CN107104467B - 一种考虑核电调峰及其安全约束的机组组合优化方法 - Google Patents

一种考虑核电调峰及其安全约束的机组组合优化方法 Download PDF

Info

Publication number
CN107104467B
CN107104467B CN201710414181.6A CN201710414181A CN107104467B CN 107104467 B CN107104467 B CN 107104467B CN 201710414181 A CN201710414181 A CN 201710414181A CN 107104467 B CN107104467 B CN 107104467B
Authority
CN
China
Prior art keywords
power
unit
constraint
nuclear power
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710414181.6A
Other languages
English (en)
Other versions
CN107104467A (zh
Inventor
赵洁
刘涤尘
王骏
邵尤国
王力
张胜峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201710414181.6A priority Critical patent/CN107104467B/zh
Publication of CN107104467A publication Critical patent/CN107104467A/zh
Application granted granted Critical
Publication of CN107104467B publication Critical patent/CN107104467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及电力系统经济调度技术,具体涉及一种考虑核电调峰及其安全约束的机组组合优化方法,包括以下步骤:步骤1、根据电力系统内不同类型机组的燃料成本、启停成本和调峰成本,提出考虑核电调峰的电力系统机组组合优化目标函数;步骤2、提出考虑核电调峰的电力系统机组组合约束条件;步骤3、依据步骤1所述目标函数和步骤2所述约束条件,建立考虑核电调峰的电力系统机组组合优化模型并进行求解,得到机组组合方案。该优化方法综合考虑了核电调峰的安全约束,能够科学合理的安排电力系统日前调度计划,以满足电网负荷峰谷变化需求。

