CN107104430A - A kind of bilingual coupling method for estimating state of power distribution network - Google Patents

A kind of bilingual coupling method for estimating state of power distribution network Download PDF

Info

Publication number
CN107104430A
CN107104430A CN201710315211.8A CN201710315211A CN107104430A CN 107104430 A CN107104430 A CN 107104430A CN 201710315211 A CN201710315211 A CN 201710315211A CN 107104430 A CN107104430 A CN 107104430A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mover
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710315211.8A
Other languages
Chinese (zh)
Inventor
孙国强
王晗雯
陈醒
卫志农
臧海祥
陈和升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201710315211.8A priority Critical patent/CN107104430A/en
Publication of CN107104430A publication Critical patent/CN107104430A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

The invention discloses a kind of bilingual coupling method for estimating state of power distribution network.The present invention estimates that model carries out the alternate decoupling under phase coordinates using compensation current model to the asymmetric three-phase distribution net state of line parameter circuit value first, realizes and independent state estimation is carried out to A, B, C three-phase;Then cause the problem of traditional fast decoupled is no longer applicable for R/X ratios in power distribution network are excessive, introduce references angle, impedance is integrally subjected to phase shift using complex field standardization, reduces R/X ratios, realizes the fast decoupled in power distribution network phase.The inventive method realize simultaneously it is alternate with mutually in decouple, realize that three-phase is decoupled by alternate compensation, reduce the scale of Jacobian matrix, improve the computational efficiency of large-scale distribution network, simultaneously, the selection principle of optimal power reference angle is drawn using optimal method, and branch current magnitudes measurement type is effectively converted into branch power and is measured, filtering accuracy is further improved.

