孕育效果已经开始衰退。在添加0.2wt.%Zr系非晶孕育1min时,如图4所示,Al-Si-Mg合金中的α-Al枝晶尺寸、形态以及分布发生了类似于添加0.1wt.%Zr系非晶孕育1min时的变化,但相比于添加0.1wt.%孕育1min的合金组织,添加0.2wt.%孕育1min的Al-Si-Mg合金中α-Al枝晶变得更加细小、尺寸差异更小以及分布更加均匀,且呈现的细长α-Al枝晶数量更少。在添加0.2wt.%孕育3min时(如图5),同图3添加0.1wt.%孕育3min的变化趋势一样,α-Al枝晶开始长大,且分布不均。也进一步证实添加Zr55Cu30Al10Ni5非晶合金在对亚共晶Al-Si-Mg合金孕育处理3min时已经开始出现衰退。即Zr系非晶孕育处理亚共晶Al-Si-Mg合金为1min孕育效果较佳。
图6-图10为添加不同含量的Zr55Cu30Al10Ni5非晶合金以及不同孕育时间处理亚共晶Al-Si-Mg合金的高倍铸态组织图。由图可以更加清晰直观的看出添加Zr系非晶之后亚共晶Al-Si-Mg合金中α-Al枝晶的典型演变过程。在未孕育处理的Al-Si-Mg合金中,α-Al枝晶臂粗大,尺寸差异明显,分布极不均匀,如图6所示。在添加0.1wt.%和0.2wt.%的Zr55Cu30Al10Ni5非晶合金孕育处理后,α-Al枝晶明显得到细化,尺寸差异较小且分布更加均匀。图7和9分别为添加0.1wt.%和0.2wt.%孕育1min的组织照片,其α-Al枝晶尺寸都明显变小,分布均匀。值得指出的是,在添加0.1wt.%孕育1min时,α-Al晶粒还表现出一定尺寸且细长的枝晶,当添加0.2wt.%的孕育1min时,α-Al枝晶开始变得规则,且尺寸更小,分布十分均匀。当添加0.1wt.%和0.2wt.%Zr系非晶孕育3min时,两种孕育处理的合金组织中都开始出现较大尺寸的α-Al枝晶,尺寸差异明显,且分布不均,此变化现象以及规律与低倍组织中α-Al晶粒的变化现象一样,并同样指出在孕育3min时,Zr系非晶的孕育效果已经开始出现衰退。在孕育处理1min时,能够得到较好的组织形貌,并且,在添加0.2wt.%孕育处理1min时α-Al枝晶形貌更加规则,枝晶化较弱,尺寸更小,此种组织的合金在受外力作用时不易产生应力集中,有利于合金力学性能的提升。
图11为Zr55Cu30Al10Ni5非晶合金孕育亚共晶Al-Si-Mg合金的拉伸试验数据。