Description

一种考虑核电调峰及其安全约束的机组组合优化方法
技术领域
本发明属于电力系统经济调度技术领域,尤其涉及一种考虑核电调峰及其安全约束的机组组合优化方法。
背景技术
目前我国沿海地区负荷峰谷差持续增大,伴随着未来核电、风电的大规模并网,电力系统调峰形势愈发不容乐观,对核电机组参与调峰的需求与日俱增。虽然现代核电机组在设计上具备调峰能力,但当前我国核电机组调峰实例甚少,而且电力系统机组组合研究领域中,核电调峰及其安全约束的数学建模研究并未深入开展。因此,深入研究考虑核电调峰及其安全约束的电力系统机组组合问题具有重要意义。
在一些欧美国家,核电机组已经具备负荷跟踪能力,可参与电力系统调峰调频。中国现有核电机组目前依然采用基核运行方式,但日趋增大的负荷峰谷差对核电机组参与电网调峰提出要求。另一方面,考虑到核电机组运行特性及风险,核电机组参与调峰运行必须满足一定的安全约束条件。目前基于调峰平衡判据或等效负荷法制定的核电机组调峰方案忽略了核电机组参与电网调峰时的安全约束,具有一定的局限性。
发明内容
本发明的目的是提供一种综合考虑了核电调峰费用及调峰安全约束,对电力系统调度计划进行科学合理安排,满足电网负荷峰谷变化需求的机组组合优化方法。
为实现上述目的,本发明采用的技术方案是:一种考虑核电调峰及其安全约束的机组组合优化方法,包括以下步骤:
步骤1、根据电力系统内不同类型机组的燃料成本、启停成本和调峰成本,提出考虑核电调峰的电力系统机组组合优化目标函数;
步骤2、提出考虑核电调峰的电力系统机组组合约束条件;
步骤3、依据步骤1所述目标函数和步骤2所述约束条件,建立考虑核电调峰的电力系统机组组合优化模型并进行求解,得到机组组合方案。
在上述的考虑核电调峰及其安全约束的机组组合优化方法中,步骤1所述电力系统机组组合优化目标函数包括机组运行费用和机组调峰费用;所述机组运行费用和机组调峰费用按以下步骤求得:
1.1、机组运行费用包括火电、核电机组燃料费用,火电机组启停费用,抽水蓄能机组启停费用;
机组运行费用Y为:
Y=YG+ST+SPS (1)
(1)式中,YG为火电、核电机组燃料费用,ST为火电机组启停费用,SPS为抽水蓄能机组启停费用;
1.1.1、火电、核电机组燃料费用YG为:
Figure BDA0001313215310000021
(2)式中,N为火电机组总台数;M为核电机组总台数;T为待研究的调度周期内所划分的时段总数;Y(Pi,k)为机组运行费用函数;Pi,k为机组i在k时段的有功功率;ca、cb、cc为运行费用参数;
1.1.2、火电机组启停费用ST为:
Figure BDA0001313215310000022
(3)式中,αi,k为0-1变量,当k时段机组i从停机状态转变为运行状态时,为1,否则为0;
Figure BDA0001313215310000031
为火电机组i的启动费用;βi,k为0-1变量,当k时段机组i从运行状态转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000032
为火电机组i的停机费用;
1.1.3、抽水蓄能机组启停费用SPS为:
Figure BDA0001313215310000033
(4)式中,W为抽水蓄能机组总台数;
Figure BDA0001313215310000034
为0-1变量,当k时段机组i从停机状态转变为发电工况时,为1,否则为0;
Figure BDA0001313215310000035
为抽水蓄能机组i的发电机启动费用;
Figure BDA0001313215310000036
为0-1变量,当k时段机组i从停机状态转变为抽水工况时,为1,否则为0;
Figure BDA0001313215310000037
为抽水蓄能机组i的电动机启动费用;
1.2、机组调峰费用包括火电机组深度调峰费用、核电机组调峰费用和抽水蓄能机组调峰费用;
机组调峰费用CR为:
CR=CRT+CRP+CRN (5)
(5)式中,CRT为火电机组深度调峰费用,CRN为核电机组调峰费用,CRP为抽水蓄能机组调峰费用;
1.2.1、火电机组深度调峰费用CRT为:
Figure BDA0001313215310000038
(6)式中,CRT,i为火电机组i单位容量的有偿调峰费用;Pn,i为机组额定出力;γPn,i为机组有偿调峰阈值,0<γ<100%;机组i在k时段的运行状态Ui,k为0-1变量,当机组运行时为1,当机组停机时为0;
Figure BDA00013132153100000310
为火电机组i在k时段的实际出力;
1.2.2、核电机组调峰费用CRN为:
Figure BDA0001313215310000039
(7)式中,CRN,i为核电机组i单位容量的调峰费用,λi,k为调峰深度,Pn,i为核电机组i的额定出力,λi,kPn,i为核电机组i在k时段的调峰容量,
Figure BDA0001313215310000041
为核电机组i在k时段的实际出力;
核电机组单位容量调峰费用CRN,i
Figure BDA0001313215310000042
(8)式中,Cn为核电机组额定功率带基荷运行时的发电费用;η1为核电机组额定工况下的核电厂厂用电率;η2为核电机组处于功率水平(1-λ)Pn时的核电厂厂用电率;
1.2.3、抽水蓄能机组调峰费用CRP
Figure BDA0001313215310000043
(9)式中,
Figure BDA0001313215310000044
为抽水蓄能机组i在k时段的抽水功率,其值为负;
1.3、步骤1所述的组合优化目标为min(Y+CR)。
在上述的考虑核电调峰及其安全约束的机组组合优化方法中,步骤2所述电力系统机组组合约束条件包括基本约束、核电机组出力特性约束和抽水蓄能机组出力特性约束;具体建立方式如下:
2.1、基本约束包括有功平衡约束,正、负备用容量约束,发电机出力上下限约束,机组功率调整速率约束,启停状态约束,最小运行、停机时间约束;
2.1.1、有功平衡约束为:
Figure BDA0001313215310000045
(10)式中,
Figure BDA0001313215310000046
为抽水蓄能机组i在k时段的功率;PL,k为k时段的综合负荷;
2.1.2、发电机出力上下限约束为:
Ui,kPi,min≤Pi,k≤Ui,kPi,max (11)
(11)式中,Pi,max为发电机组i最大技术出力,Pi,min为发电机组i最小技术出力;
2.1.3、机组功率调整速率约束为:
Figure BDA0001313215310000051
(12)式中,rr,i为发电机组i升功率最大速率,rd,i为发电机组i降功率最大速率;Δt为单个时段的时长;
2.1.4、启停状态约束为:
Figure BDA0001313215310000052
2.1.5、最小运行、停机时间约束;
2.1.5.1、最小运行时间约束为:
Figure BDA0001313215310000053
(14)式中,
Figure BDA0001313215310000054
为发电机组i最小运行时间;
2.1.5.2、最小停机时间约束为:
Figure BDA0001313215310000055