Description

A kind of bilingual coupling method for estimating state of power distribution network
Technical field
The present invention relates to a kind of bilingual coupling method for estimating state of power distribution network, belong to power system monitoring, analysis and control and lead Domain.
Technical background
With the fast development of intelligent distribution network, the scale of power distribution network constantly increases.And wind-powered electricity generation, photovoltaic decile in power distribution network A large amount of accesses of cloth power supply, the network structure of power distribution network is increasingly complicated, more exacerbates power distribution network three-phase line parameter not Symmetry so that the complexity increase of state of electric distribution network estimation.Simultaneously because resistance and the ratio of reactance are higher in power distribution network, make The condition of P-Q fast decoupleds in power transmission network can not be met by obtaining the state estimation of power distribution network, it is therefore desirable to find the complexity that is easy to implement Degree is low and can be good at being applied to the method for estimating state of large-scale distribution network.
Traditional the least square estimation method based on Newton method is different from, the Fast decomposition algorithms of state estimation are with it Calculating is quick, convergence is good, the low feature of EMS memory occupation amount is widely used in power transmission network.With complex field standardization technology with Introduction in power network so that application of the fast decoupled technology in state of electric distribution network estimation is possibly realized.Complex field standardization skill Branch impedance is carried out phase shift by art, and branch impedance ratio can be reduced by phase shift, so as to meet state estimation fast decoupled condition.But It is that this method is still progress complex field standardization direct to three-phase network, when the reasons such as distribution network line parameter, transformer cause When power distribution network asymmetrical three-phase is larger, computation complexity can be multiplied.Therefore, it is necessary to study a kind of implementation complexity Low, calculating is quick, can be applied to the efficient method for estimating state of large-scale distribution network.
The content of the invention
Goal of the invention:The present invention provides a kind of power distribution network double decoupled states for the technical problem solved needed for prior art Method of estimation.
Technical scheme:The present invention to achieve the above object, is adopted the following technical scheme that:
A kind of bilingual coupling method for estimating state of power distribution network, comprises the following steps:
1) letters such as the network parameter of power distribution network, including line parameter circuit value, transformer parameter, and network node numbering are obtained Breath;
2) the polynary metric data in power distribution network is obtained, and is classified according to type is measured;
3) classification application of data:The metric data of A, B, C three-phase is classified respectively, it is determined that choosing A, B, C three-phase plural number The optimal power reference angle of domain standardization, and realize three-phase metric data complex field standardization and branch current measure etc. Effect conversion;
4) init state estimator:Counter is set to 0, and assigns initial value to quantity of state;
5) using the decoupling compensation for compensating current model and realizing respectively A, B, C three-phase, and constant Jacobian matrix pair is utilized Active and idle progress cross-iteration solution, corrects quantity of state, plus 1 by counter;
6) judge whether to meet estimated accuracy:If it has not, then turning to step 5), terminate to follow if estimated accuracy requirement is met Ring, and output result.
Further, the step 2) in polynary metric data source include:The metric data of SCADA system, micro- PMU dresses Metric data, customer data base metric data for putting etc., measure type and are divided into the survey of voltage magnitude actual quantities, branch current magnitudes actual quantities The types such as survey, the survey of branch power actual quantities, the measurement of node injecting power puppet and virtual measurement;
Further, the step 3) in the determination of complex field standardization power perspective a reference value use optimal method, Initially setting up optimization object function is:
In formula, αiIt is the intrinsic angle of line impedance, is decided by resistance and the reactance of circuit, φsFor it needs to be determined that optimal take The power reference angle of value, l is the branch road sum in power distribution network, and the principle for choosing optimized power reference angle is to enable to own The impedance angle of branch road as close asSo thatRatio as close as in 0, so as to realize the quick solution of power distribution network Coupling condition, therefore, by bounding method by object function to φsLocal derviation is sought, and makes local derviation be 0, it can obtain optimal power benchmark Angle φsValue be:
Further, the step 3) in metric data complex field standardization according to selected optimal power benchmark Angle by the metric data of each phase, it is necessary to first carry out complex field standardization, wherein selecting power reference in complex fieldAnd electricity Press benchmarkFor:
In formula, φvFor voltage reference angle, because voltage reference angle does not influence on impedance angle, so in order to simplify meter Calculate, choose φvIt is equal with voltage magnitude before for the voltage magnitude after 0 degree, therefore complex field standardization;And power reference angle φsFor the optimal value determined according to above-mentioned choosing method;
The complex field standardization of power measurement is measured suitable for power type, including node injecting power is measured, branch road work( Rate measurement etc.;
It is if complex power is measured under real number fieldThen:
In formula, PmAnd QmRespectively active power is measured and reactive power is measured.It is rightComplex field standardization is carried out, is obtained Complex power under complex field standardization is measured
Then have,
In formula,It is that active power and reactive power under complex field standardization is measured respectively;Respectively It is that active power and reactive power under real number field standardization is measured;
Power measurement variance after complex field standardization is:
In formula,It is that active power under complex field standardization measures variance and reactive power measurement side respectively Difference,It is the active power measurement variance and reactive power measurement variance under real number field standardization respectively;
It is φ to choose voltage reference anglev=0, voltage magnitude and real number field standardization voltage magnitude phase after complex field standardization Deng.Now, the voltage magnitude measurement variance before and after complex field standardization is equal, i.e.,:
In formula,Variance is measured for the voltage magnitude under complex field standardization,For the electricity under real number field standardization Pressure amplitude value measures variance;
There are most branch current magnitudes in power distribution network real system to measure, but these branch current magnitudes are measured not Can directly it apply;The method converted using common equivalent measurement carries out the equivalent transformation of branch current magnitudes measurement;
Branch road direct-to-ground capacitance is neglected, then branch powerFor:
In formula,For the voltage magnitude of node i, θiFor the voltage phase angle of node i, IijFor branch road ij current amplitude, βij For branch road ij current phase angle;
Then equivalent branch power, which is measured, is:
In formula,Respectively equivalent branch road is active and reactive power is measured,For branch road ij current amplitude;Need It should be noted that UiiijThe value of an iteration before being;The branch power of equivalent transformation is measured by the branch current magnitudes Measure, it is necessary to be updated after each iteration, to ensure the accuracy of equivalent measurement conversion;
If branch current phasorFor:
Complex field current reference valueFor:
Through the branch current after complex field standardizationFor:
Branch current magnitudes i.e. after complex field standardization are equal with the branch current magnitudes after real number field standardization, its side Difference is also equal:
In formula,For the variance after complex field standardization,For the variance after real number field standardization;
Equivalent branch road after complex field standardization, which is measured, is:
Equivalent branch road respectively after complex field standardization is active and reactive power is measured,For reality Branch current after number field standardization.
The measurement variance of equivalent branch power after corresponding complex field standardizationWithFor:
Further, the step 5) in compensation current model be described as follows:
The relation of circuit head end and the voltage and current of end can be described as in power distribution network:
Wherein,For branch road head end voltage and the difference of terminal voltage,To flow through series connection branch The electric current on road,Represent the three-phase admittance matrix of circuit:
In view of there is direct-to-ground capacitance, therefore the table of increase circuit first and last end node voltage and current in circuit first and last node It is up to formula:
Wherein,WithThe voltage of branch road first and last end node is represented respectively,WithRepresent that branch road is first respectively End and the node Injection Current of end,For the direct-to-ground capacitance matrix of circuit:
Wherein,
The alternate decoupling of the three-phase distribution net of asymmetry parameter is carried out using compensation current model;Therefore, by the electricity of circuit Piezoelectricity flow relation is deployed, and the gaussian iteration form for obtaining A phases is as follows:
In formula, k is iterations;
Therefore, to flow into node direction as the injecting compensating electricity for just, obtaining A phase line first and last end nodes after decoupling accordingly Flow Δ Ia,i(k+1)With Δ Ia,j(k+1)For:
In formula, k is counts;
The A phases that above formula is calculated finally are compensated into electric current and are converted into node injecting power, then the node injecting power after decoupling For the algebraical sum of the original injecting power of node and compensation injecting power:
In formula, k is counts, and subscript * represents conjugation Δ Sa,i(k+1)With Δ Sa,j(k+1)Headed by end-node compensation injection Power;
Similarly, it can be deduced that the injecting compensating power in B phases and C phases, the alternate full decoupled of ABC three-phases is realized.
Further, the step 5) in it is active and it is idle progress cross-iteration solve use below equation:
In formula, A be with active corresponding information matrix block, B be with idle corresponding information matrix block, α for correspondence it is active Correction matrix block, β is the idle correction matrix block of correspondence, Δ θkWith Δ UkRespectively ABC three-phase voltages phase angle and voltage magnitude The variable quantity of quantity of state, wherein, in order to improve constringency performance, balance node voltage is not involved in estimation;It is corresponding to measure vector It is divided into active and idle two class, zαFor active measurement segment vector, including branch road effective power flow PijWith node active injection power PiMeasurement, is set to mαDimension;zγFor idle measurement segment vector, including branch road reactive power flow Qij, node injection reactive power QiWith Node voltage amplitude ViMeasurement, is set to mγDimension;hαFor correspondence zαPart measure function vector, mαDimension;hγFor correspondence zγPortion Component surveys function vector, mγDimension.
Beneficial effect:The present invention is compared with prior art:A kind of bilingual coupling method for estimating state proposed by the present invention can be with Realize that the three-phase line of power distribution network parameter unbalance is alternate full decoupled, so as to realize the state estimation of single phase networks independence, subtract The complexity of algorithm is substantially reduced while the dimension for having lacked Jacobian matrix.Simultaneously resistance is realized using complex field standardization The transfer at anti-angle, reduces the ratio of resistance/reactance so that fast decoupled technology can be applied smoothly in power distribution network, by having Work(and idle iterative, shorten the time of each iteration, with traditional weighted least-squares based on Newton Algorithm Method is compared, and Jacobian matrix constant can be accelerated convergence of algorithm by the inventive method while computational accuracy is ensured Speed, has good applicability to the large-scale distribution network of the parameter unbalances such as access distributed power source.
Brief description of the drawings
The flow chart of the bilingual coupling state estimation of Fig. 1 power distribution networks;
Fig. 2 A phase decoupling compensation equivalent-circuit models;
The comparison diagram of IEEE13 nodes A phase voltage amplitude true value and filter value under two methods of Fig. 3;
The comparison diagram of IEEE13 nodes B phase voltage amplitude true value and filter value under two methods of Fig. 4;
The comparison diagram of IEEE13 nodes C phase voltage amplitude true value and filter value under two methods of Fig. 5.
Embodiment
The implementation of the present invention is illustrated below in conjunction with accompanying drawing and example, but the implementation of the present invention and comprising being not limited to This.
A kind of bilingual coupling method for estimating state of power distribution network, comprises the following steps:
1) letters such as the network parameter of power distribution network, including line parameter circuit value, transformer parameter, and network node numbering are obtained Breath;
2) the polynary metric data in power distribution network is obtained, and is classified according to type is measured;
3) classification application of data:The metric data of A, B, C three-phase is classified respectively, it is determined that choosing A, B, C three-phase plural number The optimal power reference angle of domain standardization, and realize three-phase metric data complex field standardization and branch current measure etc. Effect conversion;
4) init state estimator:Counter is set to 0, and assigns initial value to quantity of state;
5) using the decoupling compensation for compensating current model and realizing respectively A, B, C three-phase, and constant Jacobian matrix pair is utilized Active and idle progress cross-iteration solution, corrects quantity of state, plus 1 by counter;
6) judge whether to meet estimated accuracy:If it has not, then turning to step 5), terminate to follow if estimated accuracy requirement is met Ring, and output result.
Further, the step 2) in polynary metric data source include:The metric data of SCADA system, micro- PMU dresses Metric data, customer data base metric data for putting etc., measure type and are divided into the survey of voltage magnitude actual quantities, branch current magnitudes actual quantities The types such as survey, the survey of branch power actual quantities, the measurement of node injecting power puppet and virtual measurement;
Further, the step 3) in the determination of complex field standardization power perspective a reference value use optimal method, Initially setting up optimization object function is:
In formula, αiIt is the intrinsic angle of line impedance, is decided by resistance and the reactance of circuit, φsFor it needs to be determined that optimal take The power reference angle of value, l is the branch road sum in power distribution network, and the principle for choosing optimized power reference angle is to enable to own The impedance angle of branch road as close asSo thatRatio as close as in 0, so as to realize the quick solution of power distribution network Coupling condition, therefore, by bounding method by object function to φsLocal derviation is sought, and makes local derviation be 0, it can obtain optimal power benchmark Angle φsValue be:
Further, the step 3) in metric data complex field standardization according to selected optimal power benchmark Angle by the metric data of each phase, it is necessary to first carry out complex field standardization, wherein selecting power reference in complex fieldAnd electricity Press benchmarkFor:
In formula, φvFor voltage reference angle, because voltage reference angle does not influence on impedance angle, so in order to simplify meter Calculate, choose φvIt is equal with voltage magnitude before for the voltage magnitude after 0 degree, therefore complex field standardization;And power reference angle φsFor the optimal value determined according to above-mentioned choosing method;
The complex field standardization of power measurement is measured suitable for power type, including node injecting power is measured, branch road work( Rate measurement etc.;
It is if complex power is measured under real number fieldThen:
In formula, PmAnd QmRespectively active power is measured and reactive power is measured.It is rightComplex field standardization is carried out, is obtained Complex power under complex field standardization is measured
Then have,
In formula,It is that active power and reactive power under complex field standardization is measured respectively;Respectively It is that active power and reactive power under real number field standardization is measured;
Power measurement variance after complex field standardization is:
In formula,It is that active power under complex field standardization measures variance and reactive power measurement side respectively Difference,It is the active power measurement variance and reactive power measurement variance under real number field standardization respectively;
It is φ to choose voltage reference anglev=0, voltage magnitude and real number field standardization voltage magnitude phase after complex field standardization Deng.Now, the voltage magnitude measurement variance before and after complex field standardization is equal, i.e.,:
In formula,Variance is measured for the voltage magnitude under complex field standardization,For the electricity under real number field standardization Pressure amplitude value measures variance;
There are most branch current magnitudes in power distribution network real system to measure, but these branch current magnitudes are measured not Can directly it apply;The method converted using common equivalent measurement carries out the equivalent transformation of branch current magnitudes measurement;
Branch road direct-to-ground capacitance is neglected, then branch powerFor:
In formula,For the voltage magnitude of node i, θiFor the voltage phase angle of node i, IijFor branch road ij current amplitude, βij For branch road ij current phase angle;
Then equivalent branch power, which is measured, is:
In formula,Respectively equivalent branch road is active and reactive power is measured,For branch road ij current amplitude;Need It should be noted that UiiijThe value of an iteration before being;The branch power of equivalent transformation is measured by the branch current magnitudes Measure, it is necessary to be updated after each iteration, to ensure the accuracy of equivalent measurement conversion;
If branch current phasorFor:
Complex field current reference valueFor:
Through the branch current after complex field standardizationFor:
Branch current magnitudes i.e. after complex field standardization are equal with the branch current magnitudes after real number field standardization, its side Difference is also equal:
In formula,For the variance after complex field standardization,For the variance after real number field standardization;
Equivalent branch road after complex field standardization, which is measured, is:
Equivalent branch road respectively after complex field standardization is active and reactive power is measured,For reality Branch current after number field standardization.
The measurement variance of equivalent branch power after corresponding complex field standardizationWithFor:
Further, the step 5) in compensation current model be described as follows:
The relation of circuit head end and the voltage and current of end can be described as in power distribution network:
Wherein,For branch road head end voltage and the difference of terminal voltage,To flow through series connection branch The electric current on road,Represent the three-phase admittance matrix of circuit:
In view of there is direct-to-ground capacitance, therefore the table of increase circuit first and last end node voltage and current in circuit first and last node It is up to formula:
Wherein,WithThe voltage of branch road first and last end node is represented respectively,WithRepresent that branch road is first respectively End and the node Injection Current of end,For the direct-to-ground capacitance matrix of circuit:
Wherein,
The alternate decoupling of the three-phase distribution net of asymmetry parameter is carried out using compensation current model;Therefore, by the electricity of circuit Piezoelectricity flow relation is deployed, and the gaussian iteration form for obtaining A phases is as follows:
In formula, k is iterations;
Therefore, to flow into node direction as the injecting compensating electricity for just, obtaining A phase line first and last end nodes after decoupling accordingly Flow Δ Ia,i(k+1)With Δ Ia,j(k+1)For:
In formula, k is counts;
The A phases that above formula is calculated finally are compensated into electric current and are converted into node injecting power, then the node injecting power after decoupling For the algebraical sum of the original injecting power of node and compensation injecting power:
In formula, k is counts, and subscript * represents conjugation Δ Sa,i(k+1)With Δ Sa,j(k+1)Headed by end-node compensation injection Power;
Similarly, it can be deduced that the injecting compensating power in B phases and C phases, the alternate full decoupled of ABC three-phases is realized.
Further, the step 5) in it is active and it is idle progress cross-iteration solve use below equation:
In formula, A be with active corresponding information matrix block, B be with idle corresponding information matrix block, α for correspondence it is active Correction matrix block, β is the idle correction matrix block of correspondence, Δ θkWith Δ UkRespectively ABC three-phase voltages phase angle and voltage magnitude The variable quantity of quantity of state, wherein, in order to improve constringency performance, balance node voltage is not involved in estimation;It is corresponding to measure vector It is divided into active and idle two class, zαFor active measurement segment vector, including branch road effective power flow PijWith node active injection power PiMeasurement, is set to mαDimension;zγFor idle measurement segment vector, including branch road reactive power flow Qij, node injection reactive power QiWith Node voltage amplitude ViMeasurement, is set to mγDimension;hαFor correspondence zαPart measure function vector, mαDimension;hγFor correspondence zγPortion Component surveys function vector, mγDimension.State of electric distribution network is estimated
In the case of known network structure, line parameter circuit value and measurement mechanism, non-linear measurement equation can be represented It is as follows:
Z=h (x)+v
In formula, x is state variable, and z is measurement, and h () is nonlinear function, and v is residual error.
The object function that quantity of state can be obtained accordingly is:
J (x)=[z-h (x)]TR-1[z-h(x)]
In formula, R-1To measure weight matrix, then the value of optimal quantity of state is the state for causing object function minimum The value of amount.Generally solved using Newton iteration method.The inventive method first passes through alternate decoupling separation three-phase data, then by fast Speed, which is decomposed, decoupled in phase, and the same optimal objective function using above formula is solved, most by active and idle cross-iteration The approximation of optimum state amount is obtained afterwards.
Sample calculation analysis
The example test of the present invention is based on IEEE13, IEEE34 and IEEE123 three-phase imbalance distribution system,
The inventive method is designated as method 1, three-phase is not decoupled and the method for estimating state based on Newton method is designated as method 2, will The filtering performance of two kinds of algorithms is contrasted.Selection three-phase is not decoupled simultaneously and the power flow solutions based on Newton method calculating are as shape The true value of state estimation.
Table 1 be method 1 with method 2 in three kinds of different test systems, the contrast of the iterations of two methods, and Fixed convergence precision is 10-6In the case of compared for two kinds of algorithms calculating take.As can be seen from Table 1, compared to method 2, The inventive method sacrifices partial convergence, and iterations is more, about twice of method 2.But sent out from time-consuming contrast is calculated Existing, context of methods calculating speed in three different test systems is faster than method 2, and the scale of system is bigger, calculates consumption When advantage it is more obvious, this is due to that the inventive method has carried out three-phase to decouple in alternate and phase respectively, active reactive repeatedly In generation, solves, and constant Jacobian matrix does not need variations and modifications in iteration, therefore greatly improves calculating speed.By Data in table are visible, and context of methods greatly improves calculating speed under the requirement of identical filtering accuracy, in extensive distribution Had a good application prospect in the state estimation of net system.
Accompanying drawing 3-5 is respectively method 1 and 2 times three-phase voltage amplitudes of method and Three-phase Power Flow true value in IEEE13 node systems Error amount contrast.Final result is used as using the average value of 100 independent tests.As seen from the figure, the inventive method and method 2 There is close filtering accuracy, the error amount of 2 kinds of methods and trend true value is about 10-3, illustrate that the inventive method can be protected Filtering accuracy is demonstrate,proved, simultaneously because its quick computing capability, makes it have good in the state estimation of large-scale power distribution network Engineering practice is worth.
The iterations of the two methods of table 1 is with calculating time-consuming contrast

Claims (6)

1. a kind of bilingual coupling method for estimating state of power distribution network, it is characterised in that:Comprise the following steps:
1) information such as the network parameter of power distribution network, including line parameter circuit value, transformer parameter, and network node numbering are obtained;
2) the polynary metric data in power distribution network is obtained, and is classified according to type is measured;
3) classification application of data:The metric data of A, B, C three-phase is classified respectively, it is determined that choosing A, B, C three-phase complex field mark The optimal power reference angle of youngestization, and realize three-phase metric data complex field standardization and branch current measure equivalent turn Change;
4) init state estimator:Counter is set to 0, and assigns initial value to quantity of state;
5) using the decoupling compensation for compensating current model and realizing respectively A, B, C three-phase, and using constant Jacobian matrix to active With idle progress cross-iteration solution, quantity of state is corrected, counter plus 1;
6) judge whether to meet estimated accuracy:If it has not, then turning to step 5), the end loop if estimated accuracy requirement is met, And output result.
2. the bilingual coupling method for estimating state of power distribution network according to claim 1, it is characterised in that:The step 2) in it is polynary Metric data source includes metric data, the metric data of micro- PMU devices, customer data base metric data of SCADA system etc., Measure type and be divided into the survey of voltage magnitude actual quantities, the survey of branch current magnitudes actual quantities, the survey of branch power actual quantities, node injecting power puppet amount Survey and virtual measurement.
3. the bilingual coupling method for estimating state of power distribution network according to claim 1, it is characterised in that:The step 3) in plural number The determination of domain standardization power perspective a reference value uses optimal method, and initially setting up optimization object function is:
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msup> <mrow> <mo>(</mo> <mi>&amp;pi;</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>l</mi> </mrow>
In formula, αiIt is the intrinsic angle of line impedance, is decided by resistance and the reactance of circuit, φsFor it needs to be determined that optimal value Power reference angle, l is the branch road sum in power distribution network, and the principle for choosing optimized power reference angle is to enable to all branch roads Impedance angle as close asSo thatRatio as close as in 0, so as to realize the quick decoupling bar of power distribution network Part, therefore, by bounding method by object function to φsLocal derviation is sought, and makes local derviation be 0, it can obtain optimal power reference angle φs Value be:
<mrow> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>l</mi> <mo>.</mo> </mrow>
4. the bilingual coupling method for estimating state of power distribution network according to claim 1, it is characterised in that:The step 3) middle measurement The complex field standardization of data is according to selected optimal power reference angle, it is necessary to which the metric data of each phase first is carried out into complex field Standardization, wherein selecting power reference in complex fieldAnd voltage referenceFor:
<mrow> <msub> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> </mrow>
<mrow> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>v</mi> </msub> </mrow> </msup> </mrow>
In formula, φvFor voltage reference angle, because voltage reference angle does not influence on impedance angle, so in order to simplify calculating, choosing Take φvIt is equal with voltage magnitude before for the voltage magnitude after 0 degree, therefore complex field standardization;And power reference angle φsFor The optimal value determined according to above-mentioned choosing method;
The complex field standardization of power measurement is measured suitable for power type, including node injecting power is measured, branch power amount Survey etc.;
It is if complex power is measured under real number fieldThen:
<mrow> <msup> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msup> <mo>=</mo> <msup> <mi>P</mi> <mi>m</mi> </msup> <mo>+</mo> <msup> <mi>jQ</mi> <mi>m</mi> </msup> </mrow>
In formula, PmAnd QmRespectively active power is measured and reactive power is measured.It is rightComplex field standardization is carried out, plural number is obtained Complex power under the standardization of domain is measured
<mrow> <msubsup> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>=</mo> <mfrac> <msup> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msup> <msub> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <msup> <mi>P</mi> <mi>m</mi> </msup> <mo>+</mo> <msup> <mi>jQ</mi> <mi>m</mi> </msup> </mrow> <mrow> <msub> <mi>S</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>+</mo> <msubsup> <mi>jQ</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>+</mo> <msubsup> <mi>jQ</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> </mrow>
Then have,
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>=</mo> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>+</mo> <msubsup> <mi>jQ</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>)</mo> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <msub> <mi>cos&amp;phi;</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>Q</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <msub> <mi>sin&amp;phi;</mi> <mi>s</mi> </msub> </mrow>
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>=</mo> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>g</mi> <mrow> <mo>(</mo> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>+</mo> <msubsup> <mi>jQ</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>)</mo> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <msub> <mi>sin&amp;phi;</mi> <mi>s</mi> </msub> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <msub> <mi>cos&amp;phi;</mi> <mi>s</mi> </msub> </mrow>
In formula,It is that active power and reactive power under complex field standardization is measured respectively;It is real respectively Active power and reactive power under number field standardization are measured;
Power measurement variance after complex field standardization is:
<mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> </mrow>
<mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> </mrow>
In formula,It is the active power measurement variance and reactive power measurement variance under complex field standardization respectively,It is the active power measurement variance and reactive power measurement variance under real number field standardization respectively;
It is φ to choose voltage reference anglev=0, voltage magnitude is equal with real number field standardization voltage magnitude after complex field standardization.This When, it is equal that the voltage magnitude before and after complex field standardization measures variance, i.e.,:
<mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>v</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>v</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> </mrow>
In formula,Variance is measured for the voltage magnitude under complex field standardization,For the voltage magnitude under real number field standardization Measure variance;
There are most branch current magnitudes in power distribution network real system to measure, but the measurement of these branch current magnitudes can not be straight Scoop out use;The method converted using common equivalent measurement carries out the equivalent transformation of branch current magnitudes measurement;
Branch road direct-to-ground capacitance is neglected, then branch powerFor:
<mrow> <msub> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;theta;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msup> </mrow>
In formula,For the voltage magnitude of node i, θiFor the voltage phase angle of node i, IijFor branch road ij current amplitude, βijFor branch Road ij current phase angle;
Then equivalent branch power, which is measured, is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>e</mi> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>m</mi> </msubsup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Q</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>e</mi> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>m</mi> </msubsup> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
In formula,Respectively equivalent branch road is active and reactive power is measured,For branch road ij current amplitude;Need note Meaning, UiiijThe value of an iteration before being;The branch power for measuring equivalent transformation by the branch current magnitudes is measured, Need to be updated after each iteration, to ensure the accuracy of equivalent measurement conversion;
If branch current phasorFor:
<mrow> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> </mrow>
Complex field current reference valueFor:
<mrow> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>U</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>0</mn> </mrow> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> </mrow>
Through the branch current after complex field standardizationFor:
<mrow> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>I</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <msub> <mi>j&amp;phi;</mi> <mi>s</mi> </msub> </mrow> </msup> </mrow> </mfrac> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> </mrow>
Branch current magnitudes i.e. after complex field standardization are equal with the branch current magnitudes after real number field standardization, and its variance is also It is equal:
<mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>I</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>I</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> </mrow>
In formula,For the variance after complex field standardization,For the variance after real number field standardization;
Equivalent branch road after complex field standardization, which is measured, is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>e</mi> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Q</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mi>e</mi> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mi>m</mi> </msubsup> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
Equivalent branch road respectively after complex field standardization is active and reactive power is measured,For real number field Branch current after standardization.
The measurement variance of equivalent branch power after corresponding complex field standardizationWithFor:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <msup> <mi>p</mi> <mi>e</mi> </msup> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>I</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mrow> <msup> <mi>q</mi> <mi>e</mi> </msup> <mo>,</mo> <mi>c</mi> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>I</mi> <mo>,</mo> <mi>p</mi> <mi>u</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
5. the bilingual coupling method for estimating state of power distribution network according to claim 1, it is characterised in that:The step 5) in benefit Current model is repaid to be described as follows:
The relation of circuit head end and the voltage and current of end can be described as in power distribution network:
<mrow> <msubsup> <mi>Y</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> <mi>&amp;Delta;</mi> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow>
Wherein,For branch road head end voltage and the difference of terminal voltage,To flow through series arm Electric current,Represent the three-phase admittance matrix of circuit:
<mrow> <msubsup> <mi>Y</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>a</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow>
In view of there is direct-to-ground capacitance, therefore the expression formula of increase circuit first and last end node voltage and current in circuit first and last node For:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>Y</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>Y</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein,WithThe voltage of branch road first and last end node is represented respectively,WithBranch road head end and end are represented respectively The node Injection Current at end,For the direct-to-ground capacitance matrix of circuit:
Wherein,
<mrow> <msubsup> <mi>Y</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>a</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>b</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow>
The alternate decoupling of the three-phase distribution net of asymmetry parameter is carried out using compensation current model;Therefore, by the voltage electricity of circuit Flow relation is deployed, and the gaussian iteration form for obtaining A phases is as follows:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>a</mi> </mrow> <mi>z</mi> </msubsup> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> <mo>&amp;rsqb;</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>a</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>a</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
In formula, k is iterations;
Therefore, to flow into node direction as the injecting compensating electric current Δ for just, obtaining A phase line first and last end nodes after decoupling accordingly Ia,i(k+1)With Δ Ia,j(k+1)For:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>c</mi> </msubsup> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>y</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>c</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula, k is counts;
The A phases that above formula is calculated finally are compensated into electric current and are converted into node injecting power, then the node injecting power after decoupling is section The algebraical sum of the original injecting power of point and compensation injecting power:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>&amp;Delta;</mi> <msub> <mi>S</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <msubsup> <mi>I</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;S</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>&amp;Delta;I</mi> <mrow> <mi>a</mi> <mo>,</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula, k is counts, and subscript * represents conjugation Δ Sa,i(k+1)With Δ Sa,j(k+1)Headed by end-node compensation injecting power;
Similarly, it can be deduced that the injecting compensating power in B phases and C phases, the alternate full decoupled of ABC three-phases is realized.
6. the bilingual coupling method for estimating state of power distribution network according to claim 1, it is characterised in that:The step 5) in having Work(and idle carry out cross-iteration, which are solved, uses below equation:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>A</mi> <mi>&amp;Delta;</mi> <msup> <mi>&amp;theta;</mi> <mi>k</mi> </msup> <mo>=</mo> <mi>&amp;alpha;</mi> <mo>&amp;lsqb;</mo> <msub> <mi>z</mi> <mi>&amp;alpha;</mi> </msub> <mo>-</mo> <msub> <mi>h</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <msup> <mi>&amp;theta;</mi> <mi>k</mi> </msup> <mo>,</mo> <msup> <mi>U</mi> <mi>k</mi> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&amp;theta;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>&amp;theta;</mi> <mi>k</mi> </msup> <mo>+</mo> <mi>&amp;Delta;</mi> <msup> <mi>&amp;theta;</mi> <mi>k</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>B&amp;Delta;U</mi> <mi>k</mi> </msup> <mo>=</mo> <mi>&amp;beta;</mi> <mo>&amp;lsqb;</mo> <msub> <mi>z</mi> <mi>&amp;gamma;</mi> </msub> <mo>-</mo> <msub> <mi>h</mi> <mi>&amp;gamma;</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>&amp;theta;</mi> <mi>k</mi> </msup> <mo>,</mo> <msup> <mi>U</mi> <mi>k</mi> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>U</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>U</mi> <mi>k</mi> </msup> <mo>+</mo> <mi>&amp;Delta;</mi> <msup> <mi>U</mi> <mi>k</mi> </msup> </mtd> </mtr> </mtable> </mfenced>
In formula, A be with active corresponding information matrix block, B active is repaiied for correspondence with idle corresponding information matrix block, α Positive matrices block, β is the idle correction matrix block of correspondence, Δ θkWith Δ UkRespectively ABC three-phase voltages phase angle and voltage magnitude state The variable quantity of amount, wherein, in order to improve constringency performance, balance node voltage is not involved in estimation;The corresponding vector that will measure is divided into Active and idle two class, zαFor active measurement segment vector, including branch road effective power flow PijWith node active injection power PiAmount Measurement, is set to mαDimension;zγFor idle measurement segment vector, including branch road reactive power flow Qij, node injection reactive power QiAnd section Point voltage magnitude ViMeasurement, is set to mγDimension;hαFor correspondence zαPart measure function vector, mαDimension;hγFor correspondence zγPart Measure function vector, mγDimension.
CN201710315211.8A 2017-05-05 2017-05-05 A kind of bilingual coupling method for estimating state of power distribution network Pending CN107104430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710315211.8A CN107104430A (en) 2017-05-05 2017-05-05 A kind of bilingual coupling method for estimating state of power distribution network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710315211.8A CN107104430A (en) 2017-05-05 2017-05-05 A kind of bilingual coupling method for estimating state of power distribution network

Publications (1)

Publication Number Publication Date
CN107104430A true CN107104430A (en) 2017-08-29

Family

ID=59657597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710315211.8A Pending CN107104430A (en) 2017-05-05 2017-05-05 A kind of bilingual coupling method for estimating state of power distribution network

Country Status (1)

Country Link
CN (1) CN107104430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964047A (en) * 2018-08-07 2018-12-07 河海大学 A kind of State Estimation for Distribution Network
CN109787268A (en) * 2017-11-10 2019-05-21 国网青海省电力公司 It is a kind of meter and photovoltaic injecting power method for estimating state
CN112448403A (en) * 2020-11-16 2021-03-05 国网四川省电力公司经济技术研究院 Decoupling configuration method for energy storage of power distribution network
CN112636325A (en) * 2020-11-11 2021-04-09 广东电网有限责任公司广州供电局 Power distribution network robust state calculation method and device, terminal and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071387A (en) * 2015-08-13 2015-11-18 河海大学 Power distribution network rapid decomposition state estimation method based on complex number domain per unit theory
CN106208082A (en) * 2016-09-21 2016-12-07 河海大学 A kind of power distribution network bilingual coupling tidal current computing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071387A (en) * 2015-08-13 2015-11-18 河海大学 Power distribution network rapid decomposition state estimation method based on complex number domain per unit theory
CN106208082A (en) * 2016-09-21 2016-12-07 河海大学 A kind of power distribution network bilingual coupling tidal current computing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周佳伟等: "基于复数域标幺化的配电网三相不对称快速分解状态估计算法", 《电力自动化设备》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787268A (en) * 2017-11-10 2019-05-21 国网青海省电力公司 It is a kind of meter and photovoltaic injecting power method for estimating state
CN108964047A (en) * 2018-08-07 2018-12-07 河海大学 A kind of State Estimation for Distribution Network
CN112636325A (en) * 2020-11-11 2021-04-09 广东电网有限责任公司广州供电局 Power distribution network robust state calculation method and device, terminal and storage medium
CN112636325B (en) * 2020-11-11 2023-04-18 广东电网有限责任公司广州供电局 Power distribution network robust state calculation method and device, terminal and storage medium
CN112448403A (en) * 2020-11-16 2021-03-05 国网四川省电力公司经济技术研究院 Decoupling configuration method for energy storage of power distribution network

Similar Documents

Publication Publication Date Title
CN107577870B (en) Power distribution network voltage power sensitivity robust estimation method based on synchronous phasor measurement
CN107843810B (en) Active power distribution network fault section online positioning method based on state estimation
CN107104430A (en) A kind of bilingual coupling method for estimating state of power distribution network
CN101505061B (en) Computation method capable of tracking Davinan equivalence parameter base on time domain simulation
CN104778367B (en) Wide area Thevenin&#39;s equivalence parameter on-line calculation method based on a single state section
CN103532137B (en) A kind of method for estimating state of three-phase and four-line low-voltage network
CN110927519B (en) Active power distribution network fault positioning method based on mu PMU measurement value
CN105071387B (en) Based on the power distribution network Fast decoupled state estimation method that complex field standardization is theoretical
TW201506412A (en) Method for estimating voltage stability
CN104794531A (en) MDCOPF (modified direct current optimal power flow) method based on grid loss equivalent load model
CN107749627A (en) Based on the intelligent distribution network Load Flow Jacobian Matrix method of estimation for improving match tracing
CN110333394A (en) A kind of low-voltage network line impedance estimation method
CN108599167B (en) Linear power flow calculation method for radial power distribution network
CN104182644A (en) Power distribution network state estimation method fusing distributed generation characteristics
CN106786536B (en) Consider the method for estimating state of outer net extended Ward equivalent
CN105974271A (en) Distribution line fault port node impedance matrix calculation method
CN106159941B (en) It is a kind of to consider the actual power system state estimation method for measuring error propagation characteristic
CN109494743A (en) The estimation method of electric system mains by harmonics state based on matrix reconstruction
CN103838962B (en) Step-by-step linear state estimation method with measurement of PMU
CN108258725A (en) A kind of double-fed fan motor machine Dynamic Equivalence based on the equivalent generator rotor angle people having the same aspiration and interest
CN106709195A (en) Bilinear WLAV (weighted least absolute value) state estimation method with equality constraints considered
CN116257973A (en) Particle swarm optimization-based low-voltage power network line impedance and loss calculation method and system
CN108649585A (en) Direct method for quickly searching static voltage stability domain boundary of power system
CN105048445A (en) Method for three phase state estimation in active distribution system taking multiple types of distributed generators (DG) into consideration
CN104269872B (en) A kind of unusual processing method of Three-Phase Transformer bus admittance matrix

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191023

Address after: 211199 No. 8 West Buddha Road, Jiangning Technology Development Zone, Jiangning District, Jiangsu, Nanjing, China

Applicant after: HOHAI University

Applicant after: STATE GRID JIANGSU ELECTRIC POWER COMPANY Research Institute

Address before: 211199 No. 8 West Buddha Road, Jiangning Technology Development Zone, Jiangning District, Jiangsu, Nanjing, China

Applicant before: HOHAI University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829