图12为未孕育合金和不同添加量的Zr55Cu30Al10Ni5非晶合金孕育处理不同时间亚共晶Al-Si-Mg合金的室温工程应力应变曲线图。由图可以看出,孕育处理合金的屈服强度、抗拉强度和断裂应变均明显优于未孕育合金,其中,未孕育合金和经孕育处理后合金的具体拉伸性能数据如图11所示。未孕育亚共晶Al-Si-Mg合金的屈服强度、抗拉强度和断裂应变分别为170.33MPa、289.05MPa和13.7%,如图12中曲线a所示;当添加0.1wt.%Zr55Cu30Al10Ni5非晶合金孕育处理Al-Si-Mg合金1min时(如图12中曲线b),其室温屈服强度、抗拉强度和断裂应变分别为218.62MPa、311.94MPa和16.32%,分别比未孕育合金提高了28.35%、7.92%和19.12%;当孕育时间进一步提高到3min时,其室温拉伸曲线如图12中曲线c所示,孕育合金的屈服强度、抗拉强度和断裂应变分别为203.40MPa、302.74MPa和16.17%,分别比未孕育合金提高了19.42%、4.74%和18.03%,相比于孕育处理1min,在3min时,其屈服强度、抗拉强度和断裂应变都有所下降。当添加0.2wt.%Zr55Cu30Al10Ni5非晶合金孕育1min处理亚共晶Al-Si-Mg合金时,其室温拉伸曲线如图12曲线d所示,其屈服强度、抗拉强度和断裂应变分别为221.16MPa、338.14MPa和16.68%,分别比未孕育合金提高了29.84%、16.98%和21.75%;当孕育时间增加到3min时,其屈服强度、抗拉强度和断裂应变分别为216.33MPa、327.70MPa和14.65%,分别比未孕育合金提高了27.01%、13.37%和6.93%,此孕育时间处理合金的力学性能变化趋势与添加0.1wt.%孕育3min时合金力学性能的变化趋势一致,都有所下降。此外,都在孕育1min时屈服强度、抗拉强度和断裂应变较好,其中当添加0.2wt.%Zr55Cu30Al10Ni5非晶合金孕育1min时最好,屈服强度、抗拉强度和断裂应变分别为221.16MPa、338.14MPa和16.68%,分别比未孕育合金(170.33MPa、289.05MPa和13.7%)提高了29.84%、16.98%和21.75%。
基于上述,采用本发明的技术方案,显著细化了α-Al枝晶,并提高了铝合金的强塑性,金属玻璃加入亚共晶Al-Si-Mg合金熔体中迅速晶化成纳米尺寸晶化相,增加形核位置及形核率,大幅增加α-Al相的形核数量,得到尺寸更小,数量更多的α-Al晶粒,通过二维错配度公式计算出三种非晶合金晶化相与α-Al相的错配度值,Zr系非晶合金晶化后的Zr2Cu和ZrCu(B2)相,与结晶相α-Al的二维错配度值为4.68、5.56,都小于12,非晶合金晶化后的Zr2Cu、ZrCu(B2)晶化相能够作为α-Al枝晶的有效异质形核核心,细化α-Al相,孕育细化后的铝合金能够取得更佳的组织及综合力学性能。
显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (7)

