CN107097218B - Wire traction variable-rigidity mechanism based on mechanical locking - Google Patents
Wire traction variable-rigidity mechanism based on mechanical locking Download PDFInfo
- Publication number
- CN107097218B CN107097218B CN201710386114.8A CN201710386114A CN107097218B CN 107097218 B CN107097218 B CN 107097218B CN 201710386114 A CN201710386114 A CN 201710386114A CN 107097218 B CN107097218 B CN 107097218B
- Authority
- CN
- China
- Prior art keywords
- wire
- locking
- variable stiffness
- connecting disc
- stiffness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
- B25J9/065—Snake robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/104—Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
- B25J9/1045—Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons comprising tensioning means
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于机械锁定的丝牵引变刚度机构,包括连续型机器人基本结构、变刚度锁紧机构和变刚度牵引机构;连续型机器人基本结构由连接盘、中央丝和呈圆周分布的四根驱动丝组成,连接盘分为中间连接盘和末端连接盘,末端连接盘通过楔形锁嘴与中央丝和驱动丝的末端固定,中间连接盘通过楔形锁嘴与中央丝固定;变刚度锁紧机构是以每个中间连接盘为机架,由滑动斜齿轮、弹簧、不完全齿轮、连杆和镶嵌金属片构成的单自由度机构;变刚度牵引机构由导丝外鞘、抗拉金属丝、金属丝锁粒构成,导丝外鞘与中央丝同心,抗拉金属丝穿过导丝外鞘和中央丝的楔形锁嘴,通过金属丝锁粒与滑动斜齿轮固定。该机构刚柔状态转换迅速,定位刚度更高。
The invention discloses a wire traction variable stiffness mechanism based on mechanical locking, which includes a basic structure of a continuous robot, a variable stiffness locking mechanism and a variable stiffness traction mechanism; Composed of four driving wires, the connecting disc is divided into a middle connecting disc and an end connecting disc, the end connecting disc is fixed with the central wire and the end of the driving wire through a wedge-shaped lock mouth, and the middle connecting disc is fixed with the central wire through a wedge-shaped lock mouth; variable stiffness lock The tightening mechanism is a single-degree-of-freedom mechanism composed of sliding helical gears, springs, incomplete gears, connecting rods, and inlaid metal sheets with each intermediate connecting plate as the frame; the variable-stiffness traction mechanism consists of a guide wire sheath, a tensile metal The outer sheath of the guide wire is concentric with the central wire, and the tensile metal wire passes through the wedge-shaped lock mouth of the outer sheath of the guide wire and the central wire, and is fixed by the locking grain of the wire and the sliding helical gear. The rigid-flexible state of the mechanism can be converted quickly, and the positioning rigidity is higher.
Description
技术领域technical field
本发明涉及连续型机构变刚度设计领域,具体地说,是涉及一种基于机械锁定的丝牵引变刚度机构。The invention relates to the field of variable stiffness design of continuous mechanisms, in particular to a wire traction variable stiffness mechanism based on mechanical locking.
背景技术Background technique
模仿蛇类、象鼻等生物器官的连续型机构具有较高的运动灵活性,在复杂的环境中有很强的适应能力,尤其是在多障碍物的非结构环境和空间狭窄的环境中可以灵活地改变自身形状。但是由于连续性机构高灵活性的特点,又导致其表现出定位刚度差、控制精度低的缺点。在医疗等领域的应用中,往往需要连续型机构既要表现良好的柔顺性,又要在一定条件下具有一定的刚度。比如将连续型机构用于内窥镜机器人,其工作过程分为两个阶段,第一阶段需要机器人在柔性状态顺应人体腔道结构,将手术工具送入目标位置;第二阶段当手术工具在人体内操作时,这就要求机器人具备足够的刚度来为末端手术工具提供力学支撑。因此对连续型机构变刚度的研究具有很大意义。Continuous mechanisms that imitate biological organs such as snakes and elephant trunks have high movement flexibility and strong adaptability in complex environments, especially in unstructured environments with many obstacles and narrow spaces. Change its shape flexibly. However, due to the high flexibility of the continuous mechanism, it also has the disadvantages of poor positioning rigidity and low control precision. In applications in medical and other fields, continuous mechanisms are often required to exhibit good flexibility and certain rigidity under certain conditions. For example, when a continuous mechanism is used for an endoscopic robot, its working process is divided into two stages. In the first stage, the robot needs to conform to the structure of the human cavity in a flexible state, and send the surgical tool to the target position; in the second stage, when the surgical tool is in the When operating in the human body, this requires the robot to have sufficient stiffness to provide mechanical support for the end-surgical tools. Therefore, the research on the variable stiffness of continuous mechanism has great significance.
近些年,人们利用负压阻塞机构,低熔点合金相变,正压锁紧等方式发明了多种变刚度连续型机构,但多数表现出变化刚度不够大,响应速度不够快等缺陷。In recent years, people have invented a variety of variable stiffness continuous mechanisms by using negative pressure blocking mechanisms, low melting point alloy phase transformation, positive pressure locking, etc., but most of them show defects such as insufficient variable stiffness and insufficient response speed.
发明内容Contents of the invention
本发明的目的是为了克服现有技术中的不足,提供一种基于机械锁定的丝牵引变刚度机构,该机构采用机构摩擦锁死技术,通过省力锁紧装置摩擦限制机器人关节内部的相对运动,从而改变结构刚度。对于镍钛合金丝驱动的连续型机器人而言,该变刚度方案是通过已有的连接盘对驱动丝直接锁死,因而设计紧凑。另外该机械式变刚度设计响应快,刚柔状态转换迅速,定位刚度更高。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a wire traction variable stiffness mechanism based on mechanical locking. The mechanism adopts the mechanism friction locking technology, and the relative movement inside the robot joint is limited by the friction of the labor-saving locking device. Thereby changing the structural stiffness. For the continuous robot driven by nickel-titanium alloy wire, the variable stiffness scheme is to directly lock the driving wire through the existing connecting plate, so the design is compact. In addition, the mechanical variable stiffness design has fast response, rapid transition between rigid and flexible states, and higher positioning rigidity.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved by the following technical solutions:
一种基于机械锁定的丝牵引变刚度机构,包括连续型机器人基本结构、变刚度锁紧机构和变刚度牵引机构;所述连续型机器人基本结构由连接盘、中央丝和呈圆周分布的四根驱动丝组成,所述连接盘上与所述驱动丝相对应地设有过丝孔,连接盘分为中间连接盘和末端连接盘,所述末端连接盘通过楔形锁嘴与中央丝和驱动丝的末端固定,所述中间连接盘通过楔形锁嘴与中央丝固定,所述楔形锁嘴由开槽的楔形螺钉和螺母构成;A wire traction variable stiffness mechanism based on mechanical locking, including the basic structure of a continuous robot, a variable stiffness locking mechanism and a variable stiffness traction mechanism; The driving wire is composed of a wire passing hole corresponding to the driving wire on the connecting plate. The connecting plate is divided into a middle connecting plate and an end connecting plate. The end connecting plate is connected with the central wire and the driving wire through a wedge-shaped lock mouth. The end is fixed, and the middle connection plate is fixed with the central wire through a wedge lock mouth, and the wedge lock mouth is composed of a slotted wedge screw and a nut;
所述变刚度锁紧机构是以每个中间连接盘为机架,由滑动斜齿轮、弹簧、不完全齿轮、连杆和镶嵌金属片构成的单自由度机构,所述滑动斜齿轮是可在中间连接盘上纵向滑动的斜齿轮,所述不完全齿轮的一端分布有与滑动斜齿轮啮合的不完全斜齿,另一端分布有与所述连杆配合的连接轴,中间分布有与连接盘配合的轴孔和锁丝孔,以及用于固定所述镶嵌金属片的连接孔,所述连杆的两端设有与所述不完全齿轮相配合的连接孔;The variable stiffness locking mechanism is a single-degree-of-freedom mechanism composed of sliding helical gears, springs, incomplete gears, connecting rods and inlaid metal sheets, with each intermediate connecting plate as a frame. A helical gear that slides longitudinally on the middle connecting plate, one end of the incomplete gear is distributed with incomplete helical teeth meshing with the sliding helical gear, the other end is distributed with a connecting shaft that cooperates with the connecting rod, and the middle is distributed with a Cooperating shaft holes and locking thread holes, and connecting holes for fixing the inlaid metal sheet, the two ends of the connecting rod are provided with connecting holes matching the incomplete gear;
所述变刚度牵引机构由导丝外鞘、抗拉金属丝、金属丝锁粒构成,所述导丝外鞘与中央丝同心,所述抗拉金属丝穿过导丝外鞘和中央丝的楔形锁嘴,通过所述金属丝锁粒与滑动斜齿轮固定。The traction mechanism with variable stiffness is composed of a guide wire sheath, a tensile metal wire, and a wire locking grain. The guide wire sheath is concentric with the central wire, and the tensile metal wire passes through the guide wire sheath and the central wire. The wedge-shaped lock mouth is fixed with the sliding helical gear through the metal wire lock grain.
所述连接盘上还设有与所述楔形锁嘴相配合的锥孔。The connecting plate is also provided with a tapered hole matching with the wedge-shaped lock mouth.
所述滑动斜齿轮的四周分布有模数小于1mm的斜齿。Helical teeth with a modulus less than 1mm are distributed around the sliding helical gear.
所述中央丝和驱动丝均由可弯曲且不产生轴向变形的合金丝构成。Both the central wire and the driving wire are made of alloy wires that are bendable and do not produce axial deformation.
所述变刚度锁紧机构为辐射对称的单自由度机构,且由滑动斜齿轮驱动。The variable stiffness locking mechanism is a radially symmetrical single-degree-of-freedom mechanism, and is driven by a sliding helical gear.
所述的变刚度锁紧机构设有用于均衡每根丝的锁紧力的连杆机构,连杆结构包括连杆和不完全齿轮。The variable stiffness locking mechanism is provided with a link mechanism for balancing the locking force of each wire, and the link structure includes a link and an incomplete gear.
所述的变刚度牵引机构可同步牵引所有连接盘上的变刚度锁紧机构。The variable stiffness traction mechanism can synchronously pull the variable stiffness locking mechanisms on all connecting plates.
在以上描述到的结构当中,每个连接盘上的变刚度锁紧机构中的滑动斜齿轮在同一抗拉金属丝的牵引之下,发生沿着连接盘轴向的移动,根据斜齿轮的特点,其轴向的移动可等效出绕中心轴的转动,并与不完全齿轮产生啮合运动。不完全齿轮一边作为啮合的齿轮,同时作为锁紧的省力杠杆,用于限制驱动丝的自由滑动,将其与连接盘摩擦固定。在不完全齿轮和连接盘上嵌入金属片,金属片成为锁死过程中与驱动丝直接接触的零件,可提高锁紧摩擦力。根据如此锁紧原理可以消除连接盘与驱动丝之间的相对滑动,使连续型机器人连接盘之间变为由多根金属丝固定支撑,从而提高局部刚度,进而提高了机器人的整体刚度。In the structure described above, the sliding helical gear in the variable stiffness locking mechanism on each connecting plate moves along the axial direction of the connecting plate under the traction of the same tensile wire. According to the characteristics of the helical gear , its axial movement can be equivalent to the rotation around the central axis, and produces meshing motion with the incomplete gear. One side of the incomplete gear is used as a meshing gear, and at the same time as a locking labor-saving lever, which is used to limit the free sliding of the driving wire and fix it with the connecting disc by friction. The metal sheet is embedded on the incomplete gear and the connecting plate, and the metal sheet becomes a part that directly contacts the driving wire during the locking process, which can improve the locking friction. According to such a locking principle, the relative sliding between the connection plate and the driving wire can be eliminated, so that the connection plates of the continuous robot are fixed and supported by multiple metal wires, thereby improving the local rigidity, thereby improving the overall rigidity of the robot.
与现有技术相比,本发明的技术方案所带来的有益效果是:Compared with the prior art, the beneficial effects brought by the technical solution of the present invention are:
1.该基于机械锁定的丝牵引变刚度机构是合金丝驱动的连续型机器人的基本结构而设计的,只需要在每个连接盘上添加变刚度锁紧机构来控制驱动丝与连接盘的摩擦关系即可,其优点是设计简洁,结构紧凑。1. The wire traction variable stiffness mechanism based on mechanical locking is designed for the basic structure of the continuous robot driven by alloy wire. It only needs to add a variable stiffness locking mechanism on each connecting plate to control the friction between the driving wire and the connecting plate The relationship is sufficient, and its advantage is that the design is simple and the structure is compact.
2.每个连接盘中的变刚度锁紧机构都只有一个自由度,而各个连接盘上的变刚度锁紧机构可以通过一根抗拉金属丝串联在一起,从而可以实现单一牵引完成整体变刚度的目的,并且变刚度锁紧机构中采用了斜齿轮滑动啮合原理和杠杆原理,具有很大的省力效果,因此该变刚度方案驱动简单,容易控制。2. The variable stiffness locking mechanism in each connection plate has only one degree of freedom, and the variable stiffness locking mechanism on each connection plate can be connected in series through a tensile metal wire, so that a single traction can be achieved to complete the overall variable stiffness. The purpose of rigidity, and the sliding meshing principle of helical gears and the principle of leverage are adopted in the variable stiffness locking mechanism, which has a great labor-saving effect. Therefore, the variable stiffness scheme is simple to drive and easy to control.
3.变刚度锁紧机构中融合了四个首尾相接的平行四边形机构,形成了一个环形的连杆机构,将四个不完全齿轮协同关联起来,可以协调均衡各根丝的锁紧力,使得连续型机器人各部分具有均匀的刚度。3. The variable stiffness locking mechanism combines four parallelogram mechanisms connected end to end to form a ring-shaped linkage mechanism, which connects the four incomplete gears in coordination to coordinate and balance the locking force of each wire. Make each part of the continuous robot have uniform stiffness.
4.该变刚度方案除了结构简单之外,还将刚度控制与运动控制完全独立进行,实现了刚度和运动的解耦。机械式的设计方案使得其变刚度操作响应迅速,稳定可靠。4. In addition to the simple structure, the variable stiffness scheme also performs stiffness control and motion control completely independently, realizing the decoupling of stiffness and motion. The mechanical design scheme makes its variable stiffness operation respond quickly, stable and reliable.
附图说明Description of drawings
图1-1、1-2是本发明的整体结构示意图。Figures 1-1 and 1-2 are schematic diagrams of the overall structure of the present invention.
图2是中央丝楔形锁嘴的结构示意图。Fig. 2 is a structural schematic diagram of the central wire wedge lock mouth.
图3-1、3-2、3-3是变刚度锁紧机构的结构示意图。Figures 3-1, 3-2, and 3-3 are structural schematic diagrams of variable stiffness locking mechanisms.
图4是滑动斜齿轮与不完全啮合齿轮的啮合示意图。Figure 4 is a schematic diagram of the meshing of the sliding helical gear and the incomplete meshing gear.
图5是变刚度牵引机构的结构示意图。Fig. 5 is a structural schematic diagram of the traction mechanism with variable stiffness.
附图标记:1-末端连接盘 2-驱动丝 3-中间连接盘 4-不完全齿轮 5-连杆 6-导丝外鞘 7抗拉金属丝 8-金属丝锁粒 9-滑动斜齿轮 10-中央丝 11-驱动丝楔形锁嘴 12-中央丝楔形锁嘴 13-楔形锁嘴螺母 14-弹簧 15-固定镶嵌金属片 16-活动镶嵌金属片17-过丝孔 18-锁丝杠杆转轴 19-夹缝Reference signs: 1-end connecting disc 2-driving wire 3-intermediate connecting disc 4-incomplete gear 5-connecting rod 6-
具体实施方式Detailed ways
下面结合附图对本发明作进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.
如图1-1和图1-2所示,一种基于机械锁定的丝牵引变刚度机构,包括连续型机器人基本结构、变刚度锁紧机构和变刚度牵引机构。连续型机器人基本结构由一根中央丝10将所在关节内所有连接盘串联在一起,在周布的驱动丝2的组合驱动之下可以实现关节的弯曲运动;变刚度锁紧机构在抗拉金属丝7的牵引作用下,可以卡紧周布的驱动丝2,使之相对各连接盘固定,从而改变了连续型机器人的结构刚度,起到调控整体结构刚度的作用;变刚度牵引机构用于传导抗拉丝的张力,并将丝的张力分布作用于各连接盘上的变刚度锁紧机构。本实施例中的驱动丝2和中央丝10均采用镍钛合金丝,镍钛合金丝不产生轴向变形但可弯曲,其它具有此性质的合金丝均适用于本发明。As shown in Figure 1-1 and Figure 1-2, a wire traction variable stiffness mechanism based on mechanical locking includes the basic structure of a continuous robot, a variable stiffness locking mechanism and a variable stiffness traction mechanism. The basic structure of the continuous robot consists of a
本实施例中,连续型机器人基本结构中由一根中央丝10依靠中央丝楔形锁嘴12固定串接多个中间连接盘3和一个末端连接盘1组成连续型机器人的一个关节。周布的四根驱动丝2依靠驱动丝楔形锁嘴11固定在末端连接盘1上,并穿过所有中间连接盘3上的过丝孔17与动力驱动部件连接。本实施例以中央丝楔形锁嘴12为例描述其工作原理,如图2为中央丝楔形锁嘴12的工作原理图,该锁紧装置中,中央丝楔形锁嘴12的外锥面与中间连接盘3上的锥孔相配合,中央丝楔形锁嘴12的大端设计有垂直交叉的开槽,中央丝楔形锁嘴12在受到楔形锁嘴螺母13的预紧作用下,中央丝楔形锁嘴12的开槽部分在中间连接盘3锥孔的约束之下产生变形,变形后的中央丝楔形锁嘴12会环抱中央丝10,在较大的环抱力的作用下,中央丝10与中央丝楔形锁嘴12具有很好的摩擦效果,因此可起到将中央丝10于中间连接盘3固联的作用,同理,驱动丝2与末端连接盘1的固定原理也相同,采用这样的固定方法的一条重要优点就是,可随意拆卸。单个柔性关节中因为周布的四根驱动丝2是受到所有依靠中央丝10固定的中间连接盘3所约束的,并且具有良好的弹性,所以当组合推拉各根驱动丝2时,整个柔性关节会受约束向着指定方向弯曲,成为镍钛合金丝驱动的连续型机器人的基本运动。In this embodiment, in the basic structure of the continuous robot, a
连续型机器人关节弯曲运动到指定位姿进行操作前,需要改变机器人各个关节刚度以抵御外界作用力,刚度的改变需要通过各个中间连接盘3上的辐射对称的单自由度变刚度锁紧机构来锁定周布的驱动丝2,使之相对于中间连接盘3固联,使得两个中间连接盘之间由一根中央丝支撑变为五根镍钛合金丝支撑,因此柔性关节能够获得刚度性能的提升。Before the joints of the continuous robot bend and move to the specified pose for operation, it is necessary to change the stiffness of each joint of the robot to resist the external force. Lock the
如图3-1、3-2和3-3所示,变刚度锁紧机构由滑动斜齿轮9、不完全齿轮4、连杆5、固定镶嵌金属片15和活动镶嵌金属片16等部件组成。滑动斜齿轮9是受到变刚度牵引机构驱动的主动部件,其外圆周分布有小模数斜齿,滑动斜齿轮9可以沿着中间连接盘3上的滑槽轴向移动,滑动斜齿轮轴向的移动可在径向产生等效的转动,如图4所示,当滑动斜齿轮9向下移动了X距离,周向上等效转动了一个齿的角度,滑动斜齿轮9与不完全齿轮4是完整啮合的斜齿轮机构,滑动斜齿轮9的移动产生的相对转动,最终驱动不完全齿轮4绕着锁丝杠杆转轴18产生转动,转动过程中使得与不完全齿轮4固定的活动镶嵌金属片16与固定镶嵌金属片15之间产生狭小的夹缝19,通过两块镶嵌金属片与驱动丝2的夹紧力摩擦力,可以保证驱动丝2与中间连接盘3的相对固定。在变刚度锁紧机构中滑动斜齿轮9施加给不完全齿轮4的驱动力和驱动丝2作用于活动镶嵌金属片16的压力是一对平衡力,不完全齿轮4上的锁丝孔到锁丝杠杆转轴18的距离远小于齿轮啮合分度圆圆周到锁丝杠杆转轴18的距离,因此该机构是一个省力机构,其作用效果就是在小的驱动力下可以获得较大的锁紧力。滑动斜齿轮9是在抗拉金属丝7牵引作用下滑动的,滑动斜齿轮9向下滑动锁紧驱动丝2以后,如果想解开锁紧,降低整体刚度,只需要松开驱动滑动斜齿轮9的抗拉金属丝7,在弹簧14回复力的作用下滑动斜齿轮9向上移动解除锁定。另外为了均衡各个不完全齿轮的锁紧力,在变刚度锁紧机构中组合了环形的平行四边形连杆机构,连杆机构包括连杆5和不完全齿轮4;相连两个不完全齿轮4作为一个平行四边形机构的一组对边,这样可以使得四个不完全齿轮4实现联动而获得均衡的锁紧力。As shown in Figures 3-1, 3-2 and 3-3, the variable stiffness locking mechanism is composed of sliding
所述的变刚度牵引机构是将基座上的牵引力输送、分配到各连接盘上的装置,如图1-1和图1-2所示变刚度牵引机构在中间连接盘3的基础上由抗拉金属丝7、导丝外鞘6、金属丝锁粒8组成,如图1-1和图5所示抗拉金属丝7穿过套在中央丝10上的导丝外鞘6再穿过中央丝楔形锁嘴12和滑动斜齿轮9上的细孔,在每个滑动斜齿轮9的上沿均固定有金属丝锁粒8,当拉拽抗拉金属丝7时即可同步牵引每个连接盘上的滑动斜齿轮9。为了使得对滑动斜齿轮9的牵引力分布均匀,同时采用四根抗拉金属丝7,这四根抗拉金属丝是在同一个牵引力下运动的。The variable stiffness traction mechanism is a device that transmits and distributes the traction force on the base to each connection plate. As shown in Figure 1-1 and Figure 1-2, the variable stiffness traction mechanism is composed of