(15)式中,
Figure BDA0001313215310000056
为发电机组i最小停运时间;
2.1.6、正、负备用容量约束;
2.1.6.1、正备用容量约束为:
Figure BDA0001313215310000057
(16)式中,PPR为系统正备用需求;
2.1.6.2、负备用容量为:
Figure BDA0001313215310000061
(17)式中,PNR为系统负备用需求;
2.2、核电机组出力特性约束包括核电机组基本功率约束,满功率持续运行时间约束,低功率持续运行时间约束,升功率持续运行时间约束,降功率持续运行时间约束;
2.2.1、核电机组基本功率约束为
Figure BDA0001313215310000062
(18)式中,
Figure BDA0001313215310000063
分别为核电机组i的满功率及低功率运行水平,ΔPi N为第i台核电机组每小时功率变化量,
Figure BDA0001313215310000064
Figure BDA0001313215310000065
为核电机组功率调节时段的过渡功率运行水平;ai,k、bi,k、ci,k、di,k分别为为核电机组运行在
Figure BDA0001313215310000066
Figure BDA0001313215310000067
四个功率运行水平对应的运行标志;
2.2.2、满功率持续运行时间约束为
Figure BDA0001313215310000068
(19)式中,Ta为核电机组满功率运行最小持续时间;
2.2.3、低功率持续运行时间约束为
Figure BDA0001313215310000069
(20)式中,Tb为核电机组低功率运行最小持续时间;
2.2.4、升功率持续运行时间约束,降功率持续运行时间约束过程中,相邻时段的出力满足严格的时间耦合约束,具体表现为机组组合模型中核电机组运行标志在相邻时间段的先后顺序满足如下关系:
升功率b→c→d→a;降功率a→d→c→b;
2.2.4.1、升功率时间耦合约束分解成b→c→d和c→d→a;
其中,b→c→d为
di,k+1≥(ci,k+bi,k-1-1) (21)
c→d→a为
ai,k+1≥(di,k+ci,k-1-1) (22)
2.2.4.2、降功率时间耦合约束分解成a→d→c和d→c→b;
其中,a→d→c为
ci,k+1≥(di,k+ai,k-1-1) (23)
d→c→b为
bi,k+1≥(ci,k+di,k-1-1) (24);
2.3、抽水蓄能机组出力特性约束包括抽水蓄能机组基本功率约束,抽水蓄能机组启停状态约束,水库容量约束;
2.3.1、抽水蓄能机组基本功率约束为:
Figure BDA0001313215310000071
(25)式中,
Figure BDA0001313215310000072
分别为抽水蓄能机组i在k时段的发电功率和抽水功率;发电工况状态gi,k为0-1变量,发电工况下为1,抽水及静止工况下为0;抽水工况状态pi,k为0-1变量,抽水工况下为1,发电及静止工况下为0;
2.3.2、抽水蓄能机组启停状态约束为
Figure BDA0001313215310000081
(26)式中,
Figure BDA0001313215310000082
为0-1变量,当k时段机组i从发电工况转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000083
为0-1变量,当k时段机组i从抽水工况转变为停机状态时,为1,否则为0;
2.2.3、水库容量约束为
Figure BDA0001313215310000084
(27)式中,Wi为抽水蓄能电站i的机组数量,ηPS为抽水电量与发电电量的转换效率,
Figure BDA0001313215310000085
为抽水蓄能电站i受制于水库水量的最大发电量。
在上述的考虑核电调峰及其安全约束的机组组合优化方法中,步骤3的实现包括采用混合整数规划算法对电力系统机组组合优化模型进行求解,得到电力系统机组组合方案。
本发明的有益效果是:
1.机组组合优化目标函数综合考虑了火电机组、核电机组和抽水蓄能机组的运行费用和调峰费用,具有全面性和准确性;
2.机组组合约束条件对核电机组的出力特性约束进行了量化,能够准确体现核电机组的功率调节特性。
3.该优化方法综合考虑了核电调峰的安全约束,能够科学合理的安排电力系统日前调度计划,以满足电网负荷峰谷变化需求。
附图说明
图1为本发明一个实施例的流程图;
图2为本发明一个实施例典型日负荷曲线;
图3(a)、(b)、(c)为本发明一个实施例调峰方案1机组组合求解结果;
图4(a)、(b)、(c)为本发明一个实施例调峰方案2机组组合求解结果;
图5(a)、(b)、(c)为本发明一个实施例调峰方案3机组组合求解结果。
具体实施方式
下面结合附图对本发明的实施方式进行详细描述。
所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其它工艺的可应用性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
本发明的描述中,需要说明的是,除非另有规定和限定,术语“相连”“连接"应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于相关领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本实施例采用以下技术方案来实现,一种考虑核电调峰及其安全约束的机组组合优化方法,包括以下步骤:
步骤1、根据电力系统内不同类型机组的燃料成本、启停成本和调峰成本,提出考虑核电调峰的电力系统机组组合优化目标函数;
步骤2、提出考虑核电调峰的电力系统机组组合约束条件;
步骤3、依据步骤1所述目标函数和步骤2所述约束条件,建立考虑核电调峰的电力系统机组组合优化模型并进行求解,得到机组组合方案。
进一步,步骤1所述电力系统机组组合优化目标函数包括机组运行费用和机组调峰费用;所述机组运行费用和机组调峰费用按以下步骤求得:
1.1、机组运行费用包括火电、核电机组燃料费用,火电机组启停费用,抽水蓄能机组启停费用;
机组运行费用Y为:
Y=YG+ST+SPS (1)
(1)式中,YG为火电、核电机组燃料费用,ST为火电机组启停费用,SPS为抽水蓄能机组启停费用;
1.1.1、火电、核电机组燃料费用YG为:
Figure BDA0001313215310000101
(2)式中,N为火电机组总台数;M为核电机组总台数;T为待研究的调度周期内所划分的时段总数;Y(Pi,k)为机组运行费用函数;Pi,k为机组i在k时段的有功功率;ca、cb、cc为运行费用参数;
1.1.2、火电机组启停费用ST为:
Figure BDA0001313215310000102
(3)式中,αi,k为0-1变量,当k时段机组i从停机状态转变为运行状态时,为1,否则为0;
Figure BDA0001313215310000111
为火电机组i的启动费用;βi,k为0-1变量,当k时段机组i从运行状态转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000112
