CN107088427A - The preparation method of ozone Heterogeneous oxidation solid catalyst - Google Patents
The preparation method of ozone Heterogeneous oxidation solid catalyst Download PDFInfo
- Publication number
- CN107088427A CN107088427A CN201710274882.4A CN201710274882A CN107088427A CN 107088427 A CN107088427 A CN 107088427A CN 201710274882 A CN201710274882 A CN 201710274882A CN 107088427 A CN107088427 A CN 107088427A
- Authority
- CN
- China
- Prior art keywords
- weight
- component
- acetylacetone
- lithium
- pentanedione
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 230000003647 oxidation Effects 0.000 title claims abstract description 25
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 25
- 239000011949 solid catalyst Substances 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims abstract description 68
- 230000003197 catalytic effect Effects 0.000 claims abstract description 23
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 15
- LWXVCCOAQYNXNX-UHFFFAOYSA-N lithium hypochlorite Chemical compound [Li+].Cl[O-] LWXVCCOAQYNXNX-UHFFFAOYSA-N 0.000 claims abstract description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 12
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 11
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims abstract description 11
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010443 kyanite Substances 0.000 claims abstract description 10
- 229910052850 kyanite Inorganic materials 0.000 claims abstract description 10
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Inorganic materials [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 claims abstract description 10
- 239000011017 amazonite Substances 0.000 claims abstract description 9
- BYDILAVGJRCJOJ-UHFFFAOYSA-N O.O.[Y+3] Chemical compound O.O.[Y+3] BYDILAVGJRCJOJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 8
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 8
- 239000012752 auxiliary agent Substances 0.000 claims abstract description 7
- 125000003963 dichloro group Chemical group Cl* 0.000 claims abstract description 7
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims abstract description 7
- 235000011151 potassium sulphates Nutrition 0.000 claims abstract description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims abstract description 6
- 229910021538 borax Inorganic materials 0.000 claims abstract description 6
- 229930195712 glutamate Natural products 0.000 claims abstract description 6
- 229910052939 potassium sulfate Inorganic materials 0.000 claims abstract description 6
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 6
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 5
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract description 5
- OHBPFVGCWDHNGM-UHFFFAOYSA-N dodecyl(methyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCC[NH2+]C OHBPFVGCWDHNGM-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 5
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims abstract description 5
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- VAIVGJYVKZVQAA-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;nickel Chemical compound [Ni].OC(=O)CC(O)(C(O)=O)CC(O)=O VAIVGJYVKZVQAA-UHFFFAOYSA-N 0.000 claims abstract description 4
- VSIRWAYMNHKLOS-UHFFFAOYSA-N [V].C(C1=CC=NC=C1)(=O)NN=C(C(=O)O)C Chemical compound [V].C(C1=CC=NC=C1)(=O)NN=C(C(=O)O)C VSIRWAYMNHKLOS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 239000007864 aqueous solution Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- -1 acetic acid terbium Rare-earth Chemical class 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 235000019738 Limestone Nutrition 0.000 claims description 11
- 239000006028 limestone Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 7
- 238000002604 ultrasonography Methods 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000005660 chlorination reaction Methods 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 5
- ZGGPNDKKJIWQJU-UHFFFAOYSA-N 2-(pyridine-4-carbonylhydrazinylidene)propanoic acid Chemical compound OC(=O)C(C)=NNC(=O)C1=CC=NC=C1 ZGGPNDKKJIWQJU-UHFFFAOYSA-N 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000010792 warming Methods 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 230000036571 hydration Effects 0.000 claims description 2
- 238000006703 hydration reaction Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 claims 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 239000007795 chemical reaction product Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 17
- 238000001994 activation Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 6
- 125000002091 cationic group Chemical group 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 abstract 1