1.一种利用金属玻璃细化铝合金的方法,其特征在于,包括以下步骤:
步骤一、金属玻璃的制备:
a、将Zr、Cu、Al、Ni表面氧化膜打磨干净,然后按比例配好并静置在盛放有无水酒精的烧杯中防止其氧化;
b、将配好的Zr、Cu、Al、Ni按照熔点由低至高依次叠放于水冷铜模坩埚中,以缩短高熔点金属熔化时间,并防止低熔点金属的挥发;
c、盖好炉盖,在正式熔炼前进行两次抽真空,每次抽真空都到6.0×10-3Pa并充入高纯Ar气以稀释残余氧气;
d、两次抽真空后,充入0.5个大气压的高纯度Ar气以稀释炉内残余的氧;
e、打开磁搅拌熔炼合金,为保证非晶合金成分的均匀性,需将熔炼好的合金反复翻转继续熔炼,熔炼次数大于等于5,每次熔炼2-4min;
f、将熔融状态下的合金液吸铸到水冷铜模坩埚下面的铜模具中进行快速冷却,得到金属玻璃棒料;
步骤二、非晶条带的制备:将反复熔炼得到的金属玻璃料棒放置于高真空中频感应炉中进行重熔,然后在高纯氩气保护条件下喷射在3000r/min的高速铜辊轮模具上制成非晶薄带;
步骤三、未细化铝合金的制备:
a、将预先称量好的Al-Si-Mg合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将合金液浇铸到金属型模具中,得到未孕育的铝合金;
步骤四、铝合金细化:
a、将预先称量好的未孕育铝合金放置于坩埚中并随坩埚一起放入坩埚式电阻熔炼炉内,升温至1023K;
b、待未孕育铝合金完全熔化后并保温30min,再加入一定量的清渣剂对合金液进行精炼除渣,打渣处理后保温10min;
c、将制得的非晶条带剪碎后的碎片加入到合金液中,并均匀搅拌,保温,保温时间为1-3min;
d、对混合液进行搅拌,搅拌完毕后浇铸到金属型模具内,得到细化完成的铝合金;
上述孕育处理后的铝合金组织和力学性能均得到了优化:
a、在最佳的孕育工艺下(孕育剂添加量0.2wt.%,孕育时间1min),晶粒尺寸由原来的800-1000μm减小到了大约200μm,减小了近4倍;
b、在最佳的孕育工艺下(孕育剂添加量0.2wt.%,孕育时间1min),合金的屈服强度、抗拉强度和断裂应变由未孕育合金的170.33MPa、289.05MPa和13.70%,分别提高到了221.16MPa、338.14MPa和16.68%,分别比未孕育合金提高了29.84%、16.98%和21.75%。
2.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述铜模具的尺寸为7mm,所用金属模的尺寸为200mm×150mm×12mm。
3.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述非晶条带的制备具体包括以下步骤:
a、将金属玻璃棒料放置于石英坩埚中,抽真空到6.0×10-3Pa;
b、向炉中充入0.6个大气压的Ar气,再向喷注瓶中充入1.6个大气压的Ar气,使得压差在0.9-1.1个大气压;
c、当高速铜辊轮模具转速为3000r/min后打开中频感应电源,熔化棒料,最后将熔化的合金液喷注在高速铜辊轮模具上,制得宽为1-2mm,厚35-45μm非晶条带。
4.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述金属玻璃料棒为Zr55Cu30Al10Ni5料棒。
5.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述铝合金为Al-Si-Mg。
6.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述步骤四中的保温时间为1min。
7.根据权利要求1所述的一种利用金属玻璃细化铝合金的方法,其特征在于:所述步骤四中非晶条带的质量百分比为0.1-0.2wt.%。
CN201710356698.4A 2017-05-19 2017-05-19 一种利用金属玻璃细化铝合金的方法 Pending CN107119201A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201710356698.4A CN107119201A (zh) 2017-05-19 2017-05-19 一种利用金属玻璃细化铝合金的方法
CN201711172475.9A CN107937743B (zh) 2017-05-19 2017-11-22 一种快速高效强化铝合金拉伸性能的方法
CN201711173688.3A CN107904421A (zh) 2017-05-19 2017-11-22 一种利用纳米晶细化铝合金并提高强韧性的方法
CN201711173012.4A CN107904418A (zh) 2017-05-19 2017-11-22 一种利用金属玻璃细化并强化近共晶铝硅合金的方法
CN201711173713.8A CN107904422A (zh) 2017-05-19 2017-11-22 一种利用FeBSi金属玻璃强化铝硅合金拉伸性能的方法
CN201711173015.8A CN107904419A (zh) 2017-05-19 2017-12-20 一种新的利用非晶合金强化铝合金的高温拉伸性能的方法
CN201711416021.1A CN107937747A (zh) 2017-05-19 2017-12-25 一种利用金属玻璃细化铝合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710356698.4A CN107119201A (zh) 2017-05-19 2017-05-19 一种利用金属玻璃细化铝合金的方法

Publications (1)

Publication Number Publication Date
CN107119201A true CN107119201A (zh) 2017-09-01

Family

ID=59728418

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710356698.4A Pending CN107119201A (zh) 2017-05-19 2017-05-19 一种利用金属玻璃细化铝合金的方法
CN201711416021.1A Pending CN107937747A (zh) 2017-05-19 2017-12-25 一种利用金属玻璃细化铝合金的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201711416021.1A Pending CN107937747A (zh) 2017-05-19 2017-12-25 一种利用金属玻璃细化铝合金的方法

Country Status (1)

Country Link
CN (2) CN107119201A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904422A (zh) * 2017-05-19 2018-04-13 吉林大学 一种利用FeBSi金属玻璃强化铝硅合金拉伸性能的方法
CN108774694A (zh) * 2018-06-12 2018-11-09 吉林大学 自孕育剂及其制备方法和亚共晶铝硅合金半固态浆料的制备方法
CN108998703A (zh) * 2018-07-25 2018-12-14 吉林大学 自孕育棒及其制备方法和亚共晶铝硅合金半固态浆料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060588A (zh) * 2013-02-04 2013-04-24 吉林大学 用于铸造铝合金的非晶态Zr基合金孕育剂及其制备方法
CN103111609B (zh) * 2013-02-04 2015-08-26 吉林大学 一种非晶态合金孕育处理铸造铝合金方法
CN104762568A (zh) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 一种铝合金细化剂材料及其制备方法
CN104911386A (zh) * 2015-04-09 2015-09-16 中信戴卡股份有限公司 一种细化铝合金的方法及细化的铝合金

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904422A (zh) * 2017-05-19 2018-04-13 吉林大学 一种利用FeBSi金属玻璃强化铝硅合金拉伸性能的方法
CN107904421A (zh) * 2017-05-19 2018-04-13 吉林大学 一种利用纳米晶细化铝合金并提高强韧性的方法
CN107904418A (zh) * 2017-05-19 2018-04-13 吉林大学 一种利用金属玻璃细化并强化近共晶铝硅合金的方法
CN108774694A (zh) * 2018-06-12 2018-11-09 吉林大学 自孕育剂及其制备方法和亚共晶铝硅合金半固态浆料的制备方法
CN108774694B (zh) * 2018-06-12 2019-11-15 吉林大学 自孕育剂及其制备方法和亚共晶铝硅合金半固态浆料的制备方法
CN108998703A (zh) * 2018-07-25 2018-12-14 吉林大学 自孕育棒及其制备方法和亚共晶铝硅合金半固态浆料的制备方法

Also Published As

Publication number Publication date
CN107937747A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN102978460B (zh) Al-Fe-Ni-RE铝合金及其制备方法和电力电缆
CN110453106A (zh) 一种非真空下引连铸铜铁合金扁锭的生产工艺
CN102534330B (zh) 高强度铸造镁合金的制备方法
CN103981386A (zh) 亚共晶和共晶铝硅合金变质及细化的方法
CN106148787B (zh) 适于砂型铸造的镁锂合金及其制备方法
CN103103388B (zh) Al-Fe-Cr-RE铝合金及其制备方法和电力电缆
CN102978478B (zh) Al-Fe-Mn-RE铝合金及其制备方法和电力电缆
CN107119201A (zh) 一种利用金属玻璃细化铝合金的方法
CN107904419A (zh) 一种新的利用非晶合金强化铝合金的高温拉伸性能的方法
CN105568122A (zh) φ280mm的30CrMo圆管坯中心偏析控制方法
CN114540685B (zh) 一种抗时效软化高强高模耐腐蚀的双相镁锂合金及制备方法
CN102978453B (zh) Al-Fe-In-RE铝合金及其制备方法和电力电缆
CN103103397B (zh) Al-Fe-Cd-RE铝合金及其制备方法和电力电缆
CN107177748A (zh) 一种利用非晶合金孕育细化铝合金的搅拌分散工艺
CN102978456B (zh) Al-Fe-Li-RE铝合金及其制备方法和电力电缆
CN103014419B (zh) Al-Fe-Ge-RE铝合金及其制备方法和电力电缆
CN109628779B (zh) 一种细化高合金含量Mg-Al-Zn镁合金共晶相方法
CN112110450A (zh) 一种冶金级硅中杂质硼去除的方法
CN116287807A (zh) 一种短流程合金锻件的制备方法
CN111593244A (zh) 一种新型多元耐蚀镁合金及其制备方法
CN106591635A (zh) 一种稀土Y变质AlSi9Cu2铸造铝合金的方法
CN109943760A (zh) 一种高强高塑稀土镁合金及其制备方法
CN112746187B (zh) 一种大尺寸的TiAl基合金籽晶的制备方法
CN109468548A (zh) 一种宽过冷液相区锆基非晶合金
CN107177747A (zh) 一种利用非晶合金孕育细化铝合金的添加工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170901