为火电机组i的停机费用;
1.1.3、抽水蓄能机组启停费用SPS为:
Figure BDA0001313215310000113
(4)式中,W为抽水蓄能机组总台数;
Figure BDA0001313215310000114
为0-1变量,当k时段机组i从停机状态转变为发电工况时,为1,否则为0;
Figure BDA0001313215310000115
为抽水蓄能机组i的发电机启动费用;
Figure BDA0001313215310000116
为0-1变量,当k时段机组i从停机状态转变为抽水工况时,为1,否则为0;
Figure BDA0001313215310000117
为抽水蓄能机组i的电动机启动费用;
1.2、机组调峰费用包括火电机组深度调峰费用、核电机组调峰费用和抽水蓄能机组调峰费用;
机组调峰费用CR为:
CR=CRT+CRP+CRN (5)
(5)式中,CRT为火电机组深度调峰费用,CRN为核电机组调峰费用,CRP为抽水蓄能机组调峰费用;
1.2.1、火电机组深度调峰费用CRT为:
Figure BDA0001313215310000118
(6)式中,CRT,i为火电机组i单位容量的有偿调峰费用;Pn,i为机组额定出力;γPn,i为机组有偿调峰阈值,0<γ<100%;机组i在k时段的运行状态Ui,k为0-1变量,当机组运行时为1,当机组停机时为0;
Figure BDA0001313215310000119
为火电机组i在k时段的实际出力;
1.2.2、核电机组调峰费用CRN为:
Figure BDA00013132153100001110
(7)式中,CRN,i为核电机组i单位容量的调峰费用,λi,k为调峰深度,Pn,i为核电机组i的额定出力,λi,kPn,i为核电机组i在k时段的调峰容量,
Figure BDA0001313215310000121
为核电机组i在k时段的实际出力;
核电机组单位容量调峰费用CRN,i
Figure BDA0001313215310000122
(8)式中,Cn为核电机组额定功率带基荷运行时的发电费用;η1为核电机组额定工况下的核电厂厂用电率;η2为核电机组处于功率水平(1-λ)Pn时的核电厂厂用电率;
1.2.3、抽水蓄能机组调峰费用CRP
Figure BDA0001313215310000123
(9)式中,
Figure BDA0001313215310000124
为抽水蓄能机组i在k时段的抽水功率,其值为负;
1.3、步骤1所述的组合优化目标为min(Y+CR)。
进一步,步骤2所述电力系统机组组合约束条件包括基本约束、核电机组出力特性约束和抽水蓄能机组出力特性约束;具体建立方式如下:
2.1、基本约束包括有功平衡约束,正、负备用容量约束,发电机出力上下限约束,机组功率调整速率约束,启停状态约束,最小运行、停机时间约束;
2.1.1、有功平衡约束为:
Figure BDA0001313215310000125
(10)式中,
Figure BDA0001313215310000126
为抽水蓄能机组i在k时段的功率;PL,k为k时段的综合负荷;
2.1.2、发电机出力上下限约束为:
Ui,kPi,min≤Pi,k≤Ui,kPi,max (11)
(11)式中,Pi,max为发电机组i最大技术出力,Pi,min为发电机组i最小技术出力;
2.1.3、机组功率调整速率约束为:
Figure BDA0001313215310000131
(12)式中,rr,i为发电机组i升功率最大速率,rd,i为发电机组i降功率最大速率;Δt为单个时段的时长;
2.1.4、启停状态约束为:
Figure BDA0001313215310000132
2.1.5、最小运行、停机时间约束;
2.1.5.1、最小运行时间约束为:
Figure BDA0001313215310000133
(14)式中,
Figure BDA0001313215310000134
为发电机组i最小运行时间;
2.1.5.2、最小停机时间约束为:
Figure BDA0001313215310000135
(15)式中,
Figure BDA0001313215310000136
为发电机组i最小停运时间;
2.1.6、正、负备用容量约束;
2.1.6.1、正备用容量约束为:
Figure BDA0001313215310000137
(16)式中,PPR为系统正备用需求;
2.1.6.2、负备用容量为:
Figure BDA0001313215310000138
(17)式中,PNR为系统负备用需求;
2.2、核电机组出力特性约束包括核电机组基本功率约束,满功率持续运行时间约束,低功率持续运行时间约束,升功率持续运行时间约束,降功率持续运行时间约束;
2.2.1、核电机组基本功率约束为
Figure BDA0001313215310000141
(18)式中,
Figure BDA0001313215310000142
分别为核电机组i的满功率及低功率运行水平,ΔPi N为第i台核电机组每小时功率变化量,
Figure BDA0001313215310000143
Figure BDA0001313215310000144
为核电机组功率调节时段的过渡功率运行水平;ai,k、bi,k、ci,k、di,k分别为为核电机组运行在
Figure BDA0001313215310000145
Figure BDA0001313215310000146
四个功率运行水平对应的运行标志;
2.2.2、满功率持续运行时间约束为
Figure BDA0001313215310000147
(19)式中,Ta为核电机组满功率运行最小持续时间;
2.2.3、低功率持续运行时间约束为
Figure BDA0001313215310000148
(20)式中,Tb为核电机组低功率运行最小持续时间;
2.2.4、升功率持续运行时间约束,降功率持续运行时间约束过程中,相邻时段的出力满足严格的时间耦合约束,具体表现为机组组合模型中核电机组运行标志在相邻时间段的先后顺序满足如下关系:
升功率b→c→d→a;降功率a→d→c→b;
2.2.4.1、升功率时间耦合约束分解成b→c→d和c→d→a;
其中,b→c→d为
di,k+1≥(ci,k+bi,k-1-1) (21)
c→d→a为
ai,k+1≥(di,k+ci,k-1-1) (22)
2.2.4.2、降功率时间耦合约束分解成a→d→c和d→c→b;
其中,a→d→c为
ci,k+1≥(di,k+ai,k-1-1) (23)
d→c→b为
bi,k+1≥(ci,k+di,k-1-1) (24);
2.3、抽水蓄能机组出力特性约束包括抽水蓄能机组基本功率约束,抽水蓄能机组启停状态约束,水库容量约束;
2.3.1、抽水蓄能机组基本功率约束为:
Figure BDA0001313215310000151
(25)式中,
Figure BDA0001313215310000152
分别为抽水蓄能机组i在k时段的发电功率和抽水功率;发电工况状态gi,k为0-1变量,发电工况下为1,抽水及静止工况下为0;抽水工况状态pi,k为0-1变量,抽水工况下为1,发电及静止工况下为0;