- 238000003889 chemical engineering Methods 0.000 abstract 1
- 239000004094 surface-active agent Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 239000010970 precious metal Substances 0.000 description 6
- 239000003643 water by type Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 241000206761 Bacillariophyta Species 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007210 heterogeneous catalysis Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- 238000006385 ozonation reaction Methods 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 description 1
- JTABHYSLUVGCPP-UHFFFAOYSA-N CC(=O)C.C(C)(=O)F Chemical compound CC(=O)C.C(C)(=O)F JTABHYSLUVGCPP-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004835 Na2B4O7 Inorganic materials 0.000 description 1
- KNFUDJRDHMKNRO-UHFFFAOYSA-N acetic acid;terbium Chemical compound [Tb].CC(O)=O KNFUDJRDHMKNRO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/898—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with vanadium, tantalum, niobium or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/045—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/14—Diatomaceous earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/084—Decomposition of carbon-containing compounds into carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Catalysts (AREA)
Abstract
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and technical field of chemical engineering catalysts.It is pure with diatom, kyanite, aluminium hydroxide, celestine, amazonite and the grey masonry carrier of lithium are after lithium hypochlorite and double (acetylacetone,2,4-pentanedione) beryllium reamings, add surfactant Cationic surfucant and activation process is carried out under ul-trasonic irradiation, then carrier in hydrothermal reaction kettle with composite mineralizer borax and potassium sulfate, catalytic activity auxiliary agent predecessor three (hexafluoroacetylacetone) yttrium (III) dihydrate, acetylacetone,2,4-pentanedione samarium, three (4, 4, (2 thiophene) 1 of 4 trifluoro 1, 3 diacetyl) europium, it is hydrated three acetic acid terbiums, catalytic active center predecessor pyruvic acid isonicotinoyl hydrazone vanadium, citric acid nickel, cupric glutamate and the ammino palladium of dichloro four, in emulsifying agent two(Octadecyl)The effect of lauryl methyl ammonium bromide is lower to carry out hydro-thermal reaction, and drying is removed after moisture, and calcination obtains ozone Heterogeneous oxidation solid catalyst in Muffle furnace.
Description
Technical field
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and chemical catalyst skill
Art field.
Background technology
Ozonation technology using ozone oxidation ability it is strong the characteristics of, can be by many organic pollution oxidation Decompositions, extensively
For wastewater treatment.Catalytic ozonation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation, and ozone is equal
Phase catalysis oxidation has that the more difficult separation and recovery of catalyst is reused, ozone utilization rate is low causes water process operating cost higher,
Organic pollutant removal rate is relatively low simultaneously and easily causing secondary pollution of water is limited to its application;Ozone heterogeneous catalysis oxygen
There is change technology catalyst to be easily isolated and recycled and reusable, ozone utilization rate is high, organic pollutant removal rate is higher, drop
Low water process operating cost and receive significant attention its application the advantages of do not result in secondary pollution.Ozone heterogeneous catalysis
It is to reach local organic matter enrichment by catalyst surface absorption organic matter that oxidation of organic compounds, which is decomposed, while ozone molecule absorption exists
The hydroxyl radical free radical that catalyst surface produces high activity under catalyst action decomposes organic matter.Ozone heterogeneous catalytic oxidation
Handle in waste water technology, core technology is the preparation of ozone Heterogeneous oxidation solid catalyst.
Ozone Heterogeneous oxidation solid catalyst is generally made up of carrier, activated centre and auxiliary agent.Due to being polluted in waste water
Species are various, complex chemical composition feature, can produce harmful effect to performance such as absorption, the mithridatism of catalyst.
Prepare that the carrier structure that ozone Heterogeneous oxidation solid catalyst uses is more single at present, adsorptivity is relatively low;Activated centre is universal
Using normal transition metal salt, mithridatism is poor;Preparation method mainly has infusion process, the precipitation method, mixing method and collosol and gel etc.
Method attachment activity center and adjuvant component are easily liquated out in carrier surface, activated centre and adjuvant component, cause catalyst
Easily lose catalytic activity.For exist in current ozone Heterogeneous oxidation solid catalyst preparation method Catalyst Adsorption compared with
Low, mithridatism is poor and easily loses catalytic activity problem, and exploitation is strengthened using multicomponent porous carrier through reaming, surface active
Catalyst Adsorption, makees catalytic activity auxiliary agent predecessor, normal transition Organometallic using Rare-earth chemicals and closes
Thing and precious metal chemical complex are made catalytic active center predecessor and contained with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering preparation
The ozone Heterogeneous oxidation solid catalyst of multi-element metal has to improve the preparation method of catalyst mithridatism and catalytic activity
Larger environmental benefit and higher practical value.
The content of the invention
For existing in current ozone Heterogeneous oxidation solid catalyst preparation method, Catalyst Adsorption is relatively low, mithridatism
Poor to lose catalytic activity problem with easy, exploitation strengthens catalyst using multicomponent porous carrier through reaming, surface active
Adsorptivity, catalytic activity auxiliary agent predecessor, normal transition metallo-organic compound and expensive are made using Rare-earth chemicals
Metallic compound is made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering containing polynary gold
The ozone Heterogeneous oxidation solid catalyst of category to improve the preparation method of catalyst mithridatism and catalytic activity, it is characterized in that
Component A can be added in closed reactor and deionized water stirring prepares the aqueous solution, the weight concentration for control component A is 2%~6%,
After the completion of prepared by solution, B component is added under agitation, 35 DEG C~50 DEG C are warming up to, continues stirring reaction 3h~6h, is filtered, instead
Product is answered to obtain reaming modified support after 102 DEG C~106 DEG C dry constant weights;Reaming modified support puts into ultrasound reactor,
The aqueous solution prepared by component C and deionized water is added, the weight concentration of component C is 3%~8%, is uniformly mixed, and control is super
Sound power density is 0.3~0.8W/m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasound
Surface active carrier mixed liquor;Ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, add D components and go from
The aqueous solution that sub- water is prepared, the weight concentration of D components is 40%~55%, by weight, D component deionized water solutions:Ultrasonic table
Weight ratio=1 of face activated carrier mixed liquor:(1.5~2), control 120 DEG C~180 DEG C of temperature, the hydro-thermal reaction time be 8h~
16h, then dries to obtain fine particle;Fine particle is in Muffle furnace, 600 DEG C~950 DEG C, and calcination 3h~8h obtains ozone non-
Homogeneous oxidizing solid catalyst.The component A is made up of lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, by weight, lithium hypochlorite:
Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B component is by diatom is pure, kyanite, aluminium hydroxide, celestine, the Milky Way
Stone, lithium lime stone composition, by weight, diatom is pure:Kyanite:Aluminium hydroxide:Celestine:Amazonite:The weight ratio of lithium lime stone=
(5~15):(7~17):(9~19):(11~21):(13~23):(15~25), by weight, component A:The weight of B component
The ratio between=1:(10~20), component C is Cationic surfucant, by weight, component C:Reaming modified support
Weight ratio=1:(5~10), D components are by composite mineralizer borax, potassium sulfate, (the hexafluoro second of catalytic activity auxiliary agent predecessor three
Acyl acetone) yttrium (III) dihydrate, acetylacetone,2,4-pentanedione samarium, three (4,4,4- tri- fluoro- 1- (2- thiophene) -1,3- diacetyl) europiums, water
Three acetic acid terbium Rare-earth chemicals are closed, catalytic active center predecessor normal transition metallo-organic compound pyruvic acid is different
Icotinoylhydrazones vanadium, citric acid nickel, cupric glutamate and the ammino palladium of precious metal chemical complex dichloro four, emulsifying agent two(Octadecyl)Lauryl
Methyl bromide ammonium is constituted, by weight, borax:Potassium sulfate:Three (hexafluoroacetylacetone) yttrium (III) dihydrates:Acetylacetone,2,4-pentanedione
Samarium:Three (4,4,4- tri- fluoro- 1- (2- thiophene) -1,3- diacetyl) europiums:It is hydrated three acetic acid terbiums:Pyruvic acid isonicotinoyl hydrazone vanadium:Lemon
Sour nickel:Cupric glutamate:The ammino palladium of dichloro four:Two(Octadecyl)The weight ratio of lauryl methyl ammonium bromide=(4~8):(6~
10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~7):(6~9):(6~20).The B
The diatom of component is pure, kyanite, aluminium hydroxide, celestine, amazonite, lithium lime stone are crushed respectively, and deionized water washing is dry
After dry removing moisture, -200 mesh ,+400 mesh sieves point are carried out through standard screen, it is the mm of 0.0370mm~0.0750 control particle diameter.
What the technical method of the present invention was realized in:Lithium hypochlorite LiClO, double (second can be being added in closed reactor
Acyl acetone) beryllium C10H14BeO4The aqueous solution is prepared with deionized water stirring, it is 0.0370mm~0.0750mm to add particle diameter after screening
Diatom is pure, kyanite, aluminium hydroxide, celestine, amazonite and lithium lime stone porous material carrier, in certain temperature and stirring bar
Under part, the small Be of aqueous solution Ionic Radius2+(0.31Å)、Li+(0.60Å)Displace part ion radius in porous material big
Ca2+(0.99Å)、K+(1.33Å)、Ba2+(1.35Å)Plasma, the aperture of porous material carrier becomes big, surface roughness increasing
Plus, filtering dries the reaming modified support input ultrasound reactor after constant weight, adds chlorination dodecyl dimethyl hydroxyl second
Base ammonium [C12H25N(CH3)2CH2CH2OH]+Cl-The aqueous solution, control ultrasonic power density, ultrasonic frequency, temperature and sonic oscillation
Time, under ultrasonic cavitation effect, Cationic surfucant [C12H25N(CH3)2CH2CH2OH]+Cl-Easily
In escaping into reaming modified support duct from the aqueous solution or being attached to reaming modified support surface, it is beneficial to the phase in carrier duct
The activation of intercommunicated and carrier surface, enhances adsorptivity;After the completion of ultrasonic activation, ultrasonic surface activated carrier mixed liquor is transferred to
In hydrothermal reaction kettle, with borax Na2B4O7·10H2O, potassium sulfate K2SO4Composite mineralizer, catalytic activity auxiliary agent predecessor three (six
Acetyl fluoride acetone) yttrium (III) dihydrate C15H3F18O6Y·2H2O, acetylacetone,2,4-pentanedione samarium C15H25O8Sm, three (4,4,4- tri- is fluoro-
1- (2- thiophene) -1,3- diacetyl) europium C24H18EuF9O6S3, hydration three acetic acid terbium C6H11O7Tb Rare-earth chemicals, are urged
Change activated centre component predecessor normal transition metallo-organic compound pyruvic acid isonicotinoyl hydrazone vanadium [VO2(C9H8N3O5)]
(C5H5N), citric acid nickel C12H22O14Co, cupric glutamate C6H7O4The Cu and ammino palladium Pd (NH of precious metal chemical complex dichloro four3)4Cl2,
In emulsifying agent two(Octadecyl)Lauryl methyl ammonium bromide [(C18H37)2NC12H25 CH3]+Br-Effect is lower to carry out hydro-thermal reaction,
Mineralizer accelerates diffusion, activates reactant lattice, promotes the progress of solid phase reaction, ultrasonic surface activated carrier with it is dilute
Earth metal organic compound, normal transition metallo-organic compound, precious metal chemical complex Uniform Doped, emulsifying agent two(Octadecane
Base)Lauryl methyl ammonium bromide make reaction solution formed quasi-stationary emulsion prevent separation of solid and liquid, sedimentation, while to porous carrier
Further surface active, by the way that in certain temperature, the hydro-thermal reaction of time, drying obtains the fine silt thing of Uniform Doped;Uniformly
The fine silt thing of doping is in Muffle furnace, through high temperature sintering, and organic matter carbonization therein further enhances porous carrier
Microcellular structure, obtain porous carrier supported rare earth metal oxide, transition metal oxide and noble metal formation catalysis live
The ozone Heterogeneous oxidation solid catalyst at property center, improves the mithridatism and catalytic activity of catalyst.
Relative to art methods, outstanding feature of the present invention is using diatom is pure, kyanite, hydroxide in technology of preparing
Aluminium, celestine, amazonite, lithium lime stone porous material make carrier, due to lithium hypochlorite LiClO and double (acetylacetone,2,4-pentanedione) berylliums
C10H14BeO4Reaming effect, Cationic surfucant [C12H25N(CH3)2CH2CH2OH]+Cl-, two(18
Alkyl)Lauryl methyl ammonium bromide [(C18H37)2NC12H25 CH3]+Br-The interconnected and surface activation in duct;Pass through
Hydro-thermal reaction makes Rare-earth chemicals, normal transition metallo-organic compound and precious metal chemical complex reach Uniform Doped
And be attached in carrier surface and duct, high temperature sintering makes organic matter carbonization strengthen and form multi-level micropore knot
In structure, the multi-element metal catalytic activity of porous carrier supported rare earth metal oxide, transition metal oxide and noble metal formation
The heart is combined more firm with porous carrier, and the ozone Heterogeneous oxidation solid catalyst of preparation has stronger adsorptivity, polynary
The cooperative effect of metal, stability and high activity that particularly doped precious metal has, can suppress metal catalytic activity component
Liquate out, the mithridatism and catalytic activity of catalyst are improved, with good environmental benefit and economic benefit.
Embodiment
Embodiment 1:1.35g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 1.65g, 140ml deionized waters, being added to volume is
500ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 2.1%, lithium hypochlorite:Double (levulinics
Ketone) beryllium weight ratio=1:1.2;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+
The 2.75g diatoms of 400 mesh standard sieves are pure, 3.75g kyanites, 4.75g aluminium hydroxides, 5.75g celestines, 6.75g amazonites,
The weight of 7.75g lithium lime stones, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(3g):The weight of porous material(31.5g)=1:10.5,
36 DEG C are warming up to, reaming modified support 31g is obtained after continuing stirring reaction 3.2h, filtering, 103 DEG C of dry constant weights;It is super in 500ml
In sound wave reactor, reaming modified support 31g is put into, 3.25g Cationic surfucants is added and is dissolved in
The aqueous solution of 100ml deionized waters, the weight concentration of the aqueous solution is 3.1%, is uniformly mixed, chlorination dimethyl
Base hydroxyethyl ammonium(3.25g):Reaming modified support(31g )=1:9.5;It is 0.4W/m to control ultrasonic power density3, ultrasonic wave frequency
41 DEG C of rate 21kHz, temperature, sonic oscillation 2.2h;After the completion of ultrasonic activation, the ultrasonic surface in ultrasound reactor is activated and carried
Body mixed liquor is transferred in 500ml hydrothermal reaction kettles, is added by 2.1g boraxs, 3.05g potassium sulfates, (the hexafluoro acetyl of 1.6g tri-
Acetone) yttrium (III) dihydrate, 2.05g acetylacetone,2,4-pentanediones samarium, (4,4,4- tri- fluoro- 1- (2- the thiophene) -1,3- fourths two of 2.6g tri-
Ketone) europium, 3.05g be hydrated three acetic acid terbiums, 5.05g pyruvic acid isonicotinoyl hydrazones vanadium, 6.1g citric acids nickel, 2.05g cupric glutamates, 3.1g
The ammino palladium of dichloro four, 3.05g bis-(Octadecyl)The aqueous solution that lauryl methyl ammonium bromide and 50ml deionized waters are prepared, the water
The weight concentration of solution is 40.3%, the weight of the aqueous solution:Weight=83.8g of ultrasonic surface activated carrier mixed liquor:
134.25g=1:1.6,125 DEG C of temperature is controlled, the hydro-thermal reaction time is 8.3h, then dries to obtain fine silt thing for 105 DEG C;Fine silt
Thing is in Muffle furnace, 620 DEG C, calcination 3.2h, after cooling down, and the ozone Heterogeneous oxidation solid that can obtain fine particle shape is urged
Agent.
Embodiment 2:0.24g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 0.36g, 10ml deionized waters, being added to volume is
100ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 5.7%, lithium hypochlorite:Double (levulinics
Ketone) beryllium weight ratio=1:1.5;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+
The 1.45g diatoms of 400 mesh standard sieves are pure, 1.65g kyanites, 1.85g aluminium hydroxides, 2.05g celestines, 2.25g amazonites,
The weight of 2.45g lithium lime stones, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(0.6g):The weight of porous material(11.7g)=1:
19.5,48 DEG C are warming up to, reaming modified support 11.5g is obtained after continuing stirring reaction 5.8h, filtering, 105 DEG C of dry constant weights;
In 100ml ultrasound reactors, reaming modified support 11.5g is put into, 2.2g chlorination dodecyl dimethyl ethoxys are added
Ammonium is dissolved in the aqueous solution of 26ml deionized waters, and the weight concentration of the aqueous solution is 7.8%, is uniformly mixed, chlorination dodecyl
Dimethyl hydroxyethyl ammonium(2.2g):Reaming modified support(11.5g )=1:5.2;It is 0.7W/m to control ultrasonic power density3, it is super
54 DEG C of frequency of sound wave 29kHz, temperature, sonic oscillation 4.7h;After the completion of ultrasonic activation, the ultrasonic surface in ultrasound reactor
Activated carrier mixed liquor is transferred in 100ml hydrothermal reaction kettles, is added by 0.78g boraxs, 0.97g potassium sulfates, 0.58g tri-
(hexafluoroacetylacetone) yttrium (III) dihydrate, 0.67g acetylacetone,2,4-pentanediones samarium, 0.78g tri- (the fluoro- 1- of 4,4,4- tri- (2- thiophene)-
1,3- diacetyl) europium, 0.87g be hydrated three acetic acid terbiums, 1.48g pyruvic acid isonicotinoyl hydrazones vanadium, 1.77g citric acids nickel, 0.68g paddy ammonia
Sour copper, the ammino palladium of 0.87g dichloros four, 1.98g bis-(Octadecyl)What lauryl methyl ammonium bromide and 10ml deionized waters were prepared
The aqueous solution, the weight concentration of the aqueous solution is 53.3%, the weight of the aqueous solution:The weight of ultrasonic surface activated carrier mixed liquor=
21.43g:39.7g=1:1.9,175 DEG C of temperature is controlled, the hydro-thermal reaction time is 15.5h, then dries to obtain fine silt thing for 105 DEG C;
Fine silt thing is in Muffle furnace, 930 DEG C, calcination 7.5h, after cooling down, can obtain the ozone Heterogeneous oxidation of fine particle shape
Solid catalyst.
Claims (2)
1. a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, it is characterized in that A groups can added in closed reactor
Divide and deionized water stirring prepares the aqueous solution, the weight concentration for controlling component A is 2%~6%, after the completion of prepared by solution, in stirring
Lower addition B component, is warming up to 35 DEG C~50 DEG C, continues stirring reaction 3h~6h, and filtering, reaction product is dry at 102 DEG C~106 DEG C
Reaming modified support is obtained after dry constant weight, reaming modified support input ultrasound reactor, addition is matched somebody with somebody by component C and deionized water
The aqueous solution of system, the weight concentration of component C is 3%~8%, is uniformly mixed, and it is 0.3~0.8W/ to control ultrasonic power density
m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasonic surface activated carrier mixed liquor, transfer
Into hydrothermal reaction kettle, the aqueous solution that D components and deionized water are prepared is added, the weight concentration of D components is 40%~55%, is pressed
Weight meter, D component deionized water solutions:Weight ratio=1 of ultrasonic surface activated carrier mixed liquor:(1.5~2), control temperature
120 DEG C~180 DEG C, the hydro-thermal reaction time is 8h~16h, then dries to obtain fine silt thing, fine silt thing is in Muffle furnace, 600
DEG C~950 DEG C, calcination 3h~8h obtains ozone Heterogeneous oxidation solid catalyst;The component A by expanding agent lithium hypochlorite,
Double (acetylacetone,2,4-pentanedione) beryllium compositions, by weight, lithium hypochlorite:Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B groups
Point by diatom is pure, kyanite, aluminium hydroxide, celestine, amazonite and lithium lime stone are constituted, by weight, diatom is pure:Kyanite:
Aluminium hydroxide:Celestine:Amazonite:The weight ratio of lithium lime stone=(5~15):(7~17):(9~19):(11~21):
(13~23):(15~25), by weight, component A:Weight ratio=1 of B component:(10~20), component C is chlorination dodecane
Base dimethyl hydroxyethyl ammonium, by weight, component C:Weight ratio=1 of reaming modified support:(5~10), D components are by being combined
Mineralizer borax, potassium sulfate, catalytic activity auxiliary agent predecessor three (hexafluoroacetylacetone) yttrium (III) dihydrate, acetylacetone,2,4-pentanedione
Samarium, three (4,4,4- tri- fluoro- 1- (2- thiophene) -1,3- diacetyl) europiums, three acetic acid terbium Rare-earth chemicals of hydration, catalysis
Activated centre predecessor normal transition metallo-organic compound pyruvic acid isonicotinoyl hydrazone vanadium, citric acid nickel, cupric glutamate and your gold
Belong to the ammino palladium of compound dichloro four, emulsifying agent two(Octadecyl)Lauryl methyl ammonium bromide is constituted, by weight, borax:Sulphur
Sour potassium:Three (hexafluoroacetylacetone) yttrium (III) dihydrates:Acetylacetone,2,4-pentanedione samarium:Three (the fluoro- 1- of 4,4,4- tri- (2- thiophene) -1,
3- diacetyl) europium:It is hydrated three acetic acid terbiums:Pyruvic acid isonicotinoyl hydrazone vanadium:Citric acid nickel:Cupric glutamate:The ammino palladium of dichloro four:
Two(Octadecyl)The weight ratio of lauryl methyl ammonium bromide=(4~8):(6~10):(3~6):(4~7):(5~8):
(6~9):(10~15):(12~18):(4~7):(6~9):(6~20).
2. according to claim 1 B component by diatom is pure, kyanite, aluminium hydroxide, celestine, amazonite and lithium lime stone group
Into diatom is pure, kyanite, aluminium hydroxide, celestine, amazonite and lithium lime stone are crushed respectively, deionized water washing drying
Remove after moisture, sieved through standard screen, it is 0.0370mm~0.0750mm to control particle diameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710274882.4A CN107088427A (en) | 2017-04-25 | 2017-04-25 | The preparation method of ozone Heterogeneous oxidation solid catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710274882.4A CN107088427A (en) | 2017-04-25 | 2017-04-25 | The preparation method of ozone Heterogeneous oxidation solid catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107088427A true CN107088427A (en) | 2017-08-25 |
Family
ID=59637808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710274882.4A Withdrawn CN107088427A (en) | 2017-04-25 | 2017-04-25 | The preparation method of ozone Heterogeneous oxidation solid catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107088427A (en) |
-
2017
- 2017-04-25 CN CN201710274882.4A patent/CN107088427A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107042115A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051486A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008414A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107159234A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008389A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107088427A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107020119A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107029744A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107020106A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107159249A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008345A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051528A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008390A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051474A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008410A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008388A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107029710A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008418A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051497A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008356A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051516A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051513A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107051508A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN107008402A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst | |
CN106984327A (en) | The preparation method of ozone Heterogeneous oxidation solid catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20170825 |