本发明的工作过程如下:在柔顺状态下,通过动力驱动部件控制驱动丝2的长度变化,使连续型机器人关节达到指定的位姿。在保持其形状不变的情况下,在抗拉金属丝7的牵引下,各个连接盘上的滑动斜齿轮9相对各个中间连接盘3产生轴向移动,进而带动各个变刚度锁紧机构中的不完全齿轮4,使得驱动丝2相对中间连接盘3锁死,让整体转换为刚性状态;之后释放开抗拉金属丝7的牵引力,在各个变刚度锁紧机构中的弹簧14作用下滑动斜齿轮9回复移动,解除锁定,恢复整体的柔性。在锁定过程中,抗拉金属丝7要克服各个变刚度锁紧机构中弹簧14的弹力。The working process of the present invention is as follows: in the compliant state, the length change of the
本实施例中,整体结构中中央丝10、驱动丝2为超弹镍钛合金丝,抗拉金属丝7、金属丝锁粒8、导丝外鞘6和锁丝杠杆转轴18均为采购标准件,固定镶嵌金属片15和活动镶嵌金属片16均为激光切割加工而成的铝合金金属片,其他零部件均为3D打印件,材料为光敏树脂,连续型机器人基本结构、变刚度锁紧机构、变刚度牵引机构各部分彼此包含,装配一体。In this embodiment, the
本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。The present invention is not limited to the embodiments described above. The above description of the specific embodiments is intended to describe and illustrate the technical solution of the present invention, and the above specific embodiments are only illustrative and not restrictive. Without departing from the gist of the present invention and the scope of protection of the claims, those skilled in the art can also make many specific changes under the inspiration of the present invention, and these all belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710386114.8A CN107097218B (en) | 2017-05-26 | 2017-05-26 | Wire traction variable-rigidity mechanism based on mechanical locking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710386114.8A CN107097218B (en) | 2017-05-26 | 2017-05-26 | Wire traction variable-rigidity mechanism based on mechanical locking |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107097218A CN107097218A (en) | 2017-08-29 |
CN107097218B true CN107097218B (en) | 2023-04-07 |
Family
ID=59669295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710386114.8A Expired - Fee Related CN107097218B (en) | 2017-05-26 | 2017-05-26 | Wire traction variable-rigidity mechanism based on mechanical locking |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107097218B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108189000B (en) * | 2017-12-28 | 2020-05-12 | 哈尔滨工业大学深圳研究生院 | Rope-driven grabbing robot |
CN108638046B (en) * | 2018-05-18 | 2021-10-26 | 燕山大学 | A soft-body variable stiffness robot based on the principle of equal volume change |
CN110900652A (en) * | 2019-11-27 | 2020-03-24 | 天津大学 | A sponge-based continuum variable stiffness manipulator |
CN111687867A (en) * | 2020-06-11 | 2020-09-22 | 哈尔滨工业大学 | Soft mechanical arm with active rigidity changing function |
CN113211422B (en) * | 2021-03-29 | 2022-11-04 | 清华大学 | An Equal Curvature Linked Robot Arm |