2.3.2、抽水蓄能机组启停状态约束为
Figure BDA0001313215310000153
(26)式中,
Figure BDA0001313215310000154
为0-1变量,当k时段机组i从发电工况转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000161
为0-1变量,当k时段机组i从抽水工况转变为停机状态时,为1,否则为0;
2.2.3、水库容量约束为
Figure BDA0001313215310000162
(27)式中,Wi为抽水蓄能电站i的机组数量,ηPS为抽水电量与发电电量的转换效率,
Figure BDA0001313215310000163
为抽水蓄能电站i受制于水库水量的最大发电量。
更进一步,步骤3的实现包括采用混合整数规划算法对电力系统机组组合优化模型进行求解,得到电力系统机组组合方案。
具体实施时,对压水堆核电机组的调峰成本及运行安全约束进行定量分析,以系统运行费用及调峰费用最低作为优化目标;在机组组合问题常规约束条件的基础上,进一步考虑核电机组日负荷跟踪出力特性约束和抽水蓄能机组功率特性约束,最终建立了考虑核电机组参与调峰的电力系统机组组合优化模型并进行求解。本实施例的优化方法综合考虑了核电调峰的安全约束,能够科学合理的安排电力系统日前调度计划,以满足电网负荷峰谷变化需求。
如图1所示,一种考虑核电调峰及其安全约束的机组组合优化方法,包括以下步骤:
S1,综合考虑电力系统内不同类型机组的燃料成本、启停成本和调峰成本,提出考虑核电调峰的电力系统机组组合问题优化目标,包括机组运行费用和机组调峰费用;
S2,提出考虑核电调峰的电力系统机组组合问题约束条件,包括基本约束、核电机组出力特性约束和抽水蓄能机组出力特性约束;
S3,基于以上两步得到的机组组合目标函数和约束条件,建立考虑核电参与调峰的电力系统机组组合问题优化模型,并对优化问题进行求解,得到机组组合方案。
而且,提出考虑核电调峰的电力系统机组组合问题优化目标,包括以下步骤;
S1.1,确定机组运行费用,包括机组燃料费用和启停费用,基于以下公式:
Y=YG+ST+SPS
其中,YG为火电、核电机组燃料费用,ST为火电机组启停费用,SPS为抽水蓄能机组启停费用。
火电、核电机组燃料费用YG表征为:
Figure BDA0001313215310000171
Figure BDA0001313215310000172
其中,N为火电机组总台数;M为核电机组总台数;T为待研究的调度周期内所划分的时段总数;Y(Pi,k)为机组运行费用函数;Pi,k为机组i在k时段的有功功率;ca、cb、cc为运行费用参数。
火电机组启停费用ST表征为:
Figure BDA0001313215310000173
其中,αi,k为0-1变量,当k时段机组i从停机状态转变为运行状态时,为1,否则为0;
Figure BDA0001313215310000174
为火电机组i的启动费用;βi,k为0-1变量,当k时段机组i从运行状态转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000175
为火电机组i的停机费用。
抽水蓄能机组启停费用SPS表征为
Figure BDA0001313215310000176
其中,W为抽水蓄能机组总台数;
Figure BDA0001313215310000177
为0-1变量,当k时段机组i从停机状态转变为发电工况时,为1,否则为0;
Figure BDA0001313215310000178
为抽水蓄能机组i的发电机启动费用;
Figure BDA0001313215310000179
为0-1变量,当k时段机组i从停机状态转变为抽水工况时,为1,否则为0;
Figure BDA0001313215310000181
为抽水蓄能机组i的电动机启动费用。
S1.2,确定机组调峰费用,包括火电机组深度调峰费用、核电机组调峰费用和抽水蓄能机组调峰费用,基于以下公式:
CR=CRT+CRP+CRN
其中,CR为机组调峰费用,CRT为火电机组调峰费用,CRP为核电机组调峰费用,CRN为抽水蓄能机组调峰费用。
火电机组深度调峰费用CRT表征为
Figure BDA0001313215310000182
其中,CRT,i为火电机组i单位容量的有偿调峰费用;Pni为机组额定出力;γPn,i为机组有偿调峰阈值,0<γ<100%;机组i在k时段的运行状态Ui,k为0-1变量,当机组运行时为1,当机组停机时为0;
Figure BDA0001313215310000188
为火电机组i在k时段的实际出力。
其中,核电机组调峰费用CRN表征为
Figure BDA0001313215310000183
式中,CRN,i为核电机组i单位容量的调峰费用,λi,k为调峰深度,Pn,i为核电机组i的额定出力,λi,kPn,i为核电机组i在k时段的调峰容量,
Figure BDA0001313215310000184
为核电机组i在k时段的实际出力。
其中,核电机组单位容量调峰费用CRN,i表征为
Figure BDA0001313215310000185
式中,Cn为核电机组额定功率带基荷运行时的发电费用;η1为核电机组额定工况下的核电厂厂用电率;η2为核电机组处于功率平台(1-λ)Pn时的核电厂厂用电率。
抽水蓄能机组调峰费用CRP表征为
Figure BDA0001313215310000186
式中,
Figure BDA0001313215310000187
为抽水蓄能机组i在k时段的抽水功率,其值为负。
S1.3,提出优化目标,基于以下公式:
min(Y+CR)
而且,提出考虑核电调峰的电力系统机组组合问题约束条件,包括以下步骤;
S2.1,确定机组组合问题基本约束,包括有功平衡约束、正负备用容量约束、发电机组出力上下限约束、机组功率调整速率约束、启停状态约束、最小运行时间约束、最小停机时间约束。
有功平衡约束表征为
Figure BDA0001313215310000191
其中,
Figure BDA0001313215310000192
为抽水蓄能机组i在k时段的功率(已包含运行状态,详见抽水蓄能机组功率特性约束);PL,k为k时段的综合负荷。
发电机组出力上下限约束表征为
Ui,kPi,min≤Pi,k≤Ui,kPi,max
其中,Pi,max为发电机组i最大技术出力,Pi,min为发电机组i最小技术出力。
机组功率调整速率约束表征为
Figure BDA0001313215310000193
Figure BDA0001313215310000194
其中,rr,i为发电机组i升功率最大速率,rd,i为发电机组i降功率最大速率。Δt为单个时段的时长。
最小运行时间约束表征为
Ui,x≥Ui,k-Ui,k-1
Figure BDA0001313215310000195
式中,
Figure BDA0001313215310000196
为发电机组i最小运行时间。
最小停机时间约束表征为
αi,ki,k=Ui,k-Ui,k-1
αi,ki,k≤1
其中,
