CN107119130A - 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用 - Google Patents

用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用 Download PDF

Info

Publication number
CN107119130A
CN107119130A CN201710348819.0A CN201710348819A CN107119130A CN 107119130 A CN107119130 A CN 107119130A CN 201710348819 A CN201710348819 A CN 201710348819A CN 107119130 A CN107119130 A CN 107119130A
Authority
CN
China
Prior art keywords
dna
dna fragmentation
seq
nucleotide sequence
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710348819.0A
Other languages
English (en)
Other versions
CN107119130B (zh
Inventor
杨秀清
陈彦梅
王保玉
袁宗本
吴瑞薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Hengrui Resource Recycling Technology Co.,Ltd.
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201710348819.0A priority Critical patent/CN107119130B/zh
Publication of CN107119130A publication Critical patent/CN107119130A/zh
Application granted granted Critical
Publication of CN107119130B publication Critical patent/CN107119130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种煤地质环境微生物菌群的变性梯度凝胶电泳(DGGE)分子检测中煤地质环境细菌专用的物种DNA Marker,属于微生物分子生态学领域。本发明用于检测煤地质微生物细菌物种的DNA Marker,该DNA Marker由11条DNA片段a‑k组成,DNA片段a的核苷酸序列如SEQ.ID.NO.1所示,DNA片段b的核苷酸序列如SEQ.ID.NO.2所示,DNA片段c的核苷酸序列如SEQ.ID.NO.3所示,DNA片段d的核苷酸序列如SEQ.ID.NO.4所示,DNA片段e的核苷酸序列如SEQ.ID.NO.5所示,DNA片段f的核苷酸序列如SEQ.ID.NO.6所示,DNA片段g的核苷酸序列如SEQ.ID.NO.7所示,DNA片段h的核苷酸序列如SEQ.ID.NO.8所示,DNA片段i的核苷酸序列如SEQ.ID.NO.9所示,DNA片段j的核苷酸序列如SEQ.ID.NO.10所示,DNA片段k的核苷酸序列如SEQ.ID.NO.11所示。

