CN107093602A - 一种可集成化的光控分子开关器件及其制备方法 - Google Patents

一种可集成化的光控分子开关器件及其制备方法 Download PDF

Info

Publication number
CN107093602A
CN107093602A CN201710251139.7A CN201710251139A CN107093602A CN 107093602 A CN107093602 A CN 107093602A CN 201710251139 A CN201710251139 A CN 201710251139A CN 107093602 A CN107093602 A CN 107093602A
Authority
CN
China
Prior art keywords
light
operated
switching element
molecule switching
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710251139.7A
Other languages
English (en)
Other versions
CN107093602B (zh
Inventor
杨国锋
谢峰
汪金
张秀梅
郑亚鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Purple Light Technology Co., Ltd.
Original Assignee
Hefei Huixin Semiconductor Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Huixin Semiconductor Science And Technology Co Ltd filed Critical Hefei Huixin Semiconductor Science And Technology Co Ltd
Priority to CN201710251139.7A priority Critical patent/CN107093602B/zh
Publication of CN107093602A publication Critical patent/CN107093602A/zh
Application granted granted Critical
Publication of CN107093602B publication Critical patent/CN107093602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/671Organic radiation-sensitive molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种可集成化的光控分子开关器件,包括光控分子开关衬底,光控分子开关衬底上依次设有发光元件、光波导层和光控分子开关元件,发光元件和光控分子开关元件通过光波导元件连接,发光元件包括至少两个纳米线LED,且其中至少有一个紫外光纳米线LED和一个可见光纳米线LED,光波导层的材料采用SiNx或SiO2中的一种,光控分子开关元件由一个或多个功能分子组成。本发明的优点在于该光控分子开关器件有效地将分子元件应用到集成电路上,极大的缩小了开关器件的尺寸大小,其光控分子开关器件的尺寸不大于100μm。

Description

一种可集成化的光控分子开关器件及其制备方法
技术领域
本发明涉及微电子集成电路设计领域,具体涉及一种可集成化的光控分子开关器件,以及器件的制备方法。
背景技术
分子开关是一种在不同触发条件下形成两种不同电导特性的双稳态量子系统,常见的触发条件有扫描隧道显微镜(STM)、氧化还原反应、环境酸碱性的改变、电场调控以及光照等。其中,光刺激法具有容易集成、易于寻址、光响应速率快以及触发条件简单等优点。分子开关相比传统固体电子材料器件具有器件尺寸更小、价格低廉、制备简单等优点,成而解决了超大规模集成电路的进一步发展所受到原理性的物理限制以及技术性的工艺限制。此外,集成光控分子开关到片上系统,可以实现高速切换,输入和输出间完全绝缘。由于没有触点的磨损,使用寿命较长。同时,具有无震动和弹跳,无动作声音等其它优点。当前,科研人员正在全力探索可应用的新型纳米分子器件。
二芳基乙烯化合物分子具有较为稳定的结构,可以实现在不同波长的光照条件下发生同分异构体体之间的相互转化。因此选用同分异构体物理尺寸相近的二芳基乙烯分子,在紫外和可见光激发下使得分子的导电性发生变化,从而实现双稳态光控分子开关。
迄今为止,在本技术领域提出的由光驱动的分子元件,只是利用分子本身的物理性能方面在光照射下产生变化。也就是说,分子本身仅仅作为单个元件考虑,然而迄今为止还没有提出有效地应用分子元件到集成电路的方案。
发明内容
本发明所要解决的技术问题在于提供一种可集成化的光控分子开关器件及其制备方法,该器件有效地将分子元件应用到集成电路上,极大的缩小了开关器件的尺寸大小。
本发明所要解决的技术问题采用以下技术方案来实现:
一种可集成化的光控分子开关器件,所述光控分子开关器件包括光控分子开关衬底,所述光控分子开关衬底上依次设有发光元件、光波导层和光控分子开关元件,所述发光元件和光控分子开关元件通过光波导层连接,所述发光元件包括至少两个纳米线LED,且其中至少有一个紫外光纳米线LED和一个可见光纳米线LED,所述光控分子开关元件由一个或多个功能分子组成。
进一步改进在于,所述光波导层的材料采用SiNx或SiO2中的一种。
进一步改进在于,所述光控分子开关器件的尺寸不大于100μm。
进一步改进在于,所述光控分子开关衬底选自蓝宝石、硅、氮化镓、砷化镓、氮化铝或尖晶石中的一种。
进一步改进在于,所述功能分子为二芳基乙烯化合物。
进一步改进在于,所述二芳基乙烯化合物为二噻吩乙烯分子。
进一步改进在于,所述光波导层为SiNx薄膜,且SiNx薄膜上设有钝化层,所述钝化层为SiO2层。
一种可集成化的光控分子开关器件的制备方法,包括以下步骤:
S1、在光控分子开关衬底上制备一层厚200-300nm SiO2层;
S2、将包括可见光和紫外光的纳米线LED和光控分子开关元件移至上述步骤S1得到的SiO2层上;
S3、在所述SiO2层上制备光波导层,所述光波导层位于纳米线LED与光控分子开关元件之间,作为LED光传输至光控分子开关元件的通道;
S4、在步骤S3所述光波导层上制备钝化层。
本发明的有益效果是:本发明发光元件是由至少两个纳米线LED或多个纳米线LED并联组成,其中包括至少一个紫外光LED和一个可见光波段LED,其是否发光完全依赖外加电压的有无;光波导部分采用SiNx或SiO2材料,对LED发光的光具有较高的透射率,使得LED发出的光能够很好的透过光波导传至光控分子开关元件;为实现光控分子开关器件可以控制电路电流有无的问题,本发明的光控分子开关元件是由一个或多个功能分子组成,且置于波导之中,可以有效地降低外界环境对器件性能的影响。该功能分子是一种在可见光/紫外光照射下导电性发生变化,但分子结构长度变化很小的双稳态分子。因此获得的光控分子开关器件可以根据LED出射的光是可见光或紫外光而显示处相反的电特性;LED发光时,以SiNx或SiO2材料作为光波导将纳米线LED和光控分子开关元件相连,可以使功能分子在可见光和紫外光的照射下实现双稳态之间的转换,根据功能分子的光谱响应范围,适当调整LED发光的中心波长使得两者光谱匹配,提高光控分子开关的响应灵敏度。
为解决在同一硅片上制作微型光控分子开关器件的尺寸要求,本发明通过制作纳米线发光二极管结构和光控分子开关元件结构,并通过SiNx光波导将它们相连,可以使该光耦的最大尺寸不大于100μm,使其具有可集成到片上系统的特点。
附图说明
图1为二噻吩乙烯分子开关在分子水平上的导通状态实现开关功能的解释性透视示意图;
图2为二噻吩乙烯分子开关在分子水平上的截止状态实现开关功能的解释性透视示意图;
图3为二噻吩乙烯分子光控分子开关在可见光照射状态下的低电阻状态下的分子模型及其结构式;
图4为二噻吩乙烯分子光控分子开关在紫外光照射状态下的高电阻状态下的分子模型及其结构式;
图5为二噻吩乙烯分子光控分子开关在可见光和紫外光照射下,通过分子开关的电流大小与被施加电压之间的关系图;
图6为二噻吩乙烯分子光控分子开关在不同接入电压和开关比之间的关系图;
图7为片上集成光控分子开关的正视图;
图8为片上集成光控分子开关的水平视图;
其中,1-光控分子开关元件,2-二噻吩乙烯分子,3-电极,4-光控分子开关衬底,5-SiO2层,6-光波导层,7-钝化层,8a-可见光纳米线LED,8b-紫外光纳米线LED。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
二噻吩乙烯分子作为二芳基乙烯化合物中的一种,具有良好的热稳定性和耐疲劳性,所以下面用二噻吩乙烯分子作为功能分子,结合具体实施例介绍本发明。
如图1和图2所示,分别是根据本发明光控分子开关在分子水平上的导通状态和截止状态实现开关功能的解释性透视示意图。优选地,所用电极3为金电极。其中在图1中,当二噻吩乙烯分子2被可见光照射时,分子出于一个低阻状态(如图3所示),光控分子开关元件1出于导通状态;在图2中,当二噻吩乙烯分子2被紫外光照射时,分子出于一个高阻状态(如图4所示),光控分子开关元件1出于截止状态。
如图5所示,为二噻吩乙烯分子光控分子开关在可见光和紫外光照射下,通过分子开关的电流大小与被施加电压之间的关系图。上述理论计算结果概括如下:随着电压的增大,导通状态的分子开关元件电流迅速的增大,而截止状态的分子开关元件的电流几乎没有变化,在整个电压范围内,呈现一条直线状态。这意味着在不同波长的光照情况下,该分子器件具有一个明显的开关行为。即在不同的光激发下,分子结从开放形式转换为闭合形式时,分子器件从开的状态(低阻值)转变为关的状态(高阻值)。
如图6所示,其表示实例二噻吩乙烯分子光控分子开关在不同接入电压和开关比之间的关系图。从图中可以看出,分子结的开关比在88到364之间,在较大的偏压范围内表现出102数量级的开关比,表明了该分子器件有着良好的开关性能。
上述的光控分子开关器件具体的通过以下步骤制备:
结合图7和图8所示,首先提供光控分子开关衬底4,优选的,衬底4为硅衬底;然后在硅衬底上制备一层厚约200-300nm的SiO2层5;使用光镊或其它方法将可见光纳米线LED8a和紫外光纳米线LED8b以及分子开关元件移至SiO2层5上,并用光学显微镜对这两种纳米线LED以及光控分子开关元件结构进行标记和分离;然后使用hydrogensilesquioxane(氢硅倍半环氧乙烷)对纳米线和光控分子开关元件进行封装,再热退火使之固定,使用稀释的氢氟酸对多余的hydrogen silesquioxane(氢硅倍半环氧乙烷)进行清洗,使得纳米线和光控分子开关元件裸露出来但不脱离SiO2层5;在上述衬底上使用PECVD(等离子体增强化学气相沉积法)等方法制备一层厚约500-600nm光波导层6,优选的,所述光波导层6为SiNx薄膜;最后再制备一层厚约100-200nm钝化层7,优选的,所述钝化层7为SiO2层。
制备好后的光控分子开关器件如图7和图8所示,其分别是片上集成光控分子开关的正视图和水平视图。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种可集成化的光控分子开关器件,其特征在于:所述光控分子开关器件包括光控分子开关衬底,所述光控分子开关衬底上依次设有发光元件、光波导层和光控分子开关元件,所述发光元件和光控分子开关元件通过光波导层连接,所述发光元件包括至少两个纳米线LED,且其中至少有一个紫外光纳米线LED和一个可见光纳米线LED,所述光控分子开关元件由一个或多个功能分子组成。
2.根据权利要求1所述的一种可集成化的光控分子开关器件,其特征在于:所述光波导层的材料采用SiNx或SiO2中的一种。
3.根据权利要求1所述的一种可集成化的光控分子开关器件,其特征在于:所述光控分子开关器件的尺寸不大于100μm。
4.根据权利要求1所述的一种可集成化的光控分子开关器件,其特征在于:所述光控分子开关衬底选自蓝宝石、硅、氮化镓、砷化镓、氮化铝或尖晶石中的一种。
5.根据权利要求1所述的一种可集成化的光控分子开关器件,其特征在于:所述功能分子为二芳基乙烯化合物。
6.根据权利要求3所述的一种可集成化的光控分子开关器件,其特征在于:所述二芳基乙烯化合物为二噻吩乙烯分子。
7.根据权利要求1所述的一种可集成化的光控分子开关器件,其特征在于:所述光波导层为SiNx薄膜,且SiNx薄膜上设有钝化层,所述钝化层为SiO2层。
8.一种可集成化的光控分子开关器件的制备方法,其特征在于,包括以下步骤:
S1、在光控分子开关衬底上制备一层厚200-300nm SiO2层;
S2、将包括可见光和紫外光的纳米线LED和光控分子开关元件移至上述步骤S1得到的SiO2层上;
S3、在所述SiO2层上制备光波导层,所述光波导层位于纳米线LED与光控分子开关元件之间,作为LED光传输至光控分子开关元件的通道;
S4、在步骤S3所述光波导层上制备钝化层。
CN201710251139.7A 2017-04-18 2017-04-18 一种可集成化的光控分子开关器件及其制备方法 Active CN107093602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710251139.7A CN107093602B (zh) 2017-04-18 2017-04-18 一种可集成化的光控分子开关器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710251139.7A CN107093602B (zh) 2017-04-18 2017-04-18 一种可集成化的光控分子开关器件及其制备方法

Publications (2)

Publication Number Publication Date
CN107093602A true CN107093602A (zh) 2017-08-25
CN107093602B CN107093602B (zh) 2019-01-22

Family

ID=59637572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710251139.7A Active CN107093602B (zh) 2017-04-18 2017-04-18 一种可集成化的光控分子开关器件及其制备方法

Country Status (1)

Country Link
CN (1) CN107093602B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075098A1 (en) * 2001-01-23 2004-04-22 Hamilton Craig James Optical devices
CN1775778A (zh) * 2005-12-01 2006-05-24 复旦大学 二噻吩乙烯类功能材料及其制备方法和应用
US20060153498A1 (en) * 2003-07-23 2006-07-13 Jds Uniphase Corporation Optical performance monitor
CN106054528A (zh) * 2016-06-07 2016-10-26 北京大学 一种基于有机聚合物的纳米图案的制备及快速光调控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075098A1 (en) * 2001-01-23 2004-04-22 Hamilton Craig James Optical devices
US20060153498A1 (en) * 2003-07-23 2006-07-13 Jds Uniphase Corporation Optical performance monitor
CN1775778A (zh) * 2005-12-01 2006-05-24 复旦大学 二噻吩乙烯类功能材料及其制备方法和应用
CN106054528A (zh) * 2016-06-07 2016-10-26 北京大学 一种基于有机聚合物的纳米图案的制备及快速光调控方法

Also Published As

Publication number Publication date
CN107093602B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
Ma et al. Ultrasensitive and broad‐spectrum photodetectors based on InSe/ReS2 heterostructure
US20150263252A1 (en) Optical enhancement of light emitting devices
KR101332686B1 (ko) 투명 전극을 구비하는 발광소자 및 그 제조 방법
Xu et al. Light-extraction enhancement of GaN-based 395 nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode
Peng et al. Enhanced light extraction from DUV-LEDs by AlN-doped fluoropolymer encapsulation
CN107275422B (zh) 一种增强二维过渡金属硫化物光吸收的结构
JP6155012B2 (ja) グラフェン、多層グラフェン又はグラファイトを用いた発光素子、光源及びフォトカプラ
US20200259047A1 (en) Integration of iii-nitride nanowire on transparent conductive substrates for optoelectronic and electronic devices
CN103890965A (zh) 光电转换元件
Lu et al. The efficiency and reliability improvement by utilizing quartz airtight packaging of UVC LEDs
KR101449658B1 (ko) 금속 나노입자-산화 그래핀 복합체를 이용한 발광 파장 조절 재료 및 에너지 하비스팅 기술
CN208000936U (zh) 一种基于表面等离激元增强的led光电器件
Cheng et al. AlGaInP red LEDs with hollow hemispherical polystyrene arrays
CN104409561B (zh) 一种基于微球光学谐振增强的硅薄膜光探测器及其制备方法
CN107093602A (zh) 一种可集成化的光控分子开关器件及其制备方法
Liu et al. Plasmon-enhanced high-performance Si-based light sources by incorporating alloyed Au and Ag nanorods
CN105720208A (zh) 一种有机电致发光器件
Deul Ryu et al. Enhanced light output power of GaN-based light-emitting diodes by nano-rough indium tin oxide film using ZnO nanoparticles
Alkhamisi et al. La/Ge stacked nanosheets designed as optical resonators, microwave oscillators and 5 G/6 G gigahertz receivers
Zhao et al. Light Out‐Coupling for High‐Performance Quantum Dot Light‐Emitting Diodes by π‐π Oriented PEDOT: PSS
CN106848091A (zh) 白光oled器件
Chang et al. Effects of hydrosilyl monomers on the performance of polysiloxane encapsulant/phosphor blend based hybrid white‐light‐emitting diodes
KR20150004649A (ko) 투명전극을 포함하는 반도체 소자 및 그 제조방법
Das et al. Design and analysis of novel high-performance III-nitride MQW-based nanowire white-LED using HfO2/SiO2 encapsulation
Wang et al. Effects of TiO2-doped silicone encapsulation material on the light extraction efficiency of GaN-based blue light-emitting diodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190605

Address after: 211100 Tianyuan East Road 1009, Jiangning High-tech Park, Nanjing, Jiangsu Province

Patentee after: Nanjing Purple Light Technology Co., Ltd.

Address before: 230000 No. 402, 4th Floor, Business Incubation Center B, 602 Huangshan Road, Hefei High-tech Zone, Anhui Province

Patentee before: Hefei Huixin Semiconductor Science and Technology Co., Ltd.