CN113172614B (en) * | 2021-04-28 | 2022-09-06 | 清华大学 | Execution arm of continuum robot |
CN114043468B (en) * | 2021-11-15 | 2023-04-11 | 清华大学深圳国际研究生院 | Modular equal-curvature mechanical arm based on spherical gear and rack transmission |
CN114888843A (en) * | 2022-05-13 | 2022-08-12 | 华中科技大学 | Friction locking-based joint rigidity changing method and device |
CN115847389A (en) * | 2022-12-20 | 2023-03-28 | 北方工业大学 | Rigidity control and compensation method of continuum robot |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0321935A1 (en) * | 1987-12-22 | 1989-06-28 | Ief Werner Gmbh | Linear-unit |
CN103417298A (en) * | 2012-05-25 | 2013-12-04 | 三星电子株式会社 | Arm unit and robot having the same |
CN104647367A (en) * | 2014-12-29 | 2015-05-27 | 合肥工业大学 | Rope cable composite driven parallel stacking robot |
CN204725510U (en) * | 2015-06-23 | 2015-10-28 | 浙江大学 | The flexible joint actuator mechanism that a kind of rigidity is adjustable |
CN105690378A (en) * | 2016-03-22 | 2016-06-22 | 中国民航大学 | Compact multi-joint-section snake arm driving mechanism easy to expand |
CN106002988A (en) * | 2016-06-15 | 2016-10-12 | 北京工业大学 | Variable-length bendable fully-flexible mechanical arm structure |
CN106113019A (en) * | 2016-07-22 | 2016-11-16 | 长春理工大学 | Multi-joint flexible manipulator arm |
CN106493723A (en) * | 2016-12-08 | 2017-03-15 | 燕山大学 | Rope-driven air-articulated flexible robotic arm |
CN106562806A (en) * | 2016-08-31 | 2017-04-19 | 北京术锐技术有限公司 | Flexible surgical tool system using structure bones |
CN206913146U (en) * | 2017-05-26 | 2018-01-23 | 天津大学 | A kind of silk traction variation rigidity mechanism based on mechanical caging |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052761B2 (en) * | 2015-07-17 | 2018-08-21 | Deka Products Limited Partnership | Robotic surgery system, method, and apparatus |
-
2017
- 2017-05-26 CN CN201710386114.8A patent/CN107097218B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0321935A1 (en) * | 1987-12-22 | 1989-06-28 | Ief Werner Gmbh | Linear-unit |
CN103417298A (en) * | 2012-05-25 | 2013-12-04 | 三星电子株式会社 | Arm unit and robot having the same |
CN104647367A (en) * | 2014-12-29 | 2015-05-27 | 合肥工业大学 | Rope cable composite driven parallel stacking robot |
CN204725510U (en) * | 2015-06-23 | 2015-10-28 | 浙江大学 | The flexible joint actuator mechanism that a kind of rigidity is adjustable |
CN105690378A (en) * | 2016-03-22 | 2016-06-22 | 中国民航大学 | Compact multi-joint-section snake arm driving mechanism easy to expand |
CN106002988A (en) * | 2016-06-15 | 2016-10-12 | 北京工业大学 | Variable-length bendable fully-flexible mechanical arm structure |
CN106113019A (en) * | 2016-07-22 | 2016-11-16 | 长春理工大学 | Multi-joint flexible manipulator arm |
CN106562806A (en) * | 2016-08-31 | 2017-04-19 | 北京术锐技术有限公司 | Flexible surgical tool system using structure bones |
CN106493723A (en) * | 2016-12-08 | 2017-03-15 | 燕山大学 | Rope-driven air-articulated flexible robotic arm |
CN206913146U (en) * | 2017-05-26 | 2018-01-23 | 天津大学 | A kind of silk traction variation rigidity mechanism based on mechanical caging |
Non-Patent Citations (1)
Title |
---|
振动台固频调谐的弹性支承变刚度装置结构设计计算;王俊佳等;《机电产品开发与创新》;20041128(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107097218A (en) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107097218B (en) | Wire traction variable-rigidity mechanism based on mechanical locking | |
CN206913146U (en) | A kind of silk traction variation rigidity mechanism based on mechanical caging | |
JP6416886B2 (en) | Force transmission mechanism for teleoperated surgical system | |
WO2020135748A1 (en) | Flexible surgical tool system | |
CN103340707B (en) | External skeleton assisted rehabilitation therapy system | |
US9027441B2 (en) | Spherical gear | |
EP3998010B1 (en) | Self-locking device for endoscope | |
CN106725650A (en) | One kind is used for minimally invasive surgical operation robot quick-changing mechanism | |
CN112022238B (en) | Surgical instrument for minimally invasive surgery robot | |
CN106625639A (en) | Flexible arm linkage joint section | |
CN113288440B (en) | A minimally invasive interventional surgical robot based on multi-segment continuum series structure | |
CN109660147B (en) | Miniature multichannel piezoelectric steering engine | |
CN114557774A (en) | A multi-degree-of-freedom flexible continuum robot for lung interventional biopsy | |
CN111000599B (en) | A variable-stiffness snake-like surgical robot based on a nickel-titanium alloy skeleton | |
CN117159155A (en) | Multi-joint flexible robot for single-hole endoscopic surgery | |
CN101585188B (en) | Multidimensional Active Joint Based on Dielectric EAP | |
CN205111880U (en) | Crooked robot arm device of flexible pole spiral drive qxcomm technology | |
CN104505255A (en) | Three-dimensional coil winding clamp and winding method thereof | |
CN201446531U (en) | Multidimensional Active Joint Based on Dielectric EAP | |
CN113520489B (en) | A deformation controllable mechanism | |
CN105305877A (en) | Inchworm type piezoelectric actuator employing axial limiting-radial clamping mechanism, and method | |
CN1730246A (en) | Micromanipulators for throat surgery | |
CN204735998U (en) | Electricity main shaft lock sword actuating mechanism | |
CN113027934B (en) | A kind of isomorphic Hooke hinge wire drive device | |
CN221160362U (en) | Assembled mechanical arm convenient to disassemble |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230407 |