Figure BDA0001313215310000201
为发电机组i最小停运时间。
启停状态约束表征为
αi,ki,k=Ui,k-Ui,k-1
αi,ki,k≤1
备用容量约束包括正备用容量约束和负备用容量约束。其中,正备用容量约束表征为
Figure BDA0001313215310000202
其中,PPR为系统正备用需求。
负备用容量表征为
Figure BDA0001313215310000203
式中,PNR为系统负备用需求。
S2.2,确定核电机组出力特性约束条件,包括核电机组基本功率约束、满功率持续运行时间约束、低功率持续运行时间约束、升功率持续时间约束和降功率持续时间约束。
核电机组出力特性约束需满足“12-3-6-3”的日负荷跟踪模式。即核电机组一天内以额定功率水平恒功率运行12小时,以低功率水平恒功率运行6小时,额定功率和低功率水平间的功率调节时间为3小时且功率线性变化。因此,在以小时为单位的日前调度发电计划中,核电机组共有4个功率运行水平:
Figure BDA0001313215310000204
Figure BDA0001313215310000205
Figure BDA0001313215310000206
其中,
Figure BDA0001313215310000207
分别为核电机组i的满功率及低功率运行水平,ΔPi N为第i台核电机组每小时功率变化量,
Figure BDA0001313215310000208
Figure BDA0001313215310000209
为核电机组功率调节时段的过渡功率运行水平。
核电机组基本功率约束表征为
Figure BDA0001313215310000211
ai,k,bi,k,ci,k,di,k∈{0,1}
ai,k+bi,k+ci,k+di,k=1
式中,ai,k、bi,k、ci,k、di,k分别为为核电机组运行在
Figure BDA0001313215310000212
Figure BDA0001313215310000213
四个功率运行水平对应的运行标志,ai,k、bi,k、ci,k、di,k均为0-1变量,且满足ai,k+bi,k+ci,k+di,k=1。
满功率持续运行时间约束表征为
ai,x≥ai,k-ai,k-1
x=k,k+1,...,min{T,k+Ta-1}
式中,Ta为核电机组满功率运行最小持续时间。
低功率持续运行时间约束表征为
bi,x≥bi,k-bi,k-1
x=k,k+1,...,min{T,k+Tb-1}
式中,Tb为核电机组低功率运行最小持续时间。
核电机组线性升/降功率过程中,相邻时段的出力需要满足严格的时间耦合约束,具体表现为机组组合模型中核电机组运行标志在相邻时间段的先后顺序必须满足如下关系:升功率b→c→d→a;降功率a→d→c→b。
升功率时间耦合约束可以分解成b→c→d和c→d→a。其中,b→c→d表征为
di,k+1≥(ci,k+bi,k-1-1)
c→d→a表征为
ai,k+1≥(di,k+ci,k-1-1)
降功率时间耦合约束可以分解成a→d→c和d→c→b。其中a→d→c表征为
ci,k+1≥(di,k+ai,k-1-1)
d→c→b表征为
bi,k+1≥(ci,k+di,k-1-1)
S2.3,确定抽水蓄能机组出力特性约束条件,包括抽水蓄能机组基本功率约束、抽水蓄能机组启停状态约束、水库水量约束。
其中,抽水蓄能机组基本功率约束表征为
Figure BDA0001313215310000221
Figure BDA0001313215310000222
pi,k,gi,k∈{0,1};pi,k+gi,k≤1
其中,
Figure BDA0001313215310000223
分别为抽水蓄能机组i在k时段的发电功率和抽水功率;发电工况状态gi,k为0-1变量,发电工况下为1,抽水及静止工况下为0;抽水工况状态pi,k为0-1变量,抽水工况下为1,发电及静止工况下为0。
抽水蓄能机组启停状态约束表征为
Figure BDA0001313215310000224
Figure BDA0001313215310000225
Figure BDA0001313215310000226
Figure BDA0001313215310000227
其中,
Figure BDA0001313215310000228
为0-1变量,当k时段机组i从发电工况转变为停机状态时,为1,否则为0;
Figure BDA0001313215310000229
为0-1变量,当k时段机组i从抽水工况转变为停机状态时,为1,否则为0。
水库容量约束表征为
Figure BDA00013132153100002210
其中,Wi为抽水蓄能电站i的机组数量,ηPS为抽水电量与发电电量的转换效率,
Figure BDA00013132153100002211
为抽水蓄能电站i受制于水库水量的最大发电量。
而且,采用混合整数规划算法对优化问题进行求解,将上述优化目标函数和约束条件代入任一可以求解混合整数规划问题的成熟商业软件,进行求解。
下面是一个具体案例:
根据典型日负荷曲线,如图2所示,对6台核电机组、4台抽水蓄能机组、31台火电机组的机组组合进行优化,机组基本情况见表1。
表1系统基本情况
Figure BDA0001313215310000231
首先提出机组组合的优化目标函数和约束条件,之后求解该电力系统机组组合方式,与其他两种典型调峰方案进行对比,计算核电参与电力系统调峰的综合效益,三种调峰方案如下:
方案1:核电机组不参与调峰,满功率稳定运行;
方案2:核电机组以固定时间、固定调峰深度参与电网调峰,选择两台900MW核电机组以“12-3-6-3”在晚上10点至早上10点降1/3额定功率运行;
方案3:核电机组采用本发明提出的机组组合数学模型,制定调峰方案。
最终得到不同调峰方案的机组组合数学模型求解结果见表2,方案1求解结果如图3(a)、(b)、(c)所示,方案2求解结果如图4(a)、(b)、(c)所示,方案3求解结果如图5(a)、(b)、(c)所示。
表2机组组合数学模型求解结果
Figure BDA0001313215310000232
通过以上优选实施例可以看出,在三种调峰方案中,核电机组、火电机组和抽水蓄能机组均严格满足各自的功率特性约束,求解结果能反映系统的实际特征,所建立的数学模型合理,可适用于核电大规模接入背景下的电力系统机组组合问题分析计算。核电不参与调峰时,火电机组和抽水蓄能机组频繁通过启停机操作来参与调峰,抽水蓄能机组的发电、停机、抽水工况转换也十分频繁,由于火电机组和抽水蓄能机组的启停/调峰费用高于核电调峰费用,因此方案3中的运行费用最低,经济性最优。这表明,相较目前核电机组始终满功率带基荷的运行方式,合理安排核电机组满功率、低功率稳定运行时间,适时参与电力系统调峰,可以缓解其他机组调峰压力,同时提高电力系统运行经济性。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
虽然以上结合附图描述了本发明的具体实施方式,但是本领域普通技术人员应当理解,这些仅是举例说明,可以对这些实施方式做出多种变形或修改,而不背离本发明的原理和实质。本发明的范围仅由所附权利要求书限定。

Claims (2)

1.一种考虑核电调峰及其安全约束的机组组合优化方法,其特征是,包括以下步骤:
步骤1、根据电力系统内不同类型机组的燃料成本、启停成本和调峰成本,提出考虑核电调峰的电力系统机组组合优化目标函数;
步骤2、提出考虑核电调峰的电力系统机组组合约束条件;
步骤3、依据步骤1所述目标函数和步骤2所述约束条件,建立考虑核电调峰的电力系统机组组合优化模型并进行求解,得到机组组合方案;
步骤2所述电力系统机组组合约束条件包括基本约束、核电机组出力特性约束和抽水蓄能机组出力特性约束;具体建立方式如下:
2.1、基本约束包括有功平衡约束,正、负备用容量约束,发电机出力上下限约束,机组功率调整速率约束,启停状态约束,最小运行、停机时间约束;
2.1.1、有功平衡约束为:
Figure FDA0002655160120000011
(10)式中,
Figure FDA0002655160120000012
为抽水蓄能机组i在k时段的功率;PL,k为k时段的综合负荷;
2.1.2、发电机出力上下限约束为:
Ui,kPi,min≤Pi,k≤Ui,kPi,max (11)
(11)式中,Pi,max为发电机组i最大技术出力,Pi,min为发电机组i最小技术出力;
2.1.3、机组功率调整速率约束为:
Figure FDA0002655160120000013
(12)式中,rr,i为发电机组i升功率最大速率,rd,i为发电机组i降功率最大速率;Δt为单个时段的时长;
2.1.4、启停状态约束为:
Figure FDA0002655160120000021
2.1.5、最小运行时间约束;
Figure FDA0002655160120000022
(14)式中,
Figure FDA0002655160120000023
为发电机组i最小运行时间;
2.1.6、正、负备用容量约束;
2.1.6.1、正备用容量约束为:
Figure FDA0002655160120000024
(16)式中,PPR为系统正备用需求;
2.1.6.2、负备用容量约束为:
Figure FDA0002655160120000025
(17)式中,PNR为系统负备用需求;
2.2、核电机组出力特性约束包括核电机组基本功率约束,满功率持续运行时间约束,低功率持续运行时间约束,升功率持续运行时间约束,降功率持续运行时间约束;
2.2.1、核电机组基本功率约束为
Figure FDA0002655160120000026
(18)式中,
Figure FDA0002655160120000027
分别为核电机组i的满功率及低功率运行水平,ΔPi N为第i台核电机组每小时功率变化量,
Figure FDA0002655160120000031
Figure FDA0002655160120000032
为核电机组功率调节时段的过渡功率运行水平;ai,k、bi,k、ci,k、di,k分别为核电机组运行在
Figure FDA0002655160120000033
Figure FDA0002655160120000034
四个功率运行水平对应的运行标志;
2.2.2、满功率持续运行时间约束为
Figure FDA0002655160120000035
(19)式中,Ta为核电机组满功率运行最小持续时间;
2.2.3、低功率持续运行时间约束为
Figure FDA0002655160120000036
(20)式中,Tb为核电机组低功率运行最小持续时间;
2.2.4、升功率持续运行时间约束,降功率持续运行时间约束过程中,相邻时段的出力满足严格的时间耦合约束,具体表现为机组组合模型中核电机组运行标志在相邻时间段的先后顺序满足如下关系:
升功率b→c→d→a;降功率a→d→c→b;
2.2.4.1、升功率时间耦合约束分解成b→c→d和c→d→a;
其中,b→c→d为
di,k+1≥(ci,k+bi,k-1-1) (21)
c→d→a为
ai,k+1≥(di,k+ci,k-1-1) (22)
2.2.4.2、降功率时间耦合约束分解成a→d→c和d→c→b;
其中,a→d→c为
ci,k+1≥(di,k+ai,k-1-1) (23)
d→c→b为
bi,k+1≥(ci,k+di,k-1-1) (24);
2.3、抽水蓄能机组出力特性约束包括抽水蓄能机组基本功率约束,抽水蓄能机组启停状态约束,水库容量约束;
2.3.1、抽水蓄能机组基本功率约束为:
Figure FDA0002655160120000041
(25)式中,
Figure FDA0002655160120000042
分别为抽水蓄能机组i在k时段的发电功率和抽水功率;发电工况状态gi,k为0-1变量,发电工况下为1,抽水及静止工况下为0;抽水工况状态pi,k为0-1变量,抽水工况下为1,发电及静止工况下为0;
2.3.2、抽水蓄能机组启停状态约束为
Figure FDA0002655160120000043
(26)式中,
Figure FDA0002655160120000044
为0-1变量,当k时段机组i从发电工况转变为停机状态时,为1,否则为0;
Figure FDA0002655160120000045
为0-1变量,当k时段机组i从抽水工况转变为停机状态时,为1,否则为0;
2.2.3、水库容量约束为
Figure FDA0002655160120000046
(27)式中,Wi为抽水蓄能电站i的机组数量,ηPS为抽水电量与发电电量的转换效率,
Figure FDA0002655160120000047
为抽水蓄能电站i受制于水库水量的最大发电量。
2.如权利要求1所述的考虑核电调峰及其安全约束的机组组合优化方法,其特征是,步骤3的实现包括采用混合整数规划算法对电力系统机组组合优化模型进行求解,得到电力系统机组组合方案。
CN201710414181.6A 2017-06-05 2017-06-05 一种考虑核电调峰及其安全约束的机组组合优化方法 Active CN107104467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710414181.6A CN107104467B (zh) 2017-06-05 2017-06-05 一种考虑核电调峰及其安全约束的机组组合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710414181.6A CN107104467B (zh) 2017-06-05 2017-06-05 一种考虑核电调峰及其安全约束的机组组合优化方法

Publications (2)

Publication Number Publication Date
CN107104467A CN107104467A (zh) 2017-08-29
CN107104467B true CN107104467B (zh) 2021-02-02

Family

ID=59659209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710414181.6A Active CN107104467B (zh) 2017-06-05 2017-06-05 一种考虑核电调峰及其安全约束的机组组合优化方法

Country Status (1)

Country Link
CN (1) CN107104467B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681673B (zh) * 2017-09-18 2019-09-03 中国电力工程顾问集团西北电力设计院有限公司 基于出力特性的熔盐塔式光热机组调峰方式的选择方法
CN107679759B (zh) * 2017-10-12 2021-05-04 广东电网有限责任公司电力调度控制中心 一种基于发电厂排序系数的安排机组组合的方法
CN108830493B (zh) * 2018-06-22 2021-08-24 广东电网有限责任公司 一种核电机组调峰时间计算方法、装置、设备及存储介质
CN109167383B (zh) * 2018-08-17 2022-04-01 国网福建省电力有限公司 基于精确线性化电力网络模型的电力系统调峰优化方法
CN109347152B (zh) * 2018-11-30 2022-01-18 国家电网公司西南分部 考虑多类型电源参与调峰的随机生产模拟方法及应用
CN110601233B (zh) * 2019-09-30 2023-02-21 国家电网公司西北分部 一种电力系统中储能电站的调峰调度方法
CN111882212A (zh) * 2020-07-27 2020-11-03 武汉大学 一种核电机组参与电网调峰的综合风险量化评估方法
CN112185602B (zh) * 2020-09-15 2023-12-08 岭东核电有限公司 核电站停备机组的方法、装置、终端设备和存储介质
CN113078642A (zh) * 2021-05-08 2021-07-06 广西电网有限责任公司电力科学研究院 风电高占比的多源电力系统的核电机组可调优化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681487B1 (ko) * 2002-10-30 2007-02-09 한국전력공사 원자력발전소 안전해석을 위한 최적평가체계
CN103762619B (zh) * 2014-02-12 2016-04-20 国家电网公司 一种基于电网调峰容量平衡的核电参与电网调峰判断方法
CN104377693A (zh) * 2014-11-11 2015-02-25 国家电网公司 一种发电生产模拟模型
CN104485690B (zh) * 2014-12-18 2017-06-16 国家电网公司 一种基于多阶段动态规划的电网多源调峰方法

Also Published As

Publication number Publication date
CN107104467A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107104467B (zh) 一种考虑核电调峰及其安全约束的机组组合优化方法
CN207010249U (zh) 一种风电制氢储能的氢燃料复合电池
CN102593853B (zh) 提高风电接纳能力的储能系统容量优化配置方法
CN107276122B (zh) 适应大规模可再生能源并网的调峰资源调用决策方法
CN112865086B (zh) 面向可再生能源消纳和电网调峰调频的复合储能系统及方法
CN108133104B (zh) 一种长期跨流域多梯级水电优化运行模拟方法
CN106026184A (zh) 一种面向电网调峰的抽水蓄能电站与风电联合系统及其优化调度方法
CN105406520A (zh) 基于双主控动态协作的独立微电网经济调度优化方法
CN209313452U (zh) 一种高效率高安全风电制氢调峰调频系统
CN110661301B (zh) 一种水光蓄多能互补发电系统的容量配置优化方法
CN113659632B (zh) 一种可实现大规模波动能源消纳的电解制氢系统及运行方法
CN109936156A (zh) 一种高效率高安全风电制氢调峰调频系统
CN112769156A (zh) 一种计及大规模海上风电并网的源网荷储协调运行方法
CN115081700A (zh) 基于综合储能技术的数据中心多能协同优化方法及系统
CN202034790U (zh) 一种大容量电力储能装置
CN112307603B (zh) 考虑大规模风电接入的混合储能容量优化配置方法及系统
CN110690729B (zh) 一种调节电力系统峰谷差的抽蓄优化调度方法
CN117649119A (zh) 基于vcg理论的清洁能源碳减排价值评估方法
CN116109037A (zh) 电解水制氢计划制定方法及装置、介质、设备
CN113555910B (zh) 一种具备智能化水电储能装备的能源微网系统
CN106655282B (zh) 采用0-1整数规划模型实现的电力系统经济调度方法
CN115882483A (zh) 一种利用容量弹性实现系统最优储能容量配置的方法
Ma et al. Two-stage optimal dispatching based on wind-photovoltaic-pumped storage-thermal power combined power generation system
CN209250261U (zh) 一种尿素废水用于高安全高效率风电制氢调峰调频系统
Ali et al. Intelligent hybrid energy system and grid integration using microcontrollers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant