CN107092085A - Staggered contraposition reflector for high-concentration compound solar module - Google Patents
Staggered contraposition reflector for high-concentration compound solar module Download PDFInfo
- Publication number
- CN107092085A CN107092085A CN201710524160.XA CN201710524160A CN107092085A CN 107092085 A CN107092085 A CN 107092085A CN 201710524160 A CN201710524160 A CN 201710524160A CN 107092085 A CN107092085 A CN 107092085A
- Authority
- CN
- China
- Prior art keywords
- staggeredly
- solar module
- graphite powder
- mirror
- compound solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 23
- 239000004952 Polyamide Substances 0.000 claims description 9
- 229920002647 polyamide Polymers 0.000 claims description 9
- 229920006324 polyoxymethylene Polymers 0.000 claims description 9
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 6
- 238000004079 fireproofing Methods 0.000 claims 3
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 9
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 7
- 239000003063 flame retardant Substances 0.000 description 7
- -1 polyoxymethylene Polymers 0.000 description 7
- 229930040373 Paraformaldehyde Natural products 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- ODPYDILFQYARBK-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2SC2=C1 ODPYDILFQYARBK-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0019—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0038—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
- G02B19/0042—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Toxicology (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
技术领域technical field
本发明涉及高倍聚光太阳能技术领域领域,尤其是涉及一种用于高倍聚光化合物太阳能模组的交错对位反射镜。The invention relates to the technical field of high-power concentrating solar energy, in particular to a staggered alignment reflector for high-power concentrating compound solar modules.
背景技术Background technique
目前市场上高倍聚光太阳能所采用的聚光镜为:菲涅尔镜,由于菲涅尔聚光镜因特定的光路要求在相对应的对位问题无法改善,因菲涅尔聚光镜的光路原理导致一次光学与二次光学无法正确对位,导致发电效率低,不容易生产,并且菲涅尔聚光镜的光路需要昂贵的定位生产设备辅助对位问题,同时由于菲涅尔聚光镜的材质问题,其透光率低,耐候性差,影响整体度电成本的经济效益。At present, the concentrators used in high-power concentrating solar energy on the market are: Fresnel mirrors. Due to the specific optical path requirements of Fresnel concentrators, the corresponding alignment problems cannot be improved. The secondary optics cannot be correctly aligned, resulting in low power generation efficiency and not easy to produce, and the optical path of the Fresnel condenser needs expensive positioning production equipment to assist the alignment problem. At the same time, due to the material problem of the Fresnel condenser, its light transmittance is low , poor weather resistance, affecting the economic benefits of the overall cost of electricity.
发明内容Contents of the invention
针对现有高倍聚光太阳能聚光镜技术的上述缺陷和问题,本发明的目的是提供一种入射角的角度小,光效率损失小,可以实现自动对位且价格便宜的交错对位反射镜,应用于高倍聚光太阳能模组中,能够解决现有的高倍聚光太阳能聚光镜的入射角的角度小,光效率损失小,对位困难不易生产的问题。Aiming at the above-mentioned defects and problems of the existing high-magnification concentrating solar concentrating mirror technology, the purpose of the present invention is to provide a staggered alignment reflector with a small incident angle and low loss of light efficiency, which can realize automatic alignment and is cheap. In the high-power concentrating solar module, it can solve the problems that the existing high-power concentrating solar concentrating mirror has a small angle of incidence, small loss of light efficiency, difficult alignment and difficult production.
为了达到上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
一种用于高倍聚光化合物太阳能模组的交错对位反射镜,反射镜分为反射镜面A和反射镜面B,反射镜面A设置交错对位孔A,反射镜面B设置交错对位孔B,对位孔A和对位孔B两侧分别设置散热器定位点,所述反射镜面A的焦点定位在交错对位孔B,反射镜面B的焦点定位在交错对位孔A。A staggered alignment reflector for a high-power concentrating compound solar module. The reflector is divided into a reflector surface A and a reflector surface B. The reflector surface A is provided with a staggered alignment hole A, and the reflector surface B is provided with a staggered alignment hole B. Radiator positioning points are set on both sides of the alignment hole A and the alignment hole B, the focus of the mirror surface A is positioned on the staggered alignment hole B, and the focus of the mirror surface B is positioned on the staggered alignment hole A.
上述技术方案中,所述反射镜面A和反射镜面B呈V形。In the above technical solution, the reflective mirror surface A and the reflective mirror surface B are V-shaped.
上述技术方案中,所述反射镜基材包括聚苯硫醚加石墨粉,聚酰胺加石墨粉,聚甲醛加石墨粉。In the above technical solution, the reflector base material includes polyphenylene sulfide plus graphite powder, polyamide plus graphite powder, polyoxymethylene plus graphite powder.
上述技术方案中,所述苯硫醚加石墨粉,包含聚苯硫醚65%—83%,抗紫外线材料8%—15%,石墨粉3%—8%,阻燃材料6%—15%。In the above technical solution, the phenylene sulfide plus graphite powder contains 65%-83% of polyphenylene sulfide, 8%-15% of anti-ultraviolet material, 3%-8% of graphite powder, and 6%-15% of flame-retardant material .
上述技术方案中,所述聚酰胺加石墨粉,包含聚酰胺55%—65%,抗紫外线材料8%—15%,石墨粉15%—20%,阻燃材料8%—15%。In the above technical solution, the polyamide plus graphite powder contains 55%-65% of polyamide, 8%-15% of anti-ultraviolet material, 15%-20% of graphite powder, and 8%-15% of flame-retardant material.
上述技术方案中,所述聚甲醛加石墨粉,包含聚甲醛55%—70%,抗紫外线材料10%—20%,石墨粉5%—10%,阻燃材料6%—15%。In the above technical solution, the polyoxymethylene plus graphite powder contains 55%-70% of polyoxymethylene, 10%-20% of anti-ultraviolet material, 5%-10% of graphite powder, and 6%-15% of flame-retardant material.
上述技术方案中,所述散热器定位点距离反射镜外部距离为10-60mm。In the above technical solution, the distance between the positioning point of the radiator and the outside of the reflector is 10-60mm.
上述技术方案中,所述交错对位孔A和交错对位孔B孔形状为圆形,椭圆形,方形之一,其形状依据光学设计的不同而变化。In the above technical solution, the shape of the staggered alignment hole A and the staggered alignment hole B is one of circular, elliptical, and square, and its shape varies according to different optical designs.
上述技术方案中,所述交错对位孔A和交错对位孔B为圆孔,圆孔直径尺寸为1-30mm。In the above technical solution, the staggered alignment hole A and the staggered alignment hole B are round holes, and the diameter of the round holes is 1-30 mm.
本发明为用于高倍聚光化合物太阳能模组的聚光设备,其反射镜的设计为交错对位,优点在于入射角的角度小,光效率损失小,应用于高倍聚光太阳能模组的一次光学中,能够解决现有的高倍聚光太阳能聚光镜的入射角的角度大,光效率损失大,解决了高倍聚光在生产问题上一次光学与二次光学无法自动对位的问题。The present invention is a concentrating device for high-power concentrating compound solar modules, and its reflectors are designed to be staggered, with the advantages of small angle of incidence and small loss of light efficiency. In optics, it can solve the problem that the existing high-magnification concentrating solar concentrator has a large angle of incidence and a large loss of light efficiency, and solves the problem that the primary optics and secondary optics cannot be automatically aligned in the production of high-magnification concentrating.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是本发明交错定位反射镜的结构示意图。FIG. 1 is a schematic diagram of the structure of the staggered positioning mirrors of the present invention.
图2是本发明交错定位反射镜的结构示意图。Fig. 2 is a schematic structural view of the staggered positioning mirrors of the present invention.
图3是本发明交错定位反射镜的底部结构示意图。Fig. 3 is a schematic diagram of the bottom structure of the staggered positioning reflector of the present invention.
图4是本发明交错定位反射镜的俯视结构示意图。Fig. 4 is a schematic top view structure diagram of the staggered positioning reflector of the present invention.
图5是入射角与光学效率的转化率示意图。Fig. 5 is a schematic diagram of the conversion ratio between the incident angle and the optical efficiency.
图中,101、交错对位孔A,102、交错对位孔B,201、反射镜面A,202、反射镜面B,301、散热器定位点A,302、散热器定位点B,303、散热器定位点A1,304、散热器定位点B1。In the figure, 101, staggered alignment hole A, 102, staggered alignment hole B, 201, mirror surface A, 202, mirror surface B, 301, radiator positioning point A, 302, radiator positioning point B, 303, heat dissipation Radiator positioning point A1, 304, radiator positioning point B1.
具体实施方式detailed description
下面将结合本发明的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
根据图1至图4所示,本发明公开的一种用于高倍聚光化合物太阳能模组的交错对位反射镜,反射镜分为反射镜面A和反射镜面B,反射镜面A和反射镜面B呈V形,也可以依据光学设计为其它适宜的形状。As shown in Figures 1 to 4, the present invention discloses a staggered alignment reflector for high power concentrating compound solar modules, the reflector is divided into reflector A and reflector B, reflector A and reflector B It is V-shaped, and can also be other suitable shapes according to the optical design.
反射镜面A设置交错对位孔A,反射镜面B设置交错对位孔B,反射镜面A的焦点定位在交错对位孔B,反射镜面B的焦点定位在交错对位孔A。The mirror surface A is provided with a staggered alignment hole A, and the mirror surface B is provided with a staggered alignment hole B, the focus of the mirror surface A is positioned on the staggered alignment hole B, and the focus of the mirror surface B is positioned on the staggered alignment hole A.
散热器定位点分别为散热器定位点A,散热器定位点B,散热器定位点A1,散热器定位点B1,散热器定位点A与散热器定位点A1分布在对位孔A两侧,。散热器定位点B与散热器定位点B1分布在对位孔B两侧。散热器定位点A与散热器定位点A1以及散热器定位点B与散热器定位点B1分别距离反射镜外部距离为20mm。The radiator positioning points are radiator positioning point A, radiator positioning point B, radiator positioning point A1, radiator positioning point B1, radiator positioning point A and radiator positioning point A1 are distributed on both sides of the alignment hole A, . The radiator positioning point B and the radiator positioning point B1 are distributed on both sides of the alignment hole B. Radiator positioning point A and radiator positioning point A1, and radiator positioning point B and radiator positioning point B1 are respectively 20 mm away from the outside of the reflector.
交错对位孔A和交错对位孔B孔形状可以为圆形,椭圆形,方形,其形状依据光学设计的不同而变化,本实用新型交错对位孔A和交错对位孔B为圆孔,圆孔直径尺寸为8mm。The shape of the staggered alignment hole A and the staggered alignment hole B can be circular, elliptical, or square, and its shape varies according to the optical design. The staggered alignment hole A and the staggered alignment hole B of the utility model are circular holes , The diameter of the round hole is 8mm.
反射镜的基材为复合材料,反射镜基材包括聚苯硫醚加石墨粉,聚酰胺加石墨粉,聚甲醛加石墨粉,其中:苯硫醚加石墨粉,包含聚苯硫醚76%,抗紫外线材料11%,石墨粉4%,阻燃材料9%;聚酰胺加石墨粉,包含聚酰胺59%,抗紫外线材料13%,石墨粉15%,阻燃材料13%;聚甲醛加石墨粉,包含聚甲醛63%,抗紫外线材料15%,石墨粉8%,阻燃材料14%,抗紫外线材料、阻燃材料可以选择市场上具有等同功能的材料。目前市场上反射镜制作的工艺非常成熟,本发明参照现有技术的反射镜制作的工艺,本发明侧重于反光镜的交错对位设计,反射镜的加工标准公差即可准确的在一次光学上定义出二次光学的位置,进一步的达到高聚光倍率下不需要对位的设计。The base material of the reflector is a composite material, and the base material of the reflector includes polyphenylene sulfide plus graphite powder, polyamide plus graphite powder, polyoxymethylene plus graphite powder, of which: phenylene sulfide plus graphite powder contains 76% of polyphenylene sulfide , anti-ultraviolet material 11%, graphite powder 4%, flame-retardant material 9%; polyamide plus graphite powder, including polyamide 59%, anti-ultraviolet material 13%, graphite powder 15%, flame-retardant material 13%; polyoxymethylene plus Graphite powder contains 63% of polyoxymethylene, 15% of anti-ultraviolet material, 8% of graphite powder, and 14% of flame-retardant material. The anti-ultraviolet material and flame-retardant material can choose materials with equivalent functions on the market. At present, the process of making reflectors on the market is very mature. The present invention refers to the process of making reflectors in the prior art. The present invention focuses on the staggered alignment design of reflectors. The position of the secondary optics is defined to further achieve a design that does not require alignment under high light-gathering magnifications.
反射镜的反射镜面方程式关系为:The mirror surface equation relationship of the reflector is:
C=1/R,R为非球面顶点的曲率半径;C=1/R, R is the radius of curvature of the apex of the aspheric surface;
K=1-e,e为偏心率;K=1-e, e is eccentricity;
K=1时表示曲面;When K=1, it means a curved surface;
K=-1时表示抛物面;When K=-1, it means a paraboloid;
0>K>-1,表示已椭圆的长轴对称的半椭球面0>K>-1, which means a semi-ellipsoid with elliptical major axis symmetry
K>0,表示以椭圆的短轴对称的半椭球面K>0, means a semi-ellipsoid symmetrical to the minor axis of the ellipse
K=0,表示球面K=0, means spherical
D=一个常数,5>D>0D = a constant, 5>D>0
E=一个常数,5>E>0E=a constant, 5>E>0
Z=Z轴,X=X轴,A1~AN=常数Z=Z axis, X=X axis, A1~AN=constant
本发明的动作原理为:当平行光的太阳照射在本发明的高倍聚光化合物太阳能模组交错对位反射镜时,反射镜面A的反射焦点位置在交错对位孔B的位置,反射镜面B的反射焦点位置在交错对位孔A的位置。目前在高倍聚光太阳能聚光镜上反射镜为一次光学,一次光学的焦点光斑的位置对应太阳能接受器,本发明采用的二次光学中,本发明交错对位孔即是二次光学对位的太阳能接受器,因此在反射镜的设计上本发明可以让一次光学与二次光学相比,入射角小,效率一致,度电成本低的。The action principle of the present invention is: when the sun of parallel light shines on the staggered alignment reflector of the high-magnification concentrating compound solar module solar module of the present invention, the reflection focus position of the reflector surface A is at the position of the staggered alignment hole B, and the reflection mirror surface B The position of the reflective focus is at the position of the staggered alignment hole A. At present, the reflector on the high-power concentrating solar concentrator is primary optics, and the position of the focal spot of the primary optics corresponds to the solar receiver. In the secondary optics adopted by the present invention, the staggered alignment holes of the present invention are the solar energy of the secondary optical alignment. Therefore, in the design of the reflector, the present invention can make the primary optics have a smaller incident angle, consistent efficiency, and low cost of electricity compared with the secondary optics.
根据图5所示,参考现有技术中的入射角与光学效率的转化比,一次光学入射角在57度的时光效率只有52%的利用效率,本发明的交错对位反射镜入射角在19-24度之间,其光效利用率可以在92-95%之间。As shown in Figure 5, with reference to the conversion ratio of the incident angle and optical efficiency in the prior art, the light efficiency is only 52% when the primary optical incident angle is 57 degrees, and the staggered alignment reflector of the present invention has an incident angle of 19 degrees Between -24 degrees, its light efficiency utilization rate can be between 92-95%.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710524160.XA CN107092085A (en) | 2017-06-30 | 2017-06-30 | Staggered contraposition reflector for high-concentration compound solar module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710524160.XA CN107092085A (en) | 2017-06-30 | 2017-06-30 | Staggered contraposition reflector for high-concentration compound solar module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107092085A true CN107092085A (en) | 2017-08-25 |
Family
ID=59641362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710524160.XA Pending CN107092085A (en) | 2017-06-30 | 2017-06-30 | Staggered contraposition reflector for high-concentration compound solar module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107092085A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589524A (en) * | 1994-07-27 | 1996-12-31 | Tosoh, Corporation | Polyphenylene sulfide resin composition and light reflective molded article |
US20100175740A1 (en) * | 2009-01-12 | 2010-07-15 | Skyline Solar, Inc. | Solar collector with end modifications |
CN101796653A (en) * | 2007-09-05 | 2010-08-04 | 地平线太阳能公司 | Dual trough concentrating solar photovoltaic module |
CN102362129A (en) * | 2009-03-20 | 2012-02-22 | 地平线太阳能公司 | Reflective surface for solar energy collector |
CN102782048A (en) * | 2010-08-27 | 2012-11-14 | 东洋纺织株式会社 | Polyamide resin composition used for reflective plate for surface mount LED |
CN206920693U (en) * | 2017-06-30 | 2018-01-23 | 王纪盛 | Staggered contraposition reflector for high-concentration compound solar module |
-
2017
- 2017-06-30 CN CN201710524160.XA patent/CN107092085A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589524A (en) * | 1994-07-27 | 1996-12-31 | Tosoh, Corporation | Polyphenylene sulfide resin composition and light reflective molded article |
CN101796653A (en) * | 2007-09-05 | 2010-08-04 | 地平线太阳能公司 | Dual trough concentrating solar photovoltaic module |
US20100175740A1 (en) * | 2009-01-12 | 2010-07-15 | Skyline Solar, Inc. | Solar collector with end modifications |
CN102362129A (en) * | 2009-03-20 | 2012-02-22 | 地平线太阳能公司 | Reflective surface for solar energy collector |
CN102782048A (en) * | 2010-08-27 | 2012-11-14 | 东洋纺织株式会社 | Polyamide resin composition used for reflective plate for surface mount LED |
CN206920693U (en) * | 2017-06-30 | 2018-01-23 | 王纪盛 | Staggered contraposition reflector for high-concentration compound solar module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102062938A (en) | Light converging device, design method thereof and light-converging photovoltaic power generation device | |
CN105978478B (en) | A kind of compound parabolic concentrator and design method based on PV/T systems | |
CN104849844A (en) | Dish type Fresnel reflection concentration method and apparatus thereof | |
CN102148589A (en) | High-power solar energy concentrated photovoltaic system based on Cassegrain structure | |
CN105509339B (en) | A kind of scope of freedom Opticai Concentrating System With Secondary Reflection efficiently changed for solar heat/electricity | |
CN106288440A (en) | A kind of Salar light-gathering structure | |
US20140048117A1 (en) | Solar energy systems using external reflectors | |
CN206920693U (en) | Staggered contraposition reflector for high-concentration compound solar module | |
CN105807423B (en) | A kind of modeling method of no tracing collection system | |
CN203587825U (en) | Fresnel condenser for concentrating photovoltaic assembly | |
CN107092085A (en) | Staggered contraposition reflector for high-concentration compound solar module | |
CN103836807A (en) | Horizontal shaft type asymmetric single parabola combined non-tracking solar condenser | |
CN206019033U (en) | A kind of Salar light-gathering structure | |
US20140048134A1 (en) | Concentrator solar receiver with improved homogenizer | |
CN101521242A (en) | High-efficiency solar cell and production method thereof | |
CN112260614A (en) | Solar condenser | |
CN205318012U (en) | Full reflection light condensation ware of light energy | |
CN105044893B (en) | A kind of luminous energy full-reflection spotlight device | |
TW201351674A (en) | Solar power system and solar energy collection device thereof | |
TWI651501B (en) | Interleaved alignment mirror structure for high-magnification concentrating compound solar modules | |
CN202393966U (en) | Array unit focusing reflector | |
CN204595314U (en) | A kind of dish-style Fresnel reflection beam condensing unit | |
CN107062636B (en) | Composite condenser suitable for solar heat utilization | |
TWM551260U (en) | Interleaved aligned reflection mirror structure for solar module of high-concentration compound | |
TWI445196B (en) | Light-concentrating apparatus of solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170825 |