Description

用于检测煤地质微生物细菌物种的DNA Marker及制备方法和 应用
技术领域
本发明涉及一种煤地质环境微生物菌群的变性梯度凝胶电泳(DGGE)分子检测中煤地质环境细菌专用的物种DNA Marker,属于微生物分子生态学领域。
背景技术
煤地质环境微生物是指煤层产出水样或煤样中检测到的微生物或上述两样经富集培养后检测到的微生物,主要分为细菌和古菌两大类。它们主要参与降解煤产甲烷的过程中。煤层气作为一种清洁能源,在世界上备受关注,根据成因不同,煤层气可分为热成因气和生物成因气。生物成因气又可分为原生生物成因气和次生生物成因气,原生生物成因气形成于煤化作用的早期阶段,难于大量保存,目前探测到的生物成因煤层气多为次生生物气,次生生物气是由产甲烷菌等厌氧菌(包括细菌及古菌等)代谢煤或煤层物质产生的以甲烷为主要成分的气体。目前,生物成因煤层气具体的生成过程及机理还不是十分清楚,唯一确定的是产甲烷的最后一步,它是由产甲烷古菌将CO2+H2、乙酸和一些甲基化物质转化为甲烷。国内外研究学者们在生物成因气的产气机理上形成了普遍的共识,即一些发酵细菌和产氢气产乙酸菌分解煤层有机质产生CO2、H2、乙酸等中间代谢产物,最后,产甲烷古菌可利用这些中间代谢产物作为能源、碳源产生甲烷。研究煤层气相关微生物多样性及其活性与功能对煤层气再生和揭示生物降解煤具有重要意义。目前研究发现,参与产气过程中的产甲烷古菌主要有Methanosarcina spp、Methanolobus、Methanobacterium等,发酵细菌及产氢气产乙酸菌主要有Bacteroidales、Firmicutes、Acetobacterium spp等。
在以往的几十年,国内外学者主要基于16S rRNA的未培微生物研究技术来分析煤层气相关微生物的多样性,常见于克隆文库、末端限制性片段长度多样性(Terminal-restriction fragment length polymorphism,T-RFLP)、高通量测序、变性梯度凝胶电泳(Denatured Gradient Gel Electrophoresis,DGGE)等分析。各项分析技术都有其特有的局限性。其中,克隆文库建库库容量有限,往往不能准确地反应原始样品中微生物的多样性。T-RFLP可能会对微生物的多样性造成过多估计,准确性较差。高通量测序虽然准确性高,但针对微生物多样性分析的周期较长,耗时又耗钱,成本较高。
DGGE技术在微生物多样性的研究应用中表现出了其可靠性、精确性、高效性等优点,但是,对微生物多样性的分析过程中仍需依赖于DGGE条带的克隆及测序分析,需要一定的实验周期,因而不能够快速直观地对DGGE条带所属的种属地位进行表征。在生命科学研究领域,DNA Marker常作为一种分子标记运用在分子生物学的各种电泳过程中,以便直观地对样品进行分析。一般的DNA Marker是由分子量不同的DNA片段混合组成,常应用在分子生物学实验中。这种DNA Marker的使用主要是通过其大小粗略估算样品DNA分子量的大小,如DL2000、100bp、Lambda DNA/HindIII等。在微生物多样性分析方面,DNA Marker可以作为个体特异性的遗传标记。因此,需要一种DNA Marker能够应用在微生物菌群PCR-DGGE的快速检测中。但是截至目前为止,还没有有关煤地质环境微生物菌群PCR-DGGE检测中DNAMarker的研究报道。综上所述,获得煤地质环境微生物菌群分子检测的DNA Marker对应用PCR-DGGE检测煤地质环境微生物菌群多样性及其研究微生物降解煤产生煤层气的机制具有重要意义。
发明内容
为实现高效快速且又经济有效地应用PCR-DGGE技术检测煤地质环境微生物菌群的多样性,本发明公开了一种煤地质微生物PCR-DGGE检测中细菌物种的DNA Marker。
本发明是通过以下方法实现的:
本发明用于检测煤地质微生物细菌物种的DNA Marker,该DNA Marker由11条DNA片段a-k组成,DNA片段a的核苷酸序列如SEQ.ID.NO.1所示,DNA片段b的核苷酸序列如SEQ.ID.NO.2所示,DNA片段c的核苷酸序列如SEQ.ID.NO.3所示,DNA片段d的核苷酸序列如SEQ.ID.NO.4所示,DNA片段e的核苷酸序列如SEQ.ID.NO.5所示,DNA片段f的核苷酸序列如SEQ.ID.NO.6所示,DNA片段g的核苷酸序列如SEQ.ID.NO.7所示,DNA片段h的核苷酸序列如SEQ.ID.NO.8所示,DNA片段i的核苷酸序列如SEQ.ID.NO.9所示,DNA片段j的核苷酸序列如SEQ.ID.NO.10所示,DNA片段k的核苷酸序列如SEQ.ID.NO.11所示。
本发明用于检测煤地质微生物细菌物种的DNA Marker制备方法,包括以下步骤:
(1)提取高阶煤层产出水样的富集培养液基因组DNA,以提取的微生物基因组DNA为模板,第一次PCR扩增细菌16S rDNA V3区序列,将第一次PCR扩增产物进行琼脂糖凝胶电泳分析,并回收目标DNA片段;
(2)以回收的目标DNA片段为模板进行第二次PCR扩增,将第二次PCR扩增产物进行DGGE分析,从DGGE胶上切下的DNA片段为细菌16S rDNA V3区DNA片段;
(3)以步骤(2)DGGE胶上切下的细菌16S rDNA V3区DNA片段为模板经第三次PCR扩增,回收第三次PCR扩增产物;
(4)将步骤(3)的第三次PCR扩增产物克隆到T载体上获得连接产物;
(5)将经步骤(4)获得的连接产物转入宿主菌,筛选阳性重组子;
(6)以阳性重组子作为模板进行第四次PCR扩增;
(7)将步骤(6)第四次PCR扩增产物再次进行DGGE分析,验证条带位置,条带位置正确的DNA片段作为煤地质微生物细菌物种DNA Marker组成中的DNA片段a;
(8)重复步骤(1)至(7),制备煤地质微生物细菌物种DNA Marker组成中的DNA片段b-k;
(9)步骤(7)和(8)的组合构成煤地质微生物细菌物种DNA Marker。
优选地,本发明步骤(6)中第四次PCR扩增中所使用的模板浓度为8~12ng/μL。
优选地,本发明所述步骤(2)中的从DGGE胶上切下的DNA片段用30μL去离子水在4℃条件下浸泡过夜,取浸泡液作为步骤(3)的模板。
优选地,本发明所述步骤(4)中T载体为北京全式金生物技术有限公司的载体。
优选地,本发明所述步骤(5)中宿主菌为大肠杆菌DH5α。
优选地,本发明所述步骤(1)中第一次PCR扩增和步骤(3)中第三次PCR扩增时用到的引物为338f/518r;所述步骤(2)中第二次PCR扩增和步骤(6)中第四次PCR扩增时用到的引物为338f-GC/518r。
优选地,本发明所述引物338f/518r和338f-GC/518r的序列为:
338f:ACTCCTACGGGAGGCAGCAG;
338f-GC:CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGACTCCTACGGGAGGCAGCAG;
518r:ATTACCGCGGCTGCTGG。
本发明用于检测煤地质微生物细菌物种的DNA Marker制备方法的应用,将物种DNA Marker与6×DNA上样缓冲液以体积比5:1混合,用于煤地质微生物PCR-DGGE细菌物种的检测。
本发明技术方案中提到的PCR-DGGE检测中的DNA Marker并非DNA片段大小的尺度,而是通过其物种特异性序列(16S rDNA的可变区V3区,在细菌鉴定与分类的应用中,能将除肠杆菌科以外的细菌鉴别至属的水平)来精准表征样品DNA所属的菌属地位,Marker的每条组成条带都为单一序列,代表特定的菌种,仅限于在变性梯度凝胶电泳中使用,本发明公开应用于PCR-DGGE检测中的DNA Marker具有条带锐利、条带亮度均一、Marker组成条带数不受限制、种属特异性等优点。此外,本发明公开的DNA Marker克隆在了载体上,可以通过培养大肠杆菌得到大量质粒,然后通过PCR法获得,生产重复性高、稳定性好,此种Marker的使用可以加速实验进程,减短实验耗时,尤其是样品量较大的实验。
附图说明
图1为本发明使用高阶煤层产出水样的富集培养液基因组DNA提取结果0.7%琼脂糖凝胶电泳图,
图中为4种富集培养方式,分别为甲基型产甲烷培养(5),乙基型产甲烷培养(7),H2-CO2型产甲烷培养(9),对照培养(11),下同,M为Lambda DNA/HindIII;
图2为本发明使用高阶煤层产出水样的富集培养液基因组DNA进行PCR扩增细菌16S rDNA V3区的结果1.5%琼脂糖凝胶电泳图,
图中M为100bp;
图3为本发明使用高阶煤层产出水样富集培养液基因组DNA进行PCR扩增细菌16SrDNA V3区扩增产物的DGGE图谱,
DGGE的电泳条件为预电泳200V,5min,然后85V,13h,胶浓度为10%,变性范围为40%-60%,电泳液温度为60℃,采用的设备为美国BIO-RAD公司生产的D-Code UniversalMutation Detection System(Bio-Rad,USA);
图4为本发明筛选阳性克隆子菌落PCR结果1.5%琼脂糖凝胶电泳图,
图中K1为空白对照,K2为克隆片段,KL为以蓝斑为模板的阳性对照;
图5为本发明筛到的阳性克隆子质粒提取结果0.7%琼脂糖凝胶电泳图;
图6为本发明筛选部分DGGE Marker组成条带的DGGE图谱,
图中c、e、f、i、k分别为DGGE Marker的组成条带,DGGE的电泳条件为预电泳200V,5min,然后85V,13h,胶浓度为10%,变性范围为40%-60%,电泳液温度为60℃,采用的设备为美国BIO-RAD公司生产的D-Code Universal Mutation Detection System(Bio-Rad,USA);
图7为本发明制备的煤地质微生物PCR-DGGE检测中细菌物种DNA Marker(命名为CBMbac1)的DGGE电泳图谱,以及各序列菌属相似性比对结果,
图中11个条带分别标记为a、b、c、d、e、f、g、h、i、j、k。DGGE的电泳条件为预电泳200V,5min,然后85V,13h。胶浓度为10%,变性范围为40%-60%,电泳液温度为60℃,采用的设备为美国BIO-RAD公司生产的D-Code Universal Mutation Detection System(Bio-Rad,USA);
图8为应用本发明制备的细菌物种DNA Marker(CBMbac1)对其他类型富集培养样品进行检测的DGGE电泳图谱,
图中CBMbac1为本发明制备的用于检测煤地质细菌物种的DNA Marker,其他两个泳道分别为甲基型产甲烷培养样品与乙基型产甲烷培养样品,
DGGE的电泳条件为预电泳200V,5min,然后85V,13h。胶浓度为10%,变性范围为40%-60%,电泳液温度为60℃,采用的设备为美国BIO-RAD公司生产的D-Code UniversalMutation Detection System(Bio-Rad,USA)。
具体实施方式
实施例1
用于检测煤地质微生物细菌物种的DNA Marker,该DNA Marker由11条DNA片段a-k组成,DNA片段a的核苷酸序列如SEQ.ID.NO.1所示,DNA片段b的核苷酸序列如SEQ.ID.NO.2所示,DNA片段c的核苷酸序列如SEQ.ID.NO.3所示,DNA片段d的核苷酸序列如SEQ.ID.NO.4所示,DNA片段e的核苷酸序列如SEQ.ID.NO.5所示,DNA片段f的核苷酸序列如SEQ.ID.NO.6所示,DNA片段g的核苷酸序列如SEQ.ID.NO.7所示,DNA片段h的核苷酸序列如SEQ.ID.NO.8所示,DNA片段i的核苷酸序列如SEQ.ID.NO.9所示,DNA片段j的核苷酸序列如SEQ.ID.NO.10所示,DNA片段k的核苷酸序列如SEQ.ID.NO.11所示。
具体制备方法包括以下步骤:
1.提取高阶煤层产出水样的H2+CO2类型及对照富集培养液中基因组DNA,选用2套引物进行PCR扩增;
1.1基因组DNA提取步骤见专利文献CN2016103727233,基因组DNA 0.7%琼脂糖凝胶验证图谱如附图1所示;
1.2第一次PCR扩增,得到的PCR产物用中科瑞泰(北京)生物科技有限公司的琼脂糖凝胶DNA回收试剂盒纯化回收,-20℃保存备用,PCR反应在PTC-200,Bio-Rad,USA PCR仪上运行;
1.2.1 PCR反应体系:
1.2.2 PCR反应程序为:95℃预变性5min,95℃30s,55℃30s,72℃45s,30个循环,72℃10min,10℃for ever,
1.2.3引物序列如下:
338f:ACTCCTACGGGAGGCAGCAG
518r:ATTACCGCGGCTGCTGG
1.3上述纯化回收的DNA片段再次进行PCR扩增,即第二次PCR扩增,PCR扩增产物1.5%琼脂糖凝胶验证图谱如附图2所示。得到的PCR扩增产物于-20℃条件下保存备用,PCR反应在PTC-200,Bio-Rad,USA PCR仪上运行;
1.3.1 PCR反应体系:
1.3.2 PCR反应程序为:95℃预变性5min,95℃30s,55℃30s,72℃45s,30个循环,72℃10min,10℃for ever,
1.3.3引物序列如下:
338f-GC:CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGACTCCTACGGGAGGCAGCAG
518r:ATTACCGCGGCTGCTGG
2.DGGE分析:
2.1选择聚丙烯酰胺凝胶胶浓度为10%,胶变性范围为40%~60%,取40%、60%胶各18ml,分别加入50μL的TEMED及40μL的10%过硫酸铵,梯度混合制胶,夏天室温凝固,冬天可放在37℃培养箱里凝固,若室温凝固,凝胶时间至少3h;
2.2待胶凝固完全之后,拔掉梳子,将整个板子安装在DGGE支架上,将安装有板子的DGGE支架放入电泳槽中,清洗胶孔,接通电源,待电泳液温度上升至60℃时,200V预电泳5min,用50微升微量进样器快速上样,PCR产物上样量为45-50μL,于60℃、85V条件下电泳13h;
2.3电泳完毕后,将胶放入3×GelRed染液中染色30min左右,拍照,DGGE图谱如附图3所示;
2.4将11条特异性目的条带切下,放入无菌的EP管中,编号;
2.5用去离子水洗涤胶条,并将胶条弄碎成小段,加入30μL去离子水浸泡,4℃过夜;
2.6使用不含GC夹的引物再次进行PCR扩增,即第三次PCR扩增。得到的PCR产物用中科瑞泰(北京)生物科技有限公司的琼脂糖凝胶DNA回收试剂盒纯化回收,-20℃保存备用;
2.6.1 PCR反应体系:
2.6.2 PCR反应程序为:95℃预变性5min,95℃30s,55℃30s,72℃30s,30个循环,72℃10min,10℃for ever,
2.6.3引物序列如下:
338f:ACTCCTACGGGAGGCAGCAG
518r:ATTACCGCGGCTGCTGG
3.TA克隆转化,上述纯化回收的DNA片段的TA连接方法按北京全式金生物技术有限公司的Cloning Kit进行;
3.1克隆反应体系:PCR产物:0.5~4μL;Cloning Vector:1μL。轻轻混合,25℃反应10min,反应结束后,将PCR管置于冰上,将连接产物加入50μL的Trans1-T1刚解冻的感受态细胞中,轻弹混匀,冰浴30min,42℃热激30s,立即置于冰上2min,加入250μL的LB培养基,200rpm、37℃培养1h。在此期间,取8μL的500mM IPTG和40μL的20mg/ml X-gal混合,均匀地涂布在Amp+抗性的LB固体平板上,使IPTG和X-gal充分吸收。4000rpm离心菌液1min,弃掉部分上清,悬浮菌体,涂布在准备好的平板上,37℃恒温培养12h左右;
3.1.1使用的LB培养基配方(1L):胰蛋白胨10g,氯化钠5g,酵母提取物5g,琼脂粉15g。使用的感受态细胞为DH5α;
3.2使用菌落PCR的方法鉴定阳性克隆;
3.2.1挑取白色单克隆菌落于Amp+抗性的LB固体平板上备份菌种后,放入盛有10μL去离子水的EP管中,沸水浴煮样5min;
3.2.2取2μL沸水浴煮过的样液作模板进行PCR扩增,设阳性对照(以蓝色单克隆菌落为模板)及空白对照(以去离子水为模板);
3.2.2.1 PCR反应体系:
3.2.2.2 PCR反应程序为:95℃预变性5min,95℃30s,55℃30s,72℃45s,30个循环,72℃10min,10℃for ever,
3.2.2.3引物序列如下:
M13R:CAGGAAACAGCTATGACC
M13F:TGTAAAACGACGGCCAGT
3.2.3 PCR产物于1.5%琼脂糖凝胶验证大小,片段大小在400-500bp之间的克隆子视为阳性克隆,PCR产物1.5%琼脂糖凝胶验证图谱如附图4所示;
3.2.4挑取确定的阳性克隆接种于5mL的LB液体培养基(接种前加入5μL 50mg/mL的Amp)中,37℃,200rmp培养12~14h,用生工的SanPrep柱式质粒DNA小量抽提试剂盒提取质粒,溶于50μL的去离子水中,-20℃保存备用。其中,提取质粒的0.7%琼脂糖凝胶验证图谱如附图5所示;
3.2.4.1使用的LB液体培养基配方(1L):胰蛋白胨10g,氯化钠5g,酵母提取物5g。
4.再次进行DGGE分析,验证条带在DGGE胶片上的位置,条带在DGGE图谱上与模板条带电泳行为一致的,其相应质粒送出测序,测序结果提交至NCBI,在线比对确定序列的菌属地位;
4.1酶标仪测提取质粒的浓度,用去离子水稀释质粒浓度至25ng/μL左右,以稀释质粒为模板进行PCR扩增,即第四次PCR扩增;
4.1.1 PCR反应体系:
4.1.2 PCR反应程序为:95℃预变性5min,95℃30s,55℃30s,72℃45s,30个循环,72℃10min,10℃for ever,
4.1.3引物序列如下:
338f-GC:CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGACTCCTACGGGAGGCAGCAG
518r:ATTACCGCGGCTGCTGG
4.2 PCR扩增产物用于DGGE上样分析,DGGE电泳过程参照具体实施方案1中的2.1、2.2、2.3进行,DGGE图谱上条带电泳行为与模板条带电泳行为一致者则视为目的阳性克隆子。验证的DGGE图谱如附图6所示。此阳性克隆子的质粒送至上海华大基因科技有限公司测序;
4.3测序结果提交至NCBI,在线比对确定序列的菌属地位;
5.制作煤地质微生物PCR-DGGE检测中细菌物种的DNA Marker;
5.1以混合质粒为模板进行PCR扩增,各质粒模板量控制在8-12ng/μL范围内,扩增体系、条件、所用引物参照具体实施方案1中步骤4.1.1、4.1.2、4.1.3。
5.2 PCR扩增产物与6×DNA Loading buffer以体积比5:1混合均匀,即获得DNAMarker,制备好的DNA Marker用于DGGE上样分析,DGGE电泳过程参照具体实施方案1中的步骤2.1、2.2、2.3,DGGE图谱如附图7所示;
6.结合每条DNA Marker条带所代表的菌属地位,对制备的PCR-DGGE检测中DNAMarker进行命名,本发明专利制备的DNA Marker命名为CBMbac1。
实施例2
一种用于检测煤地质微生物细菌物种的DNA Marker的制备方法,包括以下步骤:
1.提取产出水样的甲基型产甲烷类型及乙基型产甲烷类型富集培养液中的基因组DNA,选用2套引物进行PCR扩增,基因组提取及PCR扩增参照具体实施方案1中的1.1、1.2、1.3,基因组DNA 0.7%琼脂糖凝胶电泳验证图谱如附图1所示。
2.DGGE分析:
2.1选择聚丙烯酰胺凝胶胶浓度为10%,胶变性范围为40%~60%,取40%、60%胶各18ml,分别加入50μL的TEMED及40μL的10%过硫酸铵,梯度混合制胶,夏天室温凝固,冬天可放在37℃培养箱里凝固,若室温凝固,凝胶时间至少3h;
2.2待胶凝固完全之后,拔掉梳子,将整个板子安装在DGGE支架上,将安装有板子的DGGE支架放入电泳槽中,清洗胶孔,接通电源,待电泳液温度上升至60℃时,200V预电泳5min,用50微升微量进样器快速上样,上样样品为产出水的甲基型产甲烷富集培养样与乙基型产甲烷富集培养样的细菌V3区PCR扩增产物及具体实施方案1中制备的细菌DNAMarker。产出水富集培养样的细菌V3区PCR扩增产物及细菌DNA Marker上样量均为45-50μL。于60℃、85V条件下电泳13h;
2.3电泳完毕后,将胶放入3×GelRed染液中染色30min左右,拍照,DGGE图谱如附图8所示;
2.4结果分析:如附图8中所示,本专利发明制备的DNA Marker部分组成条带与样品所含的部分条带一一对应,初步认为样品中与Marker对应的条带为Marker组成条带相对应的菌属,即甲基型产甲烷富集培养样与乙基型产甲烷富集培养样中细菌的菌群结构包含本专利发明制备Marker所对应的部分菌属。
3.样品条带序列分析:
3.1将甲基型产甲烷及乙基型产甲烷富集培养样品中与制备的细菌DNA Marker位于同一位置的条带切下,放入无菌的EP管中,编号;
3.2用去离子水洗涤胶条,并将胶条弄碎成小段,加入30μL去离子水浸泡,4℃过夜;
3.3使用不含GC夹的引物再次进行PCR扩增,PCR扩增反应体系、条件及引物参照具体实施方案1中的2.6.1、2.6.2及2.6.3。得到的PCR产物用中科瑞泰(北京)生物科技有限公司的琼脂糖凝胶DNA回收试剂盒纯化回收,回收的DNA片段送至上海华大基因科技有限公司进行测序;
3.测序结果提交至NCBI,在线比对确定序列的菌属地位,经比对分析,样品中与Marker位于同一位置的条带所属菌属地位与对应的Marker相同,且菌属相似性均大于97%。证明了甲基型产甲烷富集培养样与乙基型产甲烷富集培养样中细菌的菌群结构确实包含了本专利发明制备Marker所对应的部分菌属。即甲基型产甲烷富集培养样液中含有的细菌菌属有Enterococcus、Parabacteroides、Fusobacterium、Morganella、Citrobacter、Raoultella、Clostridium、Acetoanaerobium。乙基型产甲烷富集培养样中细菌菌属组成包含有Enterococcus、Parabacteroides、Fusobacterium、Morganella、Citrobacter、Clostridium、Stenotrophomonas、Acetoanaerobium。
SEQUENCE LISTING
<110> 山西大学
<120> 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用
<130> .
<160> 11
<170> PatentIn version 3.5
<210> 1
<211> 198
<212> DNA
<213> Enterococcus
<400> 1
actcctacgg gaggcagcag tagggaatct tcggcaatgg acgaaagtct gaccgagcaa 60
cgccgcgtga gtgaagaagg ttttcggatc gtaaaactct gttgttagag aagaacaagg 120
atgagagtaa aatgttcatc ccttgacggt atctaaccag aaagccacgg ctaactacgt 180
gccagcagcc gcggtaat 198
<210> 2
<211> 192
<212> DNA
<213> Parabacteroides
<400> 2
attaccgcgg ctgctggcac ggagttagcc gatccttatt ctcagggtac atacaaaaca 60
ggacacgtcc tgaactttat tcccctgcaa aagaagttta cgaaccatag atccttcttc 120
cttcacgcga cttggctggt tcaggctccc gcccattgac caatattcct cactgctgcc 180
tcccgtagga gt 192
<210> 3
<211> 192
<212> DNA
<213> Parabacteroides
<400> 3
attaccgcgg ctgctggcac ggagttagcc gatccttatt ctcagggtac atacaaaaca 60
ggacacgtcc tgcactttat tcccctgcaa aagaagttta cgaaccatag atccttcttc 120
cttcacgcga cttggctggt tcaggctccc gcccattgac caatattcct cactgctgcc 180
tcccgtagga gt 192
<210> 4
<211> 176
<212> DNA
<213> Fusobacterium
<400> 4
actcctacgg gaggcagcag tggggaatat tggacaatgg accaaaagtc tgatccagca 60
attctgtgtg cacgatgaag tttttcggaa tgtaaagtgc tttcagttgg gaagaagtca 120
gtgacggtac caacagaaga agcgacggct aaatacgtgc cagcagccgc ggtaat 176
<210> 5
<211> 197
<212> DNA
<213> Morganella
<400> 5
attaccgcgg ctgctggcac ggagttagcc ggtgcttctt ctgtcggtaa cgtcaattgt 60
caaggttatt aaccttaaca ccttcctccc gactgaaagt actttacaac ccgaaggcct 120
tcttcataca cgcggcatgg ctgcatcagg cttgcgccca ttgtgcaata ttccccactg 180
ctgcctcccg taggagt 197
<210> 6
<211> 197
<212> DNA
<213> Citrobacter
<400> 6
attaccgcgg ctgctggcac ggagttagcc ggtgcttctt ctgcgggtaa cgtcaatgaa 60
taaggttatt aaccttactc ccttcctccc cgctgaaagt actttacaac ccgaaggcct 120
tcttcataca cgcggcatgg ctgcatcagg cttgcgccca ttgtgcaata ttccccactg 180
ctgcctcccg taggagt 197
<210> 7
<211> 197
<212> DNA
<213> Raoultella
<400> 7
actcctacgg gaggcagcag tggggaatat tgcacaatgg gcgcaagcct gatgcagcca 60
tgccgcgtgt atgaagaagg ccttcgggtt gtaaagtact ttcagcgacg aggaaggcgt 120
taaggttaat aaccttaacg attgacgtta ctcgcagaag aagcaccggc taactccgtg 180
ccagcagccg cggtaat 197
<210> 8
<211> 172
<212> DNA
<213> Clostridium
<400> 8
attaccgcgg ctgctggcac gtagttagcc gtggcttcct cctctggtac cgtcattatc 60
gtcccagaaa acagaacttt acaaccctaa ggccttcttc attcacgcgg cgttgctgcg 120
tcagggtttc ccccattgcg caatattccc cactgctgcc tcccgtagga gt 172
<210> 9
<211> 197
<212> DNA
<213> Citrobacter
<400> 9
attaccgcgg ctgctggcac ggagttagcc ggtgcttctt ctgcgagtaa cgtcaattgc 60
tgcggttatt aacctcaaca ccttcctcct cgctgaaagt actttacaac ccgaaggcct 120
tcttcataca cgcggcatgg ctgcatcagg cttgcgccca ttgtgcaata ttccccactg 180
ctgcctcccg taggagt 197
<210> 10
<211> 197
<212> DNA
<213> Stenotrophomonas
<400> 10
attaccgcgg ctgctggcac gaagttagcc ggtgcttatt ctttgggtac cgtcatccca 60
accgggtatt agccagctgg atttctttcc caacaaaagg gctttacaac ccgaaggcct 120
tcttcaccca cgcggtatgg ctggatcagg cttgcgccca ttgtccaata ttccccactg 180
ctgcctcccg taggagt 197
<210> 11
<211> 172
<212> DNA
<213> Acetoanaerobium
<400> 11
actcctacgg gaggcagcag tggggaatat tgcacaatgg gcgaaagcct gatgcagcaa 60
cgccgcgtga gcgatgaagg ccttcgggtc gtaaagctct gtcctatggg aagataatga 120
cggtaccata ggaggaagcc ccggctaact acgtgccagc agccgcggta at 172

Claims (9)

1.用于检测煤地质微生物细菌物种的DNA Marker,其特征在于:该DNA Marker由11条DNA片段a-k组成,DNA片段a的核苷酸序列如SEQ.ID.NO.1所示,DNA片段b的核苷酸序列如SEQ.ID.NO.2所示,DNA片段c的核苷酸序列如SEQ.ID.NO.3所示,DNA片段d的核苷酸序列如SEQ.ID.NO.4所示,DNA片段e的核苷酸序列如SEQ.ID.NO.5所示,DNA片段f的核苷酸序列如SEQ.ID.NO.6所示,DNA片段g的核苷酸序列如SEQ.ID.NO.7所示,DNA片段h的核苷酸序列如SEQ.ID.NO.8所示,DNA片段i的核苷酸序列如SEQ.ID.NO.9所示,DNA片段j的核苷酸序列如SEQ.ID.NO.10所示,DNA片段k的核苷酸序列如SEQ.ID.NO.11所示。
2.权利要求1所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于包括以下步骤:
(1)提取高阶煤层产出水样的富集培养液基因组DNA,以提取的微生物基因组DNA为模板,第一次PCR扩增细菌16S rDNA V3区序列,将第一次PCR扩增产物进行琼脂糖凝胶电泳分析,并回收目标DNA片段;
(2)以回收的目标DNA片段为模板进行第二次PCR扩增,将第二次PCR扩增产物进行DGGE分析,从DGGE胶上切下的DNA片段为细菌16S rDNA V3区DNA片段;
(3)以步骤(2)DGGE胶上切下的细菌16S rDNA V3区DNA片段为模板经第三次PCR扩增,回收第三次PCR扩增产物;
(4)将步骤(3)的第三次PCR扩增产物克隆到T载体上获得连接产物;
(5)将经步骤(4)获得的连接产物转入宿主菌,筛选阳性重组子;
(6)以阳性重组子作为模板进行第四次PCR扩增;
(7)将步骤(6)第四次PCR扩增产物再次进行DGGE分析,验证条带位置,条带位置正确的DNA片段作为煤地质微生物细菌物种DNA Marker组成中的DNA片段a;
(8)重复步骤(1)至(7),制备煤地质微生物细菌物种DNA Marker组成中的DNA片段b-k;
(9)步骤(7)和(8)的组合构成煤地质微生物细菌物种DNA Marker。
3.根据权利要求2所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于步骤(6)中第四次PCR扩增中所使用的模板浓度为8~12ng/μL。
4.根据权利要求2所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于:所述步骤(2)中的从DGGE胶上切下的DNA片段用30μL去离子水在4℃条件下浸泡过夜,取浸泡液作为步骤(3)的模板。
5.根据权利要求2所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于:所述步骤(4)中T载体为北京全式金生物技术有限公司的-T3载体。
6.根据权利要求2所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于:所述步骤(5)中宿主菌为大肠杆菌DH5α。
7.根据权利要求2所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于:所述步骤(1)中第一次PCR扩增和步骤(3)中第三次PCR扩增时用到的引物为338f/518r;所述步骤(2)中第二次PCR扩增和步骤(6)中第四次PCR扩增时用到的引物为338f-GC/518r。
8.根据权利要求7所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法,其特征在于:所述引物338f/518r和338f-GC/518r的序列为:
338f:ACTCCTACGGGAGGCAGCAG;
338f-GC:CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGACTCCTACGGGAGGCAGCAG;
518r:ATTACCGCGGCTGCTGG。
9.权利要求1所述的用于检测煤地质微生物细菌物种的DNA Marker制备方法的应用,其特征是将物种DNA Marker与6×DNA上样缓冲液以体积比5:1混合,用于煤地质微生物PCR-DGGE细菌物种的检测。
CN201710348819.0A 2017-05-17 2017-05-17 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用 Active CN107119130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710348819.0A CN107119130B (zh) 2017-05-17 2017-05-17 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710348819.0A CN107119130B (zh) 2017-05-17 2017-05-17 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用

Publications (2)

Publication Number Publication Date
CN107119130A true CN107119130A (zh) 2017-09-01
CN107119130B CN107119130B (zh) 2020-11-10

Family

ID=59727294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710348819.0A Active CN107119130B (zh) 2017-05-17 2017-05-17 用于检测煤地质微生物细菌物种的DNA Marker及制备方法和应用

Country Status (1)

Country Link
CN (1) CN107119130B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626243A (zh) * 2020-12-24 2021-04-09 山西大学 一种煤地质环境细菌快速检测的试剂盒及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701264A (zh) * 2009-11-20 2010-05-05 深圳大学 一种基于pcr-dgge水体蓝藻检测方法及试剂盒
CN104101914A (zh) * 2014-07-31 2014-10-15 盎亿泰地质微生物技术(北京)有限公司 一种利用分子生态学进行油气资源勘探指示的方法
DE102014116204B3 (de) * 2014-11-06 2015-08-27 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Verfahren zum quantitativen Nachweis einer Kontamination einer Flüssigkeit durch einen Mikroorganismus mittels quantitativer Polymerasekettenreaktion
CN105802957A (zh) * 2016-05-30 2016-07-27 山西大学 一种从煤层水样中提取微生物总dna的方法
WO2016210251A1 (en) * 2015-06-25 2016-12-29 Ascus Biosciences, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701264A (zh) * 2009-11-20 2010-05-05 深圳大学 一种基于pcr-dgge水体蓝藻检测方法及试剂盒
CN104101914A (zh) * 2014-07-31 2014-10-15 盎亿泰地质微生物技术(北京)有限公司 一种利用分子生态学进行油气资源勘探指示的方法
DE102014116204B3 (de) * 2014-11-06 2015-08-27 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Verfahren zum quantitativen Nachweis einer Kontamination einer Flüssigkeit durch einen Mikroorganismus mittels quantitativer Polymerasekettenreaktion
WO2016210251A1 (en) * 2015-06-25 2016-12-29 Ascus Biosciences, Inc. Methods, apparatuses, and systems for analyzing microorganism strains from complex heterogeneous communities, predicting and identifying functional relationships and interactions thereof, and selecting and synthesizing microbial ensembles based thereon
CN105802957A (zh) * 2016-05-30 2016-07-27 山西大学 一种从煤层水样中提取微生物总dna的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JACEK KOZDRÓJ等: "Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling", 《APPLIED SOIL ECOLOGY》 *
TETSUJIOKUDA等: "Effect of changes in the physicochemical properties of sand-alternatives on bacterial community structure in coastal sediments", 《ECOLOGICAL ENGINEERING》 *
杨秀清等: "基于mcrA基因的沁水盆地煤层气田产甲烷菌群与途径分析", 《微生物学通报》 *
陈廷涛等: "益生菌DGGE Marker 的制备及验证", 《中国微生态学杂志》 *
陈彦梅: "煤层微生物生产甲烷及其物种DNA Marker的制备和应用", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626243A (zh) * 2020-12-24 2021-04-09 山西大学 一种煤地质环境细菌快速检测的试剂盒及方法

Also Published As

Publication number Publication date
CN107119130B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Kumar et al. Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation
Ren et al. Microbial community structure of ethanol type fermentation in bio‐hydrogen production
Yuan et al. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method
Bovio et al. Preliminary analysis of Chloroflexi populations in full‐scale UASB methanogenic reactors
Davis et al. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure
Zhang et al. Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ
Shin et al. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater
Sivagurunathan et al. Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition
Li et al. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment
Park et al. Enhancing anaerobic digestion for rural wastewater treatment with granular activated carbon (GAC) supplementation
Shiratori et al. Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor
Cardinali-Rezende et al. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions
Chaganti et al. 16S rRNA gene based analysis of the microbial diversity and hydrogen production in three mixed anaerobic cultures
Davila-Vazquez et al. The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures
Chang et al. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR
Dziewit et al. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities
Cai et al. Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A-5 isolated from the sludge of a sugar mill
Röske et al. Microbial community composition and dynamics in high-temperature biogas reactors using industrial bioethanol waste as substrate
Mohan et al. Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions
Li et al. Vertical distribution of microbial community and metabolic pathway in a methanogenic propionate degradation bioreactor
Grabowski et al. Characterization of long-chain fatty-acid-degrading syntrophic associations from a biodegraded oil reservoir
WO2020011052A1 (zh) 一株副氧化微杆菌及其广谱多氯联苯酶制剂的制备方法与应用
Soares et al. Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology
Liu et al. Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater
Abendroth et al. Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231122

Address after: 034000, No. 5 Xinye 3rd Street, Douluo Building Materials Industrial Park, Douluo Town, Xinfu District, Xinzhou City, Shanxi Province

Patentee after: Shanxi Hengrui Resource Recycling Technology Co.,Ltd.

Address before: 030006, No. 92, Hollywood Road, Xiaodian District, Shanxi, Taiyuan

Patentee before: SHANXI University