CN107093644B - 一种具有无功功率补偿系统的光伏发电系统 - Google Patents

一种具有无功功率补偿系统的光伏发电系统 Download PDF

Info

Publication number
CN107093644B
CN107093644B CN201710265870.5A CN201710265870A CN107093644B CN 107093644 B CN107093644 B CN 107093644B CN 201710265870 A CN201710265870 A CN 201710265870A CN 107093644 B CN107093644 B CN 107093644B
Authority
CN
China
Prior art keywords
reactive power
layer
compensation system
photovoltaic generating
power compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710265870.5A
Other languages
English (en)
Other versions
CN107093644A (zh
Inventor
徐晨
陈帅梁
陈琳
顾运莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Tianxiong Electric Automation Co Ltd
Original Assignee
Jiangsu Tianxiong Electric Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Tianxiong Electric Automation Co Ltd filed Critical Jiangsu Tianxiong Electric Automation Co Ltd
Priority to CN201710265870.5A priority Critical patent/CN107093644B/zh
Publication of CN107093644A publication Critical patent/CN107093644A/zh
Application granted granted Critical
Publication of CN107093644B publication Critical patent/CN107093644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种具有无功功率补偿系统的光伏发电系统,所述光伏发电系统包括:多个用于产生直流电的光伏组件;多个用于将所述直流电转换为交流电的功率转换器;多个无功功率补偿系统;所述光伏组件包括多个呈阵列排布的太阳能电池片,所述太阳能电池片为硅基异质结太阳能电池。本发明的光伏发电系统具有无功功率补偿系统,降低电能损耗,同时采用硅基异质结太阳能电池,制造成本低且光电转换效率优异。

Description

一种具有无功功率补偿系统的光伏发电系统
技术领域
本发明涉及配电与用电技术领域,特别是涉及一种具有无功功率补偿系统的光伏发电系统。
背景技术
电力网络用于各种用途的电力输送和配电。电力网络包括互相互连以产生,传输和分配电力的多个装置。电力网络在运行期间经历由不同发电装置的有功和无功功率的产生的变化以及在电力网络中的不同负载下的有功和无功功率的可变消耗引起的电压变化。连接大量可再生能源的电力网络在互连点及其附近可能会产生大的和快速的电压变化,导致电压调节装置(例如有载分接变换变压器和电容器)的过度运行。由于电压调节装置的运行速度有限,电力网络中的所有网络总线上不能始终保持恒定的电压。机械开关变压器水龙头和电容器的过度运行导致开关设备的维护和使用寿命的减少。减轻上述电压变化的一种方法是提供具有或不具有电压下降特性的闭环控制器。控制器调节无功电源,以使用机械开关电抗器和电容器以及诸如静态VAR补偿器(SVC)和静态同步补偿器(STATCOM)等动态装置来补偿电压变化。更具体地说,在一些可再生能源发电系统中,闭环控制器调节功率转换器的工作功率因数,以调节无功功率以减轻电压变化。然而,在该过程中,闭环控制器可能不期望地与电力网络中的其它电压控制器相互作用。此外,闭环控制器倾向于补偿网络和连接负载的无功功率需求,这导致无功电源中的损耗增加,并且其动态能力的次优化利用。
用于减轻电力网络中的电压变化的替代方法是单独地补偿每个发电装置的自感应电压变化。基于导致恒定功率因数运算的近似电压降方程来计算用于补偿自感应电压变化所需的无功功率的量。然而,这种方法在高功率条件下往往不准确,并且可能导致电力网络中的过度补偿,导致不期望的电压变化和增加的损耗。另一种方法是基于准确的电压降方程来计算无功功率量,这导致可变的功率因数运算。然而,这种方法在计算上是复杂的并且需要额外的数据。因此,需要一个改进的系统来解决上述问题。
发明内容
本发明的目的是克服上述现有技术的不足,提供一种具有无功功率补偿系统的光伏发电系统。
为实现上述目的,本发明提出的一种具有无功功率补偿系统的光伏发电系统,所述光伏发电系统包括:多个用于产生直流电的光伏组件;多个用于将所述直流电转换为交流电的功率转换器;多个无功功率补偿系统;
所述无功功率补偿系统执行如下操作:
1)基于光伏发电系统中的至少一个功率转换器的状态来计算无功功率的所需值;
2)基于所述无功功率的所需值生成无功功率指令;
3)将所述无功功率指令发送到产生所述无功功率的所需值的所述功率转换器中,以补偿由所述光伏发电系统中的所述功率转换器引起的电压变化;
所述光伏组件包括多个呈阵列排布的太阳能电池片,所述太阳能电池片为硅基异质结太阳能电池,所述硅基异质结太阳能电池按照如下步骤制备:
(a)对P型硅片进行清洗;
(b)采用金属离子辅助化学刻蚀法在所述P型硅片的上表面制备P型硅纳米线阵列;
(c)将含有所述P型硅纳米线阵列的所述P型硅片浸入硫化氨的水溶液中,作为阳极,并在硫化氨的水溶液中放置铂电极,作为阴极,进行电镀硫化处理,以得到硫化钝化层;
(d)在所述P型硅纳米线阵列的表面通过化学气相沉积法制备铁电钝化薄膜;
(e)随后在所述铁电钝化薄膜的表面通过PECVD法制备N型非晶硅薄膜;
(f)在所述N型非晶硅薄膜表面通过化学气相沉积法制备铁电薄膜隧穿层;
(g)在所述铁电薄膜隧穿层的表面沉积ITO透明导电层,在所述ITO透明导电层表面沉积银栅电极;
(h)在P型硅片的背面依次沉积氟化锂层和金属铝电极层。
作为优选,所述无功功率补偿系统包括卡尔曼滤波器;所述卡尔曼滤波器包括系统模块和观测模块。
作为优选,所述无功功率补偿系统包括直接无功功率补偿系统、无功电流补偿系统或功率因数补偿系统。
作为优选,每个光伏组件耦合到相应的一个功率转换器,每个功率转换器耦合到相应的一个无功功率补偿系统。
作为优选,所述P型硅纳米线阵列中硅纳米线的长度为1-2微米,相邻硅纳米线之间的间距为300-400 nm,所述硅纳米线的直径为600-800nm。
作为优选,所述铁电钝化薄膜和所述铁电薄膜隧穿层的材质为PZT、BTO、BFO或BST,所述铁电钝化薄膜和所述铁电薄膜隧穿层的厚度为1-3纳米。
作为优选,所述N型非晶硅薄膜的厚度为60-80纳米。
作为优选,所述ITO透明导电层的厚度为50-80纳米。
作为优选,所述氟化锂层的厚度为1-3纳米,所述金属铝电极层的厚度为80-100纳米。
本发明与现有技术相比具有下列优点:
(1) 本发明的光伏发电系统具有无功功率补偿系统,该无功功率补偿系统设计简单,可以降低电能损耗,同时提供了一种更有效和可靠的光伏发电系统,该光伏发电系统可以降低电压变化并提高其整体效率。
(2) 本发明采用硅纳米线阵列作为光活性层,提高了对太阳能光的吸收效率,同时异质结界面面积增加,提高了电子空穴对的分离及传输效率,有效地提高了太阳能电池的转换效率。
(3) 本发明通过金属离子辅助化学刻蚀法形成硅纳米线阵列,通过控制刻蚀时间得到了长度和密度合适的硅纳米线阵列结构,有利于径向异质结的形成。
(4) 本发明对硅纳米线阵列表面进行钝化改性,通过硫化钝化以及铁电薄膜钝化的配合作用,有效钝化了硅纳米线阵列表面的悬空键,降低了硅纳米线阵列表面的缺陷态密度,提高了异质结界面的稳定性。同时在P型硅纳米线阵列与N型非晶硅之间设置铁电薄膜隧穿层,利用隧穿效应,提供了空穴的传输效率,铁电薄膜同时作为钝化层和隧穿层,有效降低的制作成本。
(5)本发明在铝电极与P型硅片之间设置了氟化锂层,氟化锂层的存在调节了铝电极的功函数,进而降低了铝电极与P型硅片之间接触电阻,提高了P型硅异质结太阳能电池的内建电场,抑制了电子与空穴的复合。
附图说明
图1为本发明的具有无功功率补偿系统的光伏发电系统的示意图;
图2为本发明的硅基异质结太阳能电池的结构示意图。
具体实施方式
如图1-2所示,光伏发电系统包括第一、第二、第三功率转换器21、22、23。每个功率转换器21、22、23在互连点41、42、43处连接到电网6。第一、第二、第三无功功率补偿系统31、32、33分别耦合到第一、第二、第三功率转换器21、22、23。光伏发电系统包括生成直流电的第一、第二、第三光伏组件11、12、13。第一、第二、第三功率转换器21、22、23分别耦合到第一、第二、第三光伏组件11、12、13并将从它们产生的直流电转换为交流电,并将交流电传输到电网6。第一、第二、第三功率转换器21、22、23中的每一个都将互连点41、42、43处的电压变化引入电力网6。第一、第二、第三无功功率补偿系统31、32、33中的每一个耦合到相应的第一、第二、第三功率转换器21、22、23,用于补偿由各个功率转换器的功率输出引起的电压变化。
各个功率转换器21、22、23中的每一个的无功功率补偿系统31、32、33测量互连点41、42、43处的交流电的电压。每个无功功率补偿系统31、32、33基于每个功率转换器21、22、23的状态产生无功功率指令51、52、53,将所述无功功率指令51、52、53发送到产生相应的功率转换器中,以补偿由所述光伏发电系统中的所述功率转换器引起的电压变化。在一个实施例中,所述无功功率补偿系统包括卡尔曼滤波器;所述卡尔曼滤波器包括系统模块和观测模块。无功功率指令51、52、53可以包括用于产生无功功率或无功电流的所需值的命令或者在操作期间调整功率转换器21、22、23的功率因数。
所述光伏组件11、12、13包括多个呈阵列排布的太阳能电池片,所述太阳能电池片为硅基异质结太阳能电池,所述硅基异质结太阳能电池按照如下步骤制备:
(a)对P型硅片111进行清洗;
(b)采用金属离子辅助化学刻蚀法在所述P型硅片111的上表面制备P型硅纳米线阵列112;
(c)将含有所述P型硅纳米线阵列112的所述P型硅片111浸入硫化氨的水溶液中,作为阳极,并在硫化氨的水溶液中放置铂电极,作为阴极,进行电镀硫化处理,以得到硫化钝化层113;
(d)在所述P型硅纳米线阵列112的表面通过化学气相沉积法制备铁电钝化薄膜114;
(e)随后在所述铁电钝化薄膜114的表面通过PECVD法制备N型非晶硅薄膜115;
(f)在所述N型非晶硅薄膜115表面通过化学气相沉积法制备铁电薄膜隧穿层116;
(g)在所述铁电薄膜隧穿层116的表面沉积ITO透明导电层117,在所述ITO透明导电层117表面沉积银栅电极118;
(h)在P型硅片111的背面依次沉积氟化锂层119和金属铝电极层120。
其中,所述P型硅纳米线阵列112中硅纳米线的长度为1-2微米,相邻硅纳米线之间的间距为300-400 nm,所述硅纳米线的直径为600-800nm。所述铁电钝化薄膜114和所述铁电薄膜隧穿层116的材质为PZT、BTO、BFO或BST,所述铁电钝化薄膜114和所述铁电薄膜隧穿层116的厚度为1-3纳米。所述N型非晶硅薄膜115的厚度为60-80纳米。所述ITO透明导电层117的厚度为50-80纳米。所述氟化锂层119的厚度为1-3纳米,所述金属铝电极层120的厚度为80-100纳米。
在一个具体的实施例中,所述硅基异质结太阳能电池按照如下步骤制备:
所述硅基异质结太阳能电池按照如下步骤制备:
(a)对P型硅片111进行清洗;
(b)采用金属离子辅助化学刻蚀法在所述P型硅片111的上表面制备P型硅纳米线阵列112;
(c)将含有所述P型硅纳米线阵列112的所述P型硅片111浸入硫化氨的水溶液中,作为阳极,并在硫化氨的水溶液中放置铂电极,作为阴极,进行电镀硫化处理,以得到硫化钝化层113;
(d)在所述P型硅纳米线阵列112的表面通过化学气相沉积法制备铁电钝化薄膜114;
(e)随后在所述铁电钝化薄膜114的表面通过PECVD法制备N型非晶硅薄膜115;
(f)在所述N型非晶硅薄膜115表面通过化学气相沉积法制备铁电薄膜隧穿层116;
(g)在所述铁电薄膜隧穿层116的表面沉积ITO透明导电层117,在所述ITO透明导电层117表面沉积银栅电极118;
(h)在P型硅片111的背面依次沉积氟化锂层119和金属铝电极层120。
其中,所述P型硅纳米线阵列112中硅纳米线的长度为1.5微米,相邻硅纳米线之间的间距为350 nm,所述硅纳米线的直径为700nm。所述铁电钝化薄膜114为PZT,所述铁电钝化薄膜114的厚度为1.5纳米,所述铁电薄膜隧穿层116的材质为BTO,所述铁电薄膜隧穿层116的厚度为2纳米。所述N型非晶硅薄膜115的厚度为70纳米。所述ITO透明导电层117的厚度为60纳米。所述氟化锂层119的厚度为1.5纳米,所述金属铝电极层120的厚度为90纳米。通过各层的配合作用,该条件下的硅基异质结太阳能电池片具有优异的光电转换效率,光电转换效率高达19.5%。
对比例:
为了突出本发明硅基异质结太阳能电池的优异效果,作为对比,一种硅基异质结太阳能电池的制备方法,包括以下步骤:
(a)对P型硅片进行清洗;
(b)采用金属离子辅助化学刻蚀法在所述P型硅片的上表面制备P型硅纳米线阵列;
(c)将所述P型硅片的所述P型硅纳米线阵列进行常规甲基化钝化处理;
(d)随后在所述P型硅纳米线阵列的表面通过PECVD法制备N型非晶硅薄膜;
(e)在所述N型非晶硅薄膜的表面沉积ITO透明导电层,在所述ITO透明导电层表面沉积银栅电极;
(f)在P型硅片的背面沉积金属铝电极层。
其中,所述P型硅纳米线阵列中硅纳米线的长度为1.5微米,相邻硅纳米线之间的间距为350 nm,所述硅纳米线的直径为700nm。所述N型非晶硅薄膜的厚度为70纳米。所述ITO透明导电层的厚度为60纳米,所述金属铝电极层的厚度为90纳米。该硅基异质结太阳能电池片的光电转换效率为16.6%。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (5)

1.一种具有无功功率补偿系统的光伏发电系统,其特征在于:所述光伏发电系统包括:多个用于产生直流电的光伏组件;多个用于将所述直流电转换为交流电的功率转换器;多个无功功率补偿系统;
所述无功功率补偿系统执行如下操作:
1)基于光伏发电系统中的至少一个功率转换器的状态来计算无功功率的所需值;
2)基于所述无功功率的所需值生成无功功率指令;
3)将所述无功功率指令发送到产生所述无功功率的所需值的所述功率转换器中,以补偿由所述光伏发电系统中的所述功率转换器引起的电压变化;
所述光伏组件包括多个呈阵列排布的太阳能电池片,所述太阳能电池片为硅基异质结太阳能电池,所述硅基异质结太阳能电池按照如下步骤制备:
(a)对P型硅片进行清洗;
(b)采用金属离子辅助化学刻蚀法在所述P型硅片的上表面制备P型硅纳米线阵列,所述P型硅纳米线阵列中硅纳米线的长度为1-2微米,相邻硅纳米线之间的间距为300-400nm,所述硅纳米线的直径为600-800nm;
(c)将含有所述P型硅纳米线阵列的所述P型硅片浸入硫化氨的水溶液中,作为阳极,并在硫化氨的水溶液中放置铂电极,作为阴极,进行电镀硫化处理,以得到硫化钝化层;
(d)在所述P型硅纳米线阵列的表面通过化学气相沉积法制备铁电钝化薄膜,所述铁电钝化薄膜的厚度为1-3纳米;
(e)随后在所述铁电钝化薄膜的表面通过PECVD法制备N型非晶硅薄膜,所述N型非晶硅薄膜的厚度为60-80纳米;
(f)在所述N型非晶硅薄膜表面通过化学气相沉积法制备铁电薄膜隧穿层,所述铁电薄膜隧穿层的厚度为1-3纳米;
(g)在所述铁电薄膜隧穿层的表面沉积ITO透明导电层,所述ITO透明导电层的厚度为50-80纳米,在所述ITO透明导电层表面沉积银栅电极;
(h)在P型硅片的背面依次沉积氟化锂层和金属铝电极层,所述氟化锂层的厚度为1-3纳米,所述金属铝电极层的厚度为80-100纳米。
2.根据权利要求1所述的具有无功功率补偿系统的光伏发电系统,其特征在于:所述无功功率补偿系统包括卡尔曼滤波器;所述卡尔曼滤波器包括系统模块和观测模块。
3.根据权利要求1所述的具有无功功率补偿系统的光伏发电系统,其特征在于:所述无功功率补偿系统包括直接无功功率补偿系统、无功电流补偿系统或功率因数补偿系统。
4.根据权利要求1所述的具有无功功率补偿系统的光伏发电系统,其特征在于:每个光伏组件耦合到相应的一个功率转换器,每个功率转换器耦合到相应的一个无功功率补偿系统。
5.根据权利要求1所述的具有无功功率补偿系统的光伏发电系统,其特征在于:所述铁电钝化薄膜和所述铁电薄膜隧穿层的材质为PZT、BTO、BFO或BST。
CN201710265870.5A 2017-04-21 2017-04-21 一种具有无功功率补偿系统的光伏发电系统 Active CN107093644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710265870.5A CN107093644B (zh) 2017-04-21 2017-04-21 一种具有无功功率补偿系统的光伏发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710265870.5A CN107093644B (zh) 2017-04-21 2017-04-21 一种具有无功功率补偿系统的光伏发电系统

Publications (2)

Publication Number Publication Date
CN107093644A CN107093644A (zh) 2017-08-25
CN107093644B true CN107093644B (zh) 2019-04-23

Family

ID=59637564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710265870.5A Active CN107093644B (zh) 2017-04-21 2017-04-21 一种具有无功功率补偿系统的光伏发电系统

Country Status (1)

Country Link
CN (1) CN107093644B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379113C (zh) * 2003-09-11 2008-04-02 上海交通大学 同时实现并网发电和电网无功功率补偿的一体化方法
CN101436636B (zh) * 2008-12-16 2011-05-25 中国科学院电工研究所 一种用于n型硅的透明导电阴极接触结构
CN102290450A (zh) * 2011-09-14 2011-12-21 苏州大学 一种n型晶体硅太阳能电池
CN104022516B (zh) * 2014-05-16 2017-09-12 深圳科士达科技股份有限公司 光伏发电系统的无功补偿方法、装置及光伏发电系统
CN105304765B (zh) * 2015-11-13 2017-08-29 新奥光伏能源有限公司 一种硅异质结太阳能电池及其制作方法
CN105489708B (zh) * 2016-01-18 2018-01-12 河北大学 一种p型硅太阳能电池及其制备方法
CN105789346A (zh) * 2016-04-13 2016-07-20 黄广明 一种基于硅纳米线的太阳能电池

Also Published As

Publication number Publication date
CN107093644A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
Singh et al. Solar PV cell materials and technologies: Analyzing the recent developments
Rahman et al. Advances in solar photovoltaic power plants
US8748216B2 (en) Non-vacuum method for fabrication of a photovoltaic absorber layer
US20090050204A1 (en) Photovoltaic device using nanostructured material
US9397251B2 (en) Integrated micro-inverter and thin film solar module and manufacturing process
Çetinkaya Study of electrical effect of transition-metal dichalcogenide-MoS2 layer on the performance characteristic of Cu2ZnSnS4 based solar cells using wxAMPS
CN102214734A (zh) 一种氧化锌/氧化亚铜薄膜太阳能电池的制备方法
US8034654B2 (en) Method for forming a GexSi1-x buffer layer of solar-energy battery on a silicon wafer
Zhang et al. CuInSe2 nanocrystals/CdS quantum dots/ZnO nanowire arrays heterojunction for photovoltaic applications
Kim et al. Copper indium selenide water splitting photoanodes with artificially designed heterophasic blended structure and their high photoelectrochemical performances
Tang Copper indium gallium selenide thin film solar cells
CN102569481A (zh) 一种具有梯度型带隙特征的纳米硅窗口层及其制备方法
US20080314435A1 (en) Nano engineered photo electrode for photoelectrochemical, photovoltaic and sensor applications
CN107093644B (zh) 一种具有无功功率补偿系统的光伏发电系统
Feng et al. From wires to veins: wet-process fabrication of light-weight reticulation photoanodes for dye-sensitized solar cells
CN105040062A (zh) Cu2O纳米粒子敏化TiO2纳米管阵列光电极的方法
Lee et al. Structural regulation of electrochemically deposited copper layers for fabrication of thin film solar cells with a CuInS2 photoabsorber
CN105207270A (zh) 改善光伏并网电压越限的逆变器功率协调控制方法
CN105280745A (zh) GaInP/GaAs/InGaAs/Ge四结级联太阳电池及其制作方法
CN105332026B (zh) 电化学沉积法制备Cu2FeSnS4薄膜
RU2632266C2 (ru) Гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния
Norddin et al. Performance Comparison of different electron transport layer for Perovskite Solar Cell with NiO as hole transport layer using SCAPS 1D
CN112708905A (zh) 一种Z型InGaN/Cu2O纳米柱异质结及其制备方法与应用
CN102148279A (zh) 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
CN107887168A (zh) 一种用于量子点敏化太阳能电池的铜铟